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Pre-synaptic HCN1 channels regulate excitatory neurotransmission at select cortical synapses by altering Ca V 3.2 Ca 2+ channel activity

The Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are subthreshold, voltage-gated ion channels that are highly expressed in hippocampal and cortical pyramidal cell dendrites, where they play an important role in regulating synaptic potential integration and plasticity. Here, we demonstrate that HCN1 subunits are also localized to the active zone of mature asymmetric synaptic terminals targeting mouse entorhinal cortical layer III pyramidal neurons. We found that HCN channels inhibit glutamate synaptic release by suppressing the activity of low threshold voltage-gated T-(Ca V 3.2) type Ca 2+ channels. In agreement, electron microscopy showed the co-localisation of pre-synaptic HCN1 and Ca V 3.2 subunit. This represents a novel mechanism by which HCN channels regulate synaptic strength and thereby neural information processing and network excitability.

Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channels are low threshold, voltage-gated ion channels with very unusual biophysical properties [START_REF] Biel | Hyperpolarizationactivated cation channels: from genes to function[END_REF] .

These channels are open at potentials more negative to -50 mV and are important for regulating neuronal resting membrane potential (RMP). In addition, the channels are permeable to Na + and K + and form an inward current at rest, thereby depolarizing RMP. Interestingly, in the hippocampus and cortex, they are highly localized to pyramidal cell dendrites [START_REF] Lorincz | Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites[END_REF][START_REF] Notomi | Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain[END_REF] . Here, by regulating the RMP and in this way the biophysical properties of other ion channels as well as by modulating the membrane resistance, they influence excitatory post-synaptic potential (EPSP) kinetics and integration [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF][START_REF] Magee | Dendritic lh normalizes temporal summation in hippocampal CA1 neurons[END_REF][START_REF] George | HCN hyperpolarizationactivated cation channels inhibit EPSPs by interactions with M-type K + channels[END_REF][START_REF] Tsay | HCN1 channels constrain synaptically evoked Ca 2+ spikes in distal dendrites of CA1 pyramidal neurons[END_REF] . These effects are likely to contribute substantially to synaptic plasticity and thus, processes such as information storage [START_REF] Nolan | A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons[END_REF][START_REF] Wang | Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex[END_REF][START_REF] Brager | Plasticity of intrinsic excitability during longterm depression is mediated through mGluR-dependent changes in I h in hippocampal CA1 pyramidal neurons[END_REF][START_REF] Campanac | Downregulation of dendritic I h in CA1 pyramidal neurons after LTP[END_REF][START_REF] Fan | Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I h[END_REF] . Indeed a reduction in HCN channel expression has been associated with enhanced learning [START_REF] Nolan | A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons[END_REF][START_REF] Wang | Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex[END_REF] .

Emerging evidence, though, suggests that in addition to their dendritic localization, HCN1 channels may be present on certain axons and synaptic terminals in the hippocampus, cortex and other regions of the brain [START_REF] Notomi | Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain[END_REF][START_REF] Bender | Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation[END_REF][START_REF] Boyes | Functional presynaptic HCN channels in the rat globus pallidus[END_REF][START_REF] Lujan | Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum[END_REF] . Indeed, pre-synaptic HCN channel current, I h , has been indicated to affect inhibitory synaptic transmission in the rodent cerebellum, hippocampus and basal ganglia [START_REF] Boyes | Functional presynaptic HCN channels in the rat globus pallidus[END_REF][START_REF] Aponte | Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus[END_REF][START_REF] Southan | Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells[END_REF] , though the mechanism by which this occurs is unknown. However, in contrast to invertebrate neurons where I h has been shown to influence excitatory synaptic release [START_REF] Beaumont | Temporal synaptic tagging by I h activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement[END_REF][START_REF] Beaumont | Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels[END_REF] , an explicit role for I h in regulating excitatory basal synaptic transmission in mammals has not yet been revealed. This is despite HCN subunit expression being detected in some immature mammalian glutamatergic pathways [START_REF] Bender | Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation[END_REF] and functional I h recorded from pre-synaptic immature terminals in the calyx of Held [START_REF] Cuttle | Modulation of a presynaptic hyperpolarization-activated cationic current (I h ) at an excitatory synaptic terminal in the rat auditory brainstem[END_REF] . In this study, we demonstrate that HCN1 channels are present at the active zone of mature glutamatergic cortical synaptic terminals establishing contact with entorhinal cortical (EC) layer III cells where they decrease neurotransmission by restricting Ca 2+ entry via pre-synaptic T (Ca V 3.2) -type Ca 2+ channels. Since changes in synaptic strength are pivotal to induction and maintenance of synaptic plasticity [START_REF] Stevens | Presynaptic function[END_REF] and given that EC layer III neurons are likely to be involved in memory formation and spatial navigation [START_REF] Brun | Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex[END_REF][START_REF] Remondes | Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory[END_REF] , our results indicate that this is a novel mechanism by which HCN1 subunits may contribute to such physiological processes.

Results

HCN1 channels modulate glutamatergic synaptic release onto EC layer III cells exclusively

Synaptic release plays a central role in regulating individual neuronal as well as neural network excitability. Thus, elucidating the factors regulating synaptic transmission is critical for understanding how neural circuits function. In an earlier study [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] , we had observed that a loss of I h enhances synaptic transmission onto mature EC layer III pyramidal neurons, the principal cell type within layer III [START_REF] Shah | Seizureinduced plasticity of h channels in entorhinal cortical layer III pyramidal neurons[END_REF] . This is likely to have been, at least partly, due to enhanced feed forward excitation resulting from pyramidal cell hyperexcitability. However, since HCN subunits may be present at certain synaptic terminals [START_REF] Bender | Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation[END_REF][START_REF] Boyes | Functional presynaptic HCN channels in the rat globus pallidus[END_REF][START_REF] Lujan | Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum[END_REF][START_REF] Aponte | Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus[END_REF][START_REF] Southan | Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells[END_REF][START_REF] Cuttle | Modulation of a presynaptic hyperpolarization-activated cationic current (I h ) at an excitatory synaptic terminal in the rat auditory brainstem[END_REF] , it is possible that this effect could be due to changes in synaptic release per se by altered pre-synaptic HCN channel function.

To test this, we initially recorded non-evoked miniature excitatory post-synaptic currents (mEPSC) in the presence of tetrodotoxin (TTX, 1 μM) and GABA receptor inhibitors at a fixed potential of -70 mV from mouse EC layer III neurons (Fig 1a)

using the whole-cell voltage clamp technique (as described previously [START_REF] Boyes | Functional presynaptic HCN channels in the rat globus pallidus[END_REF][START_REF] Aponte | Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus[END_REF][START_REF] Southan | Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells[END_REF] , see Methods). To exclude the effects of post-synaptic HCN channels [START_REF] Fan | Activity-dependent decrease of excitability in rat hippocampal neurons through increases in I h[END_REF] and to reduce errors due to space-clamp [START_REF] Williams | Direct measurement of somatic voltage clamp errors in central neurons[END_REF] , 15 μM ZD7288 was incorporated in the patch pipette in all our experiments, unless otherwise stated. Intracellular ZD7288 enhanced the outward holding current, indicating that the post-synaptic neuronal resting membrane potential (RMP) was hyperpolarized (Supplementary Table 1). The mEPSC rise and decay times were also slowed down as would be expected from blocking postsynaptic HCN channels (see Refs. [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF][START_REF] Magee | Dendritic lh normalizes temporal summation in hippocampal CA1 neurons[END_REF][START_REF] Shah | Seizureinduced plasticity of h channels in entorhinal cortical layer III pyramidal neurons[END_REF] ). Including ZD7288 in the patch pipette, though, had no effect on mEPSC frequency indicating this did not affect synaptic release per se (Supplementary Table 1). Further, substituting KMeSO 4 with CsMeSO 4 in the intracellular solution did not alter either somatic or dendritic mEPSC frequency, amplitude and kinetics (Supplementary Table 1), indicating that the errors due to space-clamp were not reduced further by blocking post-synaptic K + channels [START_REF] Williams | Direct measurement of somatic voltage clamp errors in central neurons[END_REF] .

To determine if functional HCN channels are present pre-synaptically, we bathapplied ZD7288 (15 μM) for 15 min only to exclude any potential non-specific effects of the compound on synaptic transmission [START_REF] Chevaleyre | Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP[END_REF] . This concentration was deemed specific as it enhances wildtype dendritic excitability whilst having little effect on HCN1-/-dendrites (see Ref. In the above experiments, ZD7288 was included in the internal patch pipette solution.

However, even when this was not present in the internal solution, external application of ZD7288 still amplified wildtype mEPSC frequency by 108.3 ± 14.8% (n=6). In these experiments, the decay time constant increased significantly from 7.9 ± 0.6 (n=6) to 10.0 ± 0.5 (n=6, p < 0.05), as would be predicted by blocking post-synaptic HCN channels.

Since dendrites receive the majority of excitatory synaptic inputs [START_REF] Magee | Dendritic integration of excitatory synaptic input[END_REF] , we also recorded mEPSCs from EC layer III apical dendrites at a distance of 120 -150 μm from the soma (Fig 1c). The frequency, but not amplitude or kinetics, of dendritic mEPSCs was increased by application of ZD7288 by 69.7 ± 5.3% (n=5; Fig 1c). This effect was not significantly different (p=0.1) to that observed at the soma. The above results indicate that synapses targeting EC layer III neurons contain pre-synaptic I h . HCN1 subunits are likely to be predominantly expressed in the EC [START_REF] Notomi | Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain[END_REF][START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] . We, therefore, compared HCN1-/-and wildtype mEPSCs recorded from layer III neurons. Since ZD7288 was present in the internal pipette solution, wildtype and HCN1-/-outward holding current and mEPSC kinetics were similar (Supplementary Table 1).

Interestingly, the average somatic, but not dendritic, HCN1-/-mEPSC amplitudes were smaller than in wildtypes (Supplementary Table 1). Importantly, though, HCN1-/-mEPSC frequency was significantly greater than in wildtypes (Fig 1b,c, Supplementary Table 1). Moreover, omitting ZD7288 from the internal pipette solution did not affect HCN1-/-mEPSC frequency or kinetics (Supplementary Table 1). Additionally, 15 min bath application of ZD7288 or zatebradine had no effect on somatic or dendritic HCN1-/-mEPSC frequency, amplitude or shape (Fig 1b,c; Supplementary Fig 1b). These findings confirm that the enhanced wildtype mEPSC frequency caused by pharmacological blockers of I h is likely to be due to HCN channel block and not non-specific effects of the compounds [START_REF] Chevaleyre | Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP[END_REF] . These results also indicate that pre-synaptic HCN1 channels are likely to be involved in regulating excitatory spontaneous release from synapses localised to EC layer III neurons.

We then recorded miniature inhibitory synaptic currents (mIPSCs) to determine if HCN channels were also present pre-synaptically on interneurons. In contrast to mEPSCs, somatic EC layer III mIPSCs were unaffected by 15 HCN1 subunits are present at the active zone of selective terminals.

To determine if HCN1 subunits are located on EC synaptic terminals, we carried out electron microscopy studies using a pre-embedding immunogold method (see Methods). We counted 2752 particles in the medial EC from sections obtained from 3 wildtype mice. 72.2 ± 0.8% of HCN1 immunogold particles were observed along the extra-synaptic plasma membrane of dendritic shafts and spines (Fig 3a,e), confirming that HCN channels are largely present in EC dendrites. Interestingly, 27.8 ± 1.0% of immunogold particles were located at pre-synaptic sites (Fig 3b,e).

We further analysed the distribution of pre-synaptic particles. Of 153 immunogold particles that were detected on synaptic terminals, the majority ((129/153, 84%) of HCN1 immunogold particles were localized at terminals establishing asymmetrical excitatory synapses with pyramid dendritic spines (Fig 3b Enhanced Ca 2+ dependence of HCN1-/-mEPSCs How do pre-synaptic HCN1 subunits regulate synaptic transmission at synapses targeting EC layer III neurons? Since acute treatment of ZD7288 in wildtype neurons results in enhanced mEPSC frequency, it suggests that pre-synaptic HCN1 subunits do not affect synaptogenesis. Nevertheless, we compared the number of synapses in superficial EC layers (layers I-III) between wildtypes and HCN1-/-mice using electron microscopy. From sections obtained from 3 wildtype and 4 HCN1-/-mice, no obvious differences in the number of synapses were detected (Supplementary Fig

4)

, indicating that HCN1 subunits on synaptic terminals are likely to reduce synaptic transmission by directly affecting release probability.

One possible mechanism by which pre-synaptic HCN1 channels may regulate synaptic transmission is by limiting Ca 2+ influx, as has been suggested to occur in dendrites [START_REF] Tsay | HCN1 channels constrain synaptically evoked Ca 2+ spikes in distal dendrites of CA1 pyramidal neurons[END_REF] . Recent studies suggest that spontaneous as well as action potential-driven synaptic release may be dependent upon Ca 2+ entry via voltage-gated Ca 2+ channels (VGCC) [START_REF] Sun | A dual-Ca2+-sensor model for neurotransmitter release in a central synapse[END_REF][START_REF] Daw | Asynchronous transmitter release from cholecystokinin-containing inhibitory interneurons is widespread and target-cell independent[END_REF][START_REF] Hefft | Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse[END_REF][START_REF] Neher | Multiple roles of calcium ions in the regulation of neurotransmitter release[END_REF][START_REF] Groffen | Doc2b Is a High-Affinity Ca 2+ Sensor for Spontaneous Neurotransmitter Release[END_REF] . We, therefore, tested if the mEPSCs recorded from layer III soma were 

HCN1 channels inhibit mEPSC frequency by limiting T-type Ca 2+ channel activity

prevented by pre-treatment with three different inhibitors of the low voltage-activated T-type Ca 2+ channels: mibefradil (10 μM) as well as the more potent and selective inhibitors TTA-P2 [START_REF] Dreyfus | Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I T window[END_REF][START_REF] Shipe | Design, synthesis, and evaluation of a novel 4aminomethyl-4-fluoropiperidine as a T-type Ca 2+ channel antagonist[END_REF][START_REF] Uebele | T-type calcium channels regulate cortical plasticity invivo. [corrected][END_REF] (1μM) and TTA-A2 [START_REF] Shipe | Design, synthesis, and evaluation of a novel 4aminomethyl-4-fluoropiperidine as a T-type Ca 2+ channel antagonist[END_REF][START_REF] Uebele | T-type calcium channels regulate cortical plasticity invivo. [corrected][END_REF] (500 nM) (Fig 5a,c). The latter two have been shown to have no effects on other VGCC in either heterologous expression systems [START_REF] Shipe | Design, synthesis, and evaluation of a novel 4aminomethyl-4-fluoropiperidine as a T-type Ca 2+ channel antagonist[END_REF][START_REF] Uebele | T-type calcium channels regulate cortical plasticity invivo. [corrected][END_REF] or neurons [START_REF] Dreyfus | Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I T window[END_REF] . These findings suggest that inhibition of HCN1 channels 3). As mibefradil may inhibit R-type Ca 2+ channels too [START_REF] Randall | Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels[END_REF] , we tested the effects of SNX-482 (200 nM) on HCN1-/-mEPSCs. 15 min application of SNX-482 had no effect on these (Fig 5d). To verify that T-type Ca 2+ channels expression is not modified in HCN1-/-mice, we did Western blot analysis using Ca V 3.1 and Ca V 3.2 antibodies. We were unable to detect any Ca V 3.1 protein expression in wildtype or HCN1-/-EC. However, bands corresponding to the size of Ca V 3.2 proteins expressed in tsA-201 cells were present in wildtype and HCN1-/-EC samples (Supplementary Fig 6a ,7a). Semi-quantitative analysis indicated that there was no difference in expression of this between wildtype and HCN1-/-tissue (Supplementary Fig 6a ,7a). These findings re-affirm that a decrease in pre-synaptic HCN channel function leads to increased contribution of T-type Ca 2+ channel activity in modulating basal glutamatergic synaptic release.

Co-localisation of HCN1 and Ca V 3.2 subunits on EC synaptic terminals.

Since T-type Ca 2+ channel inhibitors prevent the effects of ZD7288, it raises the possibility that these and HCN1 channels co-exist on the same pre-synaptic terminals.

To investigate this, we took advantage of Ca V 3.1 and Ca V 3.2 antibodies to examine the localization of Ca V 3 and HCN1 subunits in wildtype EC. For these particular experiments, the anti-HCN1 antibody was visualized using an immunoperoxidase reaction and the anti-Ca v 3 antibody by a silver-intensified immunogold reaction (see Methods). Consistent with the Western blot data, Ca V 3.1 labelling could not be detected. However, remarkably, Ca V 3.2 immunogold particles were present on asymmetrical synaptic terminals (Fig 6a) in sections obtained from 3 wildtype mice.

Approximately 84% of these were present on axons pre-labelled with HCN1. HCN1 and Ca V 3.2 co-labelling was noticeable on spines and dendrites too (Supplementary channel activity. T-type Ca 2+ channels are low threshold VGCCs that typically activate at potentials more positive to -75 mV [START_REF] Crunelli | The 'window' T-type calcium current in brain dynamics of different behavioural states[END_REF][START_REF] Talavera | Biophysics and structure-function relationship of Ttype Ca 2+ channels[END_REF] . Interestingly, native as well as heterogously-expressed Ca V 3.1-3.3 channels inactivate at potentials below -55 mV-60 mV [START_REF] Crunelli | The 'window' T-type calcium current in brain dynamics of different behavioural states[END_REF][START_REF] Talavera | Biophysics and structure-function relationship of Ttype Ca 2+ channels[END_REF] . Hence, there is a small "window" during which these channels are active.

Since T-type Ca 2+ channel blockers had no effect on basal wildtype mEPSC frequency (Supplementary Fig 5 ) and the basal frequency between Ca V 3.2-/-and wildtype was similar (Supplementary Table 4), despite Ca V 3.2 immunogold particles being present on wildtype synaptic terminals (Fig 6b), it implies that these channels are inactive at rest. A reduction in HCN channel activity hyperpolarizes the membrane [START_REF] Biel | Hyperpolarizationactivated cation channels: from genes to function[END_REF][START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] and thus one possibility is that RMP hyperpolarization relieves T-type Ca 2+ channel inactivation. To investigate this hypothesis, we lowered external K + concentration from 2.5 mM to 1.75 mM, which, using the Nernst equation, is estimated to hyperpolarize the RMP by ~10 mV. Indeed, reducing external K + concentration resulted in EC layer III neuronal hyperpolarization by 7.3 ± 0.9 mV (n=3). Further, switching from 2.5 mM to 1.75 mM K + significantly enhanced wildtype mEPSC frequency within 10 min by 91.6 ± 14.1% (n=6, p < 0.01, Fig 7a,c).

This was restored to near control levels by adding mibefradil [START_REF] Randall | Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels[END_REF] (n=6, p < 0.01). In addition, square of the coefficient of variation (CV 2 ) decreased significantly to 0.7 ± 0.1 (p < 0.01). In contrast, ZD7288 (15 μM) had no effect on PPR in HCN1-/-neurons (PPR ratio before and after ZD7288 = 1.1 ± 0.2 and 1.1 ± 0.1, n=6, p = 0.92). The lowered PPR and CV 2 in wildtypes indicate that synaptic release was enhanced by pharmacological block of HCN channels. These findings, therefore, demonstrate that pre-synaptic HCN channels affect multiple modes of synaptic transmission.

Discussion

The significant findings of this study are that functional HCN1 channels are present on glutamatergic synaptic terminals synapsing onto EC layer III neurons where they reduce spontaneous and evoked neurotransmitter release. These effects are at least partly due to altered availability of low-threshold, voltage-gated T-type Ca 2+ channel.

In support, electron microscopy showed that HCN1 and Ca V 3.2 subunits co-exist on EC pre-synaptic terminals. As EC layer III neurons have been suggested to play significant roles in processes such as spatial navigation [START_REF] Brun | Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex[END_REF] and learning and memory [START_REF] Remondes | Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory[END_REF] and HCN channel function has been associated with modification of neural network rhythms and memory formation [START_REF] Nolan | A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons[END_REF] , the dynamic modulation of synaptic inputs onto these neurons by HCN and T-type Ca 2+ channels may contribute to the regulation and modulation of these physiological states.

Although HCN1 and HCN2 subunits are both expressed in the EC [START_REF] Notomi | Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain[END_REF] , our results suggest that HCN1 subunits are likely to predominantly contribute to the formation of pre-synaptic HCN channels in glutamatergic synapses in the EC. Indeed, HCN1 subunit immunoreactivity was detected on the active zone of wildtype excitatory synaptic terminals in the adult EC ( Notwithstanding, our results provide strong support for the involvement of HCN1 channels in modulating EC excitatory synaptic transmission.

Remarkably, our results suggest that the presence of pre-synaptic HCN channels depolarizes the RMP, thereby restricting Ca 2+ entry via pre-synaptic T-type Ca 2+ channel activity and preventing glutamate release (Figs 4567). This suggests that presynaptic HCN channels may provide an additional regulatory mechanism for controlling synaptic release at these synapses. Hence, by affecting T-type Ca 2+ channel activity, modulation of HCN channel activity by protein kinases or phosphatases will alter synaptic transmission at these synapses. Indeed, EC synaptic terminals may have functional metabotropic glutamate receptors [START_REF] Evans | Activation of presynaptic group III metabotropic receptors enhances glutamate release in rat entorhinal cortex[END_REF] , activation of which could potentially reduce HCN channel activity by altering kinase activity and induce plasticity [START_REF] Brager | Plasticity of intrinsic excitability during longterm depression is mediated through mGluR-dependent changes in I h in hippocampal CA1 pyramidal neurons[END_REF] .

Altered T-type Ca 2+ channel activity by HCN channels has been suggested to occur in hippocampal dendrites too [START_REF] Tsay | HCN1 channels constrain synaptically evoked Ca 2+ spikes in distal dendrites of CA1 pyramidal neurons[END_REF] and it is, therefore, tempting to speculate that this might be a universal mechanism by which these channels affect neuronal excitability.

Fascinatingly, though, in invertebrate neurons, I h has been shown to increase excitatory synaptic release in a "non-ionic" way via a pathway involving actin depolymerization [START_REF] Beaumont | Temporal synaptic tagging by I h activation and actin: involvement in long-term facilitation and cAMP-induced synaptic enhancement[END_REF] . It is possible that this might occur in some mammalian interneurons too [START_REF] Aponte | Hyperpolarization-activated cation channels in fast-spiking interneurons of rat hippocampus[END_REF][START_REF] Southan | Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells[END_REF] . This therefore suggests that HCN channels in synaptic terminals may have multiple roles: a "non-ionic" purpose whereby they modulate release by processes that involve changes in the cytoskeleton and a more conventional function in which they influence synaptic transmission by modifying the terminal RMP as well as the membrane resistivity, which has been shown to occur post-synaptically in dendrites [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF][START_REF] Shah | Seizureinduced plasticity of h channels in entorhinal cortical layer III pyramidal neurons[END_REF] . Which role they adopt may depend on their location within a synapse as well as their proximity to other proteins and ion channels.

Interestingly, the expression of HCN channel subunits and their effects on synaptic release were restricted to a subset of EC glutamatergic synaptic terminals (Figs 123). This suggests that there may be factors that control expression of HCN channels in specific synapses and not others. These synapses may belong to a particular cell type. Indeed, synapses targeting EC layer III neurons can originate from a number of sources, including other EC layer III neurons, layer V and pre-subicular neurons.

Since HCN subunits have not been detected in the temporoammonic (TA) pathway, EC layer III pyramid axons, or terminals synapsing onto CA1 dendrites (which belong to the TA pathway) [START_REF] Bender | Localization of HCN1 channels to presynaptic compartments: novel plasticity that may contribute to hippocampal maturation[END_REF] , it is likely that HCN channels are present on those synaptic terminals originating from EC layer V or pre-subiculum. Further work is, therefore, required to resolve whether HCN subunit expressing synapses belong to a particular cell type and whether these synaptic terminals contain or lack proteins that regulate HCN channel expression. In addition, it remains to be determined if other cortical synapses express functional pre-synaptic HCN and T-type Ca 2+ channels. Nonetheless, our results show that functional HCN channels can be present presynaptically as well as on pyramid cell dendrites in the mature cortex. Thus there may be multiple means by which HCN channels can affect neural network excitability and ultimately processes such as learning and memory. 

Methods

Slice preparation and electrophysiological experiments. HCN1 [START_REF] Nolan | The hyperpolarization-activated HCN1 channel is important for motor learning and neuronal integration by cerebellar Purkinje cells[END_REF] and Ca V 3.2 [START_REF] Chen | Abnormal coronary function in mice deficient in alpha1H Ttype Ca2+ channels[END_REF] heterozygote breeding pairs were used to generate HCN1 null (HCN1-/-), Ca V 3.2 null (Ca V 3.2-/-) and wildtype littermates as described in Huang et al. (2009) [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] . All electrophysiological experiments involving transgenic mice were done blindly.

Entorhinal-hippocampal slices were obtained from 6-9 week old HCN1-/-, Ca V 3.2-/and wildtype mice as described previously (see [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] ). For electrophysiological recordings, slices were placed in a chamber containing external solution of the following composition (mM): 125 NaCl, 2.5 KCl, 1.25 NaH 2 PO 4 , 25 NaHCO 3 , 2 CaCl 2 , 2 MgCl 2 , 10 glucose, 0.001 tetrodotoxin; bubbled with 95% O 2 /5% CO 2 (pH 7.2). Whole-cell voltage-clamp recordings were obtained from the soma and dendrites of EC neurons. The internal recording pipette solution for mEPSC recordings was composed of (in mM): 120 KMeSO 4 , 20 KCl, 10 HEPES, 2 MgCl 2 , 0.2 EGTA, 4 Na 2 -ATP, 0.3 Tris-GTP, 14 Tris-phosphocreatine, 0.015 ZD7288; pH was adjusted to 7.3 with KOH. In some experiments, CsMeSO 4 was used instead of KMeSO 4 . To record mIPSCs, KMeSO 4 was replaced with KCl. Pipettes containing any of these internal solutions had resistances of 5 -12 MΩ. In some recordings, biocytin (0.4% w/v; Vector Laboratories Ltd) was included in the intracellular pipette solution. Slices were fixed in 4% paraformaldehyde and stained with streptavidin Alexa Fluor 294 conjugate (Molecular Probes Ltd) 24 hr later as described previously [START_REF] Cossart | Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy[END_REF] . For paired pulse recordings, tungsten electrodes (Biomedical Instruments, Germany) placed in EC layer I approx. 50 -100 μm from EC layer III distal dendrites were used to elicit single and 20 Hz pairs of synaptic potentials in interleaved sequences every 30 s. The recordings were obtained using a Axopatch 200B amplifier (Molecular Devices, UK), filtered at 1 kHz and sampled at 10 kHz. Series resistance was usually in the order of 10-30 MΩ and was approx. 70% compensated. Recordings were discarded if the series resistance increased by more than 20% during the course of the recordings. Data were acquired using pClamp 8.2 or pClamp 10.0 (Molecular Devices, UK).

Data Analysis

mEPSC and mIPSC recordings were analysed using Mini-analysis program (v6.07, Synpatosoft, USA). Events > 1.5 pA in amplitude (i.e. all events above baseline noise level) and with rise times of < 2 ms were detected and used for analysis. Decay times and amplitudes of these events were obtained by fitting the averaged EPSC or IPSC with a single exponential equation:

I(t) = A exp(-t/τ)
where I is the current amplitude at any given time (t), A is the peak amplitude of the EPSC or IPSC and τ is the decay time constant. visualized by the immunoperoxidase reaction, and Ca V 3.2 immunoreactivity was revealed with the silver-intensified immunogold reaction. Briefly, free-floating sections were obtained from 8-9 week old mice. Sections were then incubated for 48 h with either HCN1 antibody alone or a mixture of two HCN1 and Ca v 3.2 antibodies, at a final protein concentration of 1-2 μg/ml each. After primary antibody incubation, the sections were incubated at 4°C overnight with secondary antibodies: biotinylated goat anti-rabbit (diluted 1:100; Vector Laboratories) and goat anti-mouse (Fab fragment, diluted 1:100) coupled to 1.4 nm gold (Nanoprobes, Stony Brook, NY) antibodies. After washes in TBS, sections were washed in double-distilled water, followed by silver enhancement of the gold particles with an HQ Silver kit (Nanoprobes, Stony Brook, NY) for 8-10 min. Subsequently for double labelling, the sections were incubated for 4 hours in the ABC complex (Vector Laboratories) made up in TBS and then washed in TB. Peroxidase was visualized with DAB (0.05% in TB, pH 7.4) using 0.01% H 2 O 2 as substrate for 5-10 min. The sections were washed in PB and then post-fixed with OsO 4 (1% in 0.1 M PB), followed by block-staining with uranyl acetate, dehydration in graded series of ethanol and flat-embedding on glass slides in Durcupan (Fluka) resin. Regions of interest were cut at 70-90 nm thick sections using an ultramicrotome (Reichert Ultracut E, Leica, Austria). Ultrathin sections were mounted on 200-mesh nickel grids. Staining was performed on drops of 1% aqueous uranyl acetate followed by Reynolds's lead citrate. Ultrastructural analyses were performed in a Jeol-1010 electron microscope. Unless otherwise stated, electron microscopic samples were obtained from three different mice and three blocks of each animal were cut for electron microscopy. Electron micrographs were captured with CCD camera (Mega View III; Soft Imaging System, Germany).

  [START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] ). Intriguingly, external application of ZD7288 enhanced wildtype somatic mEPSC frequency by 113.8 ± 19.1% (n=7, p < 0.01; Fig 1b). The outward holding current as well as mEPSC amplitude, rise-times and decay time constants were not further affected (Fig 1b). Further, 15 min external application of another I h blocker, zatebradine 27, 28 (10 μM) also enhanced mEPSC frequency in a comparable manner without affecting amplitude or kinetics (Supplementary Fig 1a).

  min bath-application of ZD7288 (Supplementary Fig 2a). Moreover, mIPSC frequency, amplitude and kinetics recorded from wildtype and HCN1-/-neurons did not differ (Supplementary Fig 2b). These findings suggest that in the EC, HCN1 channels selectively regulate glutamatergic synaptic release. We next asked whether HCN1 channels were present at excitatory synapses targeting other principal EC neurons, particularly layer II stellate (Fig 2a) and layer V pyramids (Fig 2c). Intriguingly, application of ZD7288 had no effect on wildtype mEPSC frequency, amplitudes or kinetics recorded from the soma of these neurons (Fig 2b, d). In addition, there were no differences between HCN1-/-and wildtype layer II and layer V mEPSCs (Fig 2). Since layer III pyramid dendrites are present in layer II and mEPSC frequency onto these is altered by pharmacological block of I h or HCN1 deletion (Fig 1c), these results suggest that HCN1 channels are predominantly located at glutamatergic synaptic terminals contacting EC layer III pyramids.

  ). Of these, 71% (92/129) were present in the active zone and 29%(37/129) in pre-synaptic terminal membranes. In contrast, only 16% (24/153 particles in 8 synapses) were located in the axonal plasma membranes establishing symmetrical synapses (Fig 3c). Interestingly, very few immunogold particles were observed in layer V (data not shown). No staining occurred if either the primary or secondary antibodies were omitted. Further, no signal was detected in HCN1-/-sections obtained from 4 mice under either light (Supplementary Fig 3) or electron microscopy (Fig 3d). Thus, these results together with the electrophysiological results suggest that HCN1 subunits are present at excitatory pre-synaptic terminals synapsing onto EC layer III neurons. These data are also consistent with our findings that ZD7288 only alters spontaneous excitatory synaptic transmission, and not inhibitory synaptic transmission, at layer III neurons (Fig 1, Supplementary Fig 1 and Supplementary Fig 2).

  Ca 2+ -dependent. Replacement of Ca 2+ in the extracellular solution with an equal concentration of Mg 2+ reversibly reduced wildtype mEPSC frequency by 56.3 ± 5.1% (n=9, p < 0.01) within 5 min (Fig 4a, b). Interestingly, substitution of Ca 2+ with Mg 2+ lowered HCN1-/-mEPSC frequency by 70.1 ± 3.6% (n=9, p < 0.01, Fig 4a) in a reversible manner (Fig 4a, b). This decrease in HCN1-/-mEPSC frequency was significantly (p = 0.04) greater than that in wildtypes. Neither the amplitudes nor the time constants of wildtype or HCN1-/-mEPSCs were affected by replacing external Ca 2+ with Mg 2+ . The outward holding current, though, was reduced significantly to a similar extent in wildtype and HCN1-/-neurones (average holding current in the presence of Ca 2+ in wildtypes and HCN1-/-cells = 30.0 ± 7.9 pA (n=9) and 39.4 ± 20.0 pA (n=9) respectively; holding current without Ca 2+ in wildtypes and HCN1-/pyramids = 5.0 ± 7.1 pA (n=9, p < 0.05) and 10.0 ± 20.3 (n=9, p < 0.05)). Given the larger Ca 2+ dependence of HCN1-/-mEPSCs, these results imply that pre-synaptic HCN1 channels regulate synaptic release by constraining Ca 2+ influx into terminals. Indeed, in the absence of extracellular Ca 2+ , bath application of ZD7288 no longer increased mEPSC frequency in wildtypes (Fig 4c).

  enhances excitatory synaptic transmission by altering T-type Ca 2+ channel activity. To investigate this further, we explored the effects of T-type Ca 2+ channel blockers on HCN1-/-mEPSC frequency. In contrast to the results obtained in wildtypes (Supplementary Fig 5), mibefradil (10 μM), TTA-A2 (500 nM) and TTA-P2 (1 μM) significantly reduced HCN1-/-somatic mEPSC frequency by 35.7 ± 4.8% (n=6, p < 0.05), 49.0 ± 4.8% (n=7, p < 0.05) and 50.4 ± 4.4% (n=6. P < 0.05) respectively (Fig 5b, d), whilst having no effect on amplitudes or time constants (Supplementary Table

Fig 8 ).

 8 Fig 8).No Ca V 3.2 signal was identified on sections obtained from 3 Ca V 3.2-/-mice

  (10 μM; Fig 7a).Interestingly, changing the external K + from 2.5 mM to 1.75 mM in HCN1-/-slices, where the RMP is expected to be approximately -80 mV[START_REF] Huang | Loss of dendritic HCN1 subunits enhances cortical excitability and epileptogenesis[END_REF] , had little effect on mEPSC frequency (% increase = -1.5 ± 3.6%, n=5, Fig 7b), presumably as T-type Ca 2+ channel activity was not further altered. The outward holding current, mEPSC amplitude or kinetics were not affected by reducing external K + concentration in wildtype or HCN1-/-neurons (Fig 7a, b). These results provide additional support for the notion that T-type Ca 2+ channels are present on pre-synaptic terminals and can contribute to synaptic release under certain conditions. HCN channels modulates evoked release onto EC layer III neurons. We also asked if HCN channels affect evoked release too. To determine this, we stimulated EC layer III distal dendrites to evoke pairs of EPSCs at 20 Hz in the absence and presence of 15 μM ZD7288 (see Methods). ZD7288 (15 μM) was included in the intracellular solution to block post-synaptic HCN channels. The amplitude of the first EPSC was adjusted between 50 to 100 pA (average amplitude = 71.3 ± 9.8 pA). Single EPSCs were also elicited in between pairs of EPSCs. Subtraction of these from the pairs of EPSCs was then used to elucidate the amplitudes of the first and second EPSCs within the pairs (Fig 8). Paired pulse ratio (PPR) was calculated as the amplitude of the second EPSC divided by the amplitude of the first. Under control conditions, the average PPR was 0.9 ± 0.1 (n=5, Fig 8). 15 min bath application of ZD7288 reduced PPR significantly to 0.7 ± 0.1 (n=5, p < 0.01, Fig 8) and increased the amplitude of the first evoked EPSC by 16.7 ± 5.8%

Fig 3 ).

 3 Spontaneous glutamatergic synaptic transmission was also augmented in HCN1-/-slices and was not further affected by the non-selective HCN channel blockers, ZD7288 (Fig 1) and zatebradine (Supplementary Fig 1). These agents, on the other hand, enhanced wildtype mEPSC frequency (Fig 1, Supplementary Fig 1). Further, ZD7288 reduced the wildtype EPSC paired pulse ratio (Fig 8). These findings indicate that pharmacological inhibition of HCN channels in normal tissue enhances glutamtergic synaptic transmission. Since ZD7288 has also been suggested to depress synaptic transmission independently of affecting HCN channels 26 , it is possible that the observed effects of ZD7288 might be underestimated (Fig 1, Fig 8). Further, the effects of zatebradine are dependent upon HCN channels being open 27, 28 and therefore, the increase in mEPSC frequency in the presence of this compound may also be undervalued (Supplementary Fig 1). This might account for the increase in spontaneous release in HCN1-/-slices being much greater than that obtained with application of pharmacological blockers on wildtype slices (Fig 1, Supplementary Fig 1).
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We next asked if Ca 2+ entry through specific VGCCs contributes to generation of spontaneous mEPSCs and whether pre-synaptic HCN1 channels limit the activity of particular VGCCs. To investigate this, we first examined the effects of various pharmacological inhibitors of VGCCs on wildtype mEPSC frequency. The P/Q Ca 2+ channel blocker, ω -agatoxin IVA [START_REF] Catterall | Structure and function of neuronal Ca 2+ channels and their role in neurotransmitter release[END_REF][START_REF] Tsien | Molecular diversity of voltagedependent Ca2+ channels[END_REF] (100 nM) and the N-type Ca 2+ channel inhibitor, ω-conotoxin GVIA [START_REF] Catterall | Structure and function of neuronal Ca 2+ channels and their role in neurotransmitter release[END_REF][START_REF] Tsien | Molecular diversity of voltagedependent Ca2+ channels[END_REF] 2). The effects occurred within 10 min of bath application. ω -agatoxin IVA and ωconotoxin GVIA co-application decreased mEPSC frequency by 48.6 ± 5.5% (n=6, Supplementary Fig 5). In contrast, neither the L-type Ca 2+ channel inhibitor, nifedipine [START_REF] Catterall | Structure and function of neuronal Ca 2+ channels and their role in neurotransmitter release[END_REF][START_REF] Tsien | Molecular diversity of voltagedependent Ca2+ channels[END_REF] (2 μM), the R-type Ca 2+ channel antagonist, SNX-482 [START_REF] Bourinet | Interaction of SNX482 with domains III and IV inhibits activation gating of alpha(1E) (Ca(V)2.3) calcium channels[END_REF] (200 nM) nor the selective T-type Ca 2+ channel blockers, mibefradil 36 (10 μM), TTA-P2 (1 μM) [START_REF] Dreyfus | Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I T window[END_REF] , TTA-A2 [START_REF] Shipe | Design, synthesis, and evaluation of a novel 4aminomethyl-4-fluoropiperidine as a T-type Ca 2+ channel antagonist[END_REF][START_REF] Uebele | T-type calcium channels regulate cortical plasticity invivo. [corrected][END_REF] (500 nM) had any effect on wildtype mEPSCs (Supplementary Fig 5 ,   Supplementary Table 2). Since wildtype mEPSC frequency inhibition in the presence of ω -agatoxin IVA and ω-conotoxin GVIA together is comparable to that resulting from removal of extracellular Ca 2+ (Fig 4a,b), it suggests that in these neurones, Ca 2+ -influx via P/Q-and N-type generates Ca 2+ -dependent mEPSCs.

Next we tested whether the ZD7288 induced enhancement in wildtype mEPSC immunoelectron microscopy experiments before and after embedding were described previously [START_REF] Lujan | Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum[END_REF] . Three antibodies were used: a monoclonal anti-HCN1 antibody was obtained from NeuroMab (USA); a polyclonal anti-HCN1 antibody was obtained from Alomone Labs (Israel); and a monoclonal Ca V 3.2 antibody was obtained from Neuromab. To examine the precise subcellular localization of HCN1 and Ca V 3.2 channels in the mouse entorhinal cortex, single and double labelling technique were used, as described previously [START_REF] Lujan | Preferential localization of the hyperpolarization-activated cyclic nucleotide-gated cation channel subunit HCN1 in basket cell terminals of the rat cerebellum[END_REF] .

When a single primary antibody was used, it was visualized by the silver-intensified immunogold reaction. In co-labeling experiments, HCN1 immunoreactivity was Digitized electron images were then modified for brightness and contrast by using Adobe PhotoShop CS1 (Mountain View, CA) to optimize them for printing.

Quantitative analysis. To establish the relative abundance of HCN1 in EC layer III, immunolabeling quantification was performed from 60 μm coronal slices as previously described [START_REF] Lujan | Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus[END_REF] . Randomly selected areas were captured at a final magnification of 45,000X, and measurements covered a total section area of ~5000 mm 2 . Dendritic shafts, dendritic spines and axon terminals were assessed for the presence of immunoparticles. The percentage of immunoparticles for HCN1 at postand presynaptic sites was calculated.

Estimation of number of synapses 6-9 week old mice were anaesthetised and perfused intracardially with a 3% glutaraldehyde in 0.05M sodium cacodylate buffer (pH 7.4).

The brains were removed and incubated in 1% OsO 4 for 3 hr at 4 o C. The tissue was then washed with distilled water followed by 70% ethanol, 90% ethanol and 100%

ethanol. The region of interest was then embedded in a beam capsule using a neat araldite CY212 resin mixture and polymerized for 3 days at 60 o C. Ultrathin sections were cut on a Reichert UCT at 85nm using a Diatome Ultra diamond knife, and collected on 400 mesh copper grids. Sections were subsequently stained was with 25% Uranyl acetate in methanol and Reynolds lead citrate and imaged using a Phillips CM 10 TEM. Electron micrographs were captured using a high sensitivity digital camera and synapses counted from digital images.

Western blot analysis EC samples from 6-8 week old wildtype and HCN1-/-or Ca V 3.2-/-mice were homogenized using a syringe and sonicated for 10 s in 50 mM Tris pH 7.4, 50 mM NaCl, 2 mM EDTA, 25 mM N-ethyl maleimide, with complete protease inhibitors (Roche). The buffer was then supplemented with Igepal and SDS to final concentrations of 1 % and 0.2 %, respectively. Samples were kept on ice for 29 30 -45 min and centrifuged for 30 min at 60000 x g. The pellet was discarded and the supernatant kept for SDS-PAGE analysis. The protein concentration of each sample was determined using a Bradford-based assay (Biorad). The amount corresponding to 50 µg of total protein was supplemented with gel loading buffer (50 mM Tris pH7.4, 100 mM DTT, 2 % SDS, 0.02% bromophenol blue, 2% glycerol), loaded onto a 3 -8 % Tris -acetate gel and subjected to SDS-PAGE following the manufacturer's instructions (Invitrogen). The transfer was performed on a PVDF membrane in a semi-dry chamber (Biorad). A slice of the membrane containing proteins larger than 150 kD was incubated with anti-Ca V 3.2 antibody (Neuromab, dilution 1:250), regions of same membrane containing proteins of lower molecular weight was incubated with either anti-HCN1 (Neuromab, dilution 1:3000) or anti-GAPDH antibody (Sigma, dilution 1:25,000), followed by the appropriate secondary antibodies conjugated to horseradish peroxidise, and enhanced chemiluminescence detection, using a Typhoon 9410 Variable Mode Imager (APB), set in chemiluminescence mode. The protein bands were background-subtracted and the signal quantified using Imagequant v5.2.

The same amount of total protein was loaded for all samples on each gel, for accurate comparison between lanes, and the data were normalized to the corresponding GAPDH signal.