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We derive the asymptotic distribution of the supremum distance of the deconvolution kernel density estimator to its expectation for certain supersmooth deconvolution problems. It turns out that the asymptotics are essentially different from corresponding results for ordinary smooth deconvolution.

Introduction and results

Consider the classical deconvolution problem: let X 1 , . . . , X n be i.i.d. observations, where X i = Y i + Z i and Y i and Z i are independent. Assume that the unobservable Y i have distribution function F and density f , and that the random variables Z i have a known density k. Note that the density g of X i is equal to the convolution of f and k. The nonparametric deconvolution problem is the problem of estimating f or F from the observations X i . Thus we want to recover the distribution of Y i using the contaminated measurements X i . Additional information on measurement error models and many practical examples can be found in [START_REF] Carroll | Measurement Error in Nonlinear Models: A Modern Perspective[END_REF].

A popular density estimator for this problem is the deconvolution kernel density estimator introduced in [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF] and [START_REF] Stefanski | Deconvoluting kernel density estimators[END_REF]. This estimator is defined as

f nh (x) = 1 2π ∞ -∞ e -itx φ w (ht)φ emp (t) φ k (t) dt = 1 nh n j=1 v h x -X j h , (1) 
with

v h (u) = 1 2π ∞ -∞ φ w (s) φ k (s/h) e -isu ds.
Here w denotes a kernel function, h > 0 is a bandwidth, φ emp is the empirical characteristic function of the sample defined by φ emp (t) = (1/n) n j=1 e itX j , and φ w and φ k denote the characteristic functions of w and k, respectively.

Note that (1) is not a standard kernel density estimator, because the kernel function v h depends on the bandwidth h. For an introduction to the estimator (1) see e.g. [START_REF] Wand | Kernel Smoothing[END_REF].

The rate of decay to zero at minus and plus infinity of the modulus of the characteristic function φ k , and consequently the smoothness of k, is crucial

A C C E P T E D M A N U S C R I P T

ACCEPTED MANUSCRIPT

to the asymptotic behaviour of (1). Two cases have been distinguished, the ordinary smooth case, where |φ k | decays algebraically to zero, and the supersmooth case, where it decreases exponentially. The asymptotics in the ordinary smooth case are essentially the same as for a kernel estimator of a higher order derivative of a density, see e.g. [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Fan | A note on asymptotic normality for deconvolution kernel density estimators[END_REF] and [START_REF] Van Es | Simple kernel estimators for certain nonparametric deconvolution problems[END_REF]. The asymptotics in the supersmooth case have been studied e.g. in [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF] and van Es andUh (2004, 2005).

Notice that the above papers study local properties of the estimator (1), i.e. its pointwise behaviour. We, on the other hand, will focus on the asymptotic behaviour of the supremum distance of the estimator to its expectation, which provides a global measure of its performance. Accordingly, define

M n = sup 0≤x≤1 |f nh (x) -E [f nh (x)]|. (2) 
The fact that the supermum is taken over [0, 1] is not a restriction of generality and is for convenience only. One could have considered any interval [a, b]. An alternative here is to consider the integrated squared error of the estimator f nh . This was done in [START_REF] Holzmann | Integrated square error asymptotics for supersmooth deconvolution[END_REF].

The asymptotic distribution of the supremum distance similar to (2), namely

sup x∈[0,1] (g(x)) -1/2 |g nh (x) -E [g nh (x)]|
, for an ordinary kernel density estimator g nh in the direct density estimation setting (i.e. in the error-free case) was derived in [START_REF] Bickel | On some global measures of the deviations of density function estimates[END_REF]. Owing in a certain sense to the similarity of the asymptotics in the ordinary smooth deconvolution problem to that in the direct density estimation problem, qualitatively similar results

were obtained in [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF] in the ordinary smooth deconvolution problem for the supremum distance sup x∈[0,1] (g(x)

) -1/2 |f nh (x) -E [f nh (x)]|.
Normalisation with g(x) is explainable by the fact that the expression for the asymptotic variance in the asymptotic normality theorem for the estimator f nh (x) in the ordinary smooth deconvolution problem involves g(x), see [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF]. No direct extension of the methods used in [START_REF] Bickel | On some global measures of the deviations of density function estimates[END_REF] to the supersmooth deconvolution problem is possible and derivation of the asymptotic distribution of (2) requires a different approach. This is precisely the task of the present paper. Notice that in (2) we do not have to normalise with g(x), because the asymptotic variance in the asymptotic normality theorem for this case does not depend on g, but only on the error density k (in some global way), see [START_REF] Van Es | Asymptotic normality of kernel type deconvolution estimators[END_REF].

We now state the conditions on the density k and kernel w, which will be used throughout the paper. The condition on k which defines supersmooth deconvolution is given in Condition 1.

Condition 1. Assume that

φ k (t) = C|t| λ 0 exp -|t| λ /µ (1 + o(|t| -1 )) (3)
as |t| → ∞, for a constant 0 < λ ≤ 2 and some constants µ > 0, λ 0 ∈ R and

C ∈ R. Furthermore, let φ k (t) = 0 for all t ∈ R.
Condition 1 is stronger than the usual condition on k in supersmooth deconvolution given e.g. in van Es and Uh ( 2005), where the term o(|t| -1 ) is not present and one just has the asymptotic equivalence.

Condition 2. Let φ w be real-valued, symmetric and have support

[-1, 1]. Let φ w (0) = 1, and assume φ w (1 -t) = At α + o(t α ) as t ↓ 0 for some constants A and α ≥ 0.
For examples of such kernels see for instance [START_REF] Van Es | Asymptotic normality of kernel type deconvolution estimators[END_REF].

The next theorem establishes the asymptotic distribution of M n , which could prove useful for the construction of uniform confidence bands around f . Since it will appear repeatedly in the paper, we will write ζ(h) for exp(1/(µh λ )).

Theorem 1. Assume Condition 1 for λ = 2 and Condition 2 and let E [X 2 j ] < ∞. Let V denote a positive random variable with a Rayleigh distribution with

density f V (x) = x exp[-x 2 /2]I [x≥0] . Then, as n → ∞ and h → 0, √ n h λ(1+α)+λ 0 -1 ζ(h) M n D → 1 2 √ 2 A πC µ λ 1+α Γ(α + 1) V, (4) 
where Γ denotes the gamma function.

By assuming λ = 2 we restrict our selves to deconvolution problems for error distributions with characteristic functions that have an exponential tail like the characteristic function of a normal density. The most important case covered by this condition is standard normal deconvolution, where λ = 2, λ 0 = 0, µ = 2 and C = 1. The condition λ = 2 seems to be essential in the proof of Lemma 3, specifically in (8), where we prove a condition for tightness of the remainder process R (1) n . Whether it can be relaxed by other approaches, avoiding

tightness, remains open.

The rate of convergence in Theorem 1 once again reflects the difficulty of the supersmooth deconvolution problem compared to the ordinary smooth deconvolution. Furthermore, unlike in ordinary smooth deconvolution, see [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF], in order to obtain the asymptotic distribution of M n , we do not have to subtract a drift term. This also has a parallel when considering the asymptotics of the ISE[f nh ] in the supersmooth deconvolution, see Holzmann and Boysen (2006) for additional details. Notice also that unlike the direct density estimation or the ordinary smooth deconvolution, see [START_REF] Bickel | On some global measures of the deviations of density function estimates[END_REF] and [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF], the limit distribution in (4) is not Gumbel, which confirms the conjecture in [START_REF] Bissantz | Non-parametric confidence bands in deconvolution density estimation[END_REF] for the
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2 Proof of Theorem 1

The proof of Theorem 1 is based on a decomposition of f nh (x) in van Es and Uh (2005), which is the basis of the proof of their asymptotic normality theorem. We have

f nh (x) = 1 πC h λ 0 -1 1 ǫ φ w (s)s -λ 0 exp(s λ /(µh λ ))ds 1 n n j=1 cos X j -x h + R (1) n (x) + R (2) n (x) + R (3) n (x), (5) 
where

R (l) n (x) = (1/n) n j=1 R (1) 
n,j (x), l = 1, 2, 3, and

R (1) n,j (x) = 1 C 1 π h λ 0 -1 1 ǫ cos s X j -x h -cos X j -x h × φ w (s)s -λ 0 exp(s λ /(µh λ ))ds R (2) n,j (x) = 1 2πh ǫ -ǫ exp is X j -x h φ w (s) 1 φ k (s/h) ds R (3) n,j (x) = 1 2πh -ǫ -1 + 1 ǫ exp is X j -x h φ w (s) × 1 φ k (s/h) - 1 C |s| h -λ 0 exp(|s| λ /(µh λ )) ds.
We will write R (l) n , l = 1, 2, 3 for the stochastic processes

R (l) n = (R (l) n (x)) x∈[0,1] .
Notice that these processes belong to the space C[0, 1].

Now the rough idea is to derive the asymptotic distribution of the supremum of the first summand in (5) minus its expectation and to show that the remainder terms are negligible. Define the process

U n as U n (x) = n -1/2 n j=1 U n,j (x),
where

U n,j (x) = cos((X j -x)/h) -E [cos((X j -x)/h)].
Note that this is a process with expectation equal to zero at every x. Write

S n = sup 0≤x≤1 |U n (x)|.
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Lemma 1. Under the conditions of Theorem 1 we have, as n → ∞ and h → 0,

S n D → sup 0≤x≤2π |W (x)|,
where W is a zero mean Gaussian process on [0, 2π] with covariance function

Cov(W (x 1 ), W (x 2 )) = (1/2) cos(x 1 -x 2 ).
Proof. Replacing x by yh, by the periodicity of the cosine function we have

for h ≤ (2π) -1 that S n = sup 0≤x≤1 |U n (x)| = sup 0≤x≤1 1 √ n n j=1 cos X j -x h -E cos X j -x h = sup 0≤y≤1/h 1 √ n n j=1 cos X j -yh h -E cos X j -yh h = sup 0≤y≤1/h 1 √ n n j=1 (cos(Y j -y) -E [cos(Y j -y)]) = sup 0≤y≤2π 1 √ n n j=1 (cos(Y j -y) -E [cos(Y j -y)]) , = sup 0≤y≤2π |W n (y)|,
where Y j = (X j /h) mod 2π and the process W n on [0, 2π] is given by W n (y) = n -1/2 n j=1 (W n,j (y) -E [W n,j (y)]) with W n,j (y) = cos(Y j -y). It follows that we have to study the convergence of the process W n (x) -

By
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According to Prohorov's theorem and in particular Theorem 8.1 of [START_REF] Billingsley | Convergence of Probability Measures[END_REF], it suffices to show weak convergence of the finite dimensional distributions and tightness of the sequence.

By the multivariate central limit theorem in the triangular array scheme or Cramer-Wold device, see Theorem 7.7 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], the finite dimensional distributions of the process W n converge to multivariate normal distributions with covariances given by Cov(W (y 1 ), W (y 2 )) = (1/2) cos(y 1 -y 2 ). To prove tightness, we will verify conditions of Theorem 12.3 of [START_REF] Billingsley | Convergence of Probability Measures[END_REF].

First of all, notice that the sequence W n (0) is tight, because the asymptotic normality of W n (0) follows by a univariate Lyapunov central limit theorem in a trinagular array scheme, see Theorem 7.3 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Furthermore, for an arbitrary positive η,

P |W n (y 2 ) -E [W n (y 2 )] -(W n (y 1 ) -E [W n (y 1 )])| ≥ η ≤ 1 η 2 Var[W n,j (y 2 ) -W n,j (y 1 )] ≤ 1 η 2 E [(W n,j (y 2 ) -W n,j (y 1 )) 2 ] ≤ 1 η 2 (y 2 -y 1 ) 2 ,
which follows from the fact that

| cos(Y j -y 2 ) -cos(Y j -y 1 )| = 2 sin 2Y j -y 2 -y 1 2 sin y 1 -y 2 2 ≤ |y 1 -y 2 |.
Here we used the inequality | sin x| ≤ |x|. Therefore W n converges weakly to a zero mean Gaussian process W on [0, 2π] with covariance function Cov(W (y 1 ), W (y 2 )) =

(1/2) cos(y 1 -y 2 ). By the continuous mapping theorem, see Theorem 5.1 in [START_REF] Billingsley | Convergence of Probability Measures[END_REF], the supremum of |W n | then converges weakly to the supremum of the absolute value of the limit process, which proves the lemma.

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

Lemma 2. With V as in Theorem 1, we have

sup 0≤x≤2π |W (x)| D = 1 2 √ 2 V. ( 6 
)
Proof. Let N 1 and N 2 denote two independent standard normal random variables and let us define the process W by W = ( W (x)) x∈[0,2π] , where

W (x) D = 1 2 √ 2(N 1 cos x + N 2 sin x).
Since the covariance function Cov(W (x 1 ), W (x 2 )) of the process W , given by

(1/2) cos(x 1 -x 2 ), equals Cov( W (x 1 ), W (x 2 )) by Cov 1 2 √ 2(N 1 cos x 1 + N 2 sin x 1 ), 1 2 √ 2(N 1 cos x 2 + N 2 sin x 2 ) = 1 2 (cos x 1 cos x 2 + sin x 1 sin x 2 ) = 1 2 cos(x 1 -x 2 ), it follows that W D = W . Next write 1 2 √ 2(N 1 cos x + N 2 sin x) = 1 2 √ 2 N 2 1 + N 2 2 N 1 N 2 1 + N 2 2 cos x + N 2 N 2 1 + N 2 2 sin x = 1 2 √ 2 N 2 1 + N 2 2 (cos ξ cos x + sin ξ sin x) = 1 2 √ 2 N 2 1 + N 2 2 cos(x -ξ), (7) 
for a ξ such that cos

ξ = N 1 / N 2 1 + N 2 2 and sin ξ = N 2 / N 2 1 + N 2 2 .
The supremum of the absolute value of ( 7)

is equal to (1/2) √ 2 N 2 1 + N 2 2 = (1/2) √ 2V,
where V has a Rayleigh distribution. This entails (6).

Lemma 3. Let a n = √ nh -λ(1+α)-λ 0 +1 (ζ(h)) -1 denote the normalising sequence in Theorem 1. For l = 1, 2, 3 we have

a n (R (l) n -E [R (l) n ]) P → 0
as n → ∞ and h → 0. Here 0 denotes the zero process on [0, 1].

Proof. To prove the lemma, we will apply Prohorov's theorem, and in particular Theorem 8.1 of [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Firstly, notice that for a fixed x the re-

mainder terms a n (R (l) n (x)-E [R (l) n (x)]
) vanish in probability, which was proved in van [START_REF] Van Es | Asymptotic normality of kernel type deconvolution estimators[END_REF]. This implies that the finite dimensional vectors of the processes

a n (R (l) n -E [R (l) n ]
) also converge in probability to null vectors. To establish tightness, we will again verify conditions of Theorem 12.3 of [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Notice that when x = 0, the sequence

a n (R (l) n (0) -E [R (l) n (0)]) is
tight, since it converges to zero in probability. Furthermore, for an arbitrary positive η we have

P a n |R (1) n (x 2 ) -E [R (1) n (x 2 )] -(R (1) n (x 1 ) -E [R (1) n (x 1 )])| ≥ η ≤ a 2 n η 2 Var[R (1) n (x 2 ) -R (1) n (x 1 )] = a 2 n η 2 1 n Var[R (1) n,1 (x 2 ) -R (1) n,1 (x 1 )] ≤ a 2 n η 2 1 n E [(R (1) 
n,1 (x 2 ) -R

(1)

n,1 (x 1 )) 2 ] ≤ a 2 n η 2 1 C 2 1 π 2 1 n h 2(λ 0 -1) (x 2 -x 1 ) 2 × K 2 1 ǫ 1 -s h 2 φ w (s)s -λ 0 exp(s λ /(µh λ ))ds 2 = K 2 a 2 n η 2 1 C 2 1 π 2 1 n h 2(λ 0 -2)-2 (x 2 -x 1 ) 2 × 1 ǫ 1 -s)φ w (s)s -λ 0 exp(s λ /(µh λ ))ds 2 = O 1 n h 2(λ 0 -2)-2+2(2+α)λ (ζ(h)) 2 a 2 n 1 η 2 (x 2 -x 1 ) 2 = O h 2(λ-2) 1 η 2 (x 2 -x 1 ) 2 (8) = O(1) 1 η 2 (x 2 -x 1 ) 2 .
where K is some constant. Here we used Lemma 5 of van Es and Uh (2005), which states that
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and the fact that for 0 ≤ s ≤ 1 and 0 ≤ x 1 < x 2 ≤ 1 we have cos s

X j -x 2 h -cos X j -x 2 h -cos s X j -x 1 h + cos X j -x 1 h = x 2 x 1 1 s ∂ 2 ∂u∂v cos v X j -u h -cos X j -u h dudv = x 2 x 1 1 s 1 h sin v X j -u h + v X j -u h 2 cos X j -u h dudv ≤ x 2 x 1 1 s 1 h 2 (|X j | + 1 + h) dudv ≤ 1 h 2 (|X j | + 1 + h)(1 -s)|x 1 -x 2 |.
Hence the process a

n (R (1) n -E [R (1) n ]) is tight.
In order to prove tightness of the process a n (R (2) n -E [R (2) n ]), note that, as above, for positive η

P a n |R (2) n (x 2 ) -E [R (2) n (x 2 )] -(R (2) n (x 1 ) -E [R (2) n (x 1 )])| ≥ η ≤ a 2 n η 2 1 n E [(R (2) n,1 (x 2 ) -R (2) n,1 (x 1 )) 2 ] ≤ 4 a 2 n η 2 1 4π 2 h 2 1 n ǫ -ǫ s h φ w (s) 1 φ k (s/h) ds 2 (x 2 -x 1 ) 2 = 4 a 2 n η 2 1 4π 2 h 4 1 n ǫ -ǫ sφ w (s) 1 φ k (s/h) ds 2 (x 2 -x 1 ) 2 ≤ 4a 2 n 1 4π 2 h 4 1 n (2ǫ) 2 ǫ 2 ǫ -ǫ 1 φ k (s/h) ds 2 1 η 2 (x 2 -x 1 ) 2 ≤ 4a 2 n 1 π 2 h 4 1 n ǫ 4 sup -ǫ≤s≤ǫ 1 φ k (s/h) 2 1 η 2 (x 2 -x 1 ) 2 ≤ 4a 2 n 2 C 2 π 2 1 n (ǫ/h) 4-2λ 0 exp(2(ǫ/h) λ /µ) 1 η 2 (x 2 -x 1 ) 2 = o(1) 1 η 2 (x 2 -x 1 ) 2 , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
where K is some constant and where we used the fact that for 0

≤ s ≤ 1, exp is X j -x 2 h -exp is X j -x 1 h ≤ cos s X j -x 2 h -cos s X j -x 1 h + sin s X j -x 2 h -sin s X j -x 1 h ≤ 2s h |x 1 -x 2 |, (10) 
which follows by converting the differences of sines and cosines into products and using the fact that | sin x| ≤ |x|. Consequently, the process a n (R (2) n -

E [R (2) n ]) is tight.
To prove tightness of the process a n (R

(3) n -E [R (3) n ]
), we first introduce the function u, given by

u(y) = C|y| λ 0 exp(-|y| λ /µ) φ k (y) -1. (11) 
By Condition 1 this function is bounded on R\(-δ, δ), where δ is an arbitrary positive number. Moreover, by (3) the function xu(x) is also bounded and both functions vanish at plus and minus infinity. It follows that (s/h)u(s/h) is bounded and tends to zero for all fixed s with |s| ≥ ǫ as h → 0.

Using the function u, rewrite R

(3) n,j (x) as follows

R (3) n,j (x) = 1 2πh -ǫ -1 + 1 ǫ exp is X j -x h φ w (s) × 1 φ k (s/h) - 1 C |s| h -λ 0 exp(|s| λ /(µh λ )) ds = 1 2πh -ǫ -1 + 1 ǫ exp is X j -x h φ w (s) × 1 C |s| h -λ 0
exp(|s| λ /(µh λ ))u(s/h)ds.

Next note that, as above, for positive η we have by (10) that

P a n |R (3) n (x 2 ) -E [R (3) n (x 2 )] -(R (3) n (x 1 ) -E [R (3) n (x 1 )])| ≥ η ACCEPTED MANUSCRIPT ≤ a 2 n η 2 1 n E [(R (3) n,1 (x 2 ) -R (3) n,1 (x 1 )) 2 ] ≤ a 2 n η 2 1 4π 2 h 2 1 n -ǫ -1 + 1 ǫ φ w (s) × 1 C |s| h -λ 0 exp(|s| λ /(µh λ )) s h u s h ds 2 (x 2 -x 1 ) 2 = o(1) 1 η 2 (x 2 -x 1 ) 2
and hence a n (R (3) n -E [R (3) n ]) is tight. By Prohorov's theorem each of the three processes now converges weakly to the zero process. Since the convergence in distribution to a constant entails convergence to the same constant in probability, this concludes the proof of the lemma.

Finally, we combine the obtained results to prove Theorem 1.

Proof of Theorem 1. The proof is immediate from Lemmas 1-3 just proved, the fact that by (9) 

  Lemma 6 of van Es and Uh (2005) we know that Y j D → Un(0, 2π) as h → 0 for each j, where Un(0, 2π) denotes the uniform distribution on [0, 2π]. Hence by the dominated convergence theorem we get that Cov cos Y j -y 1 , cos Y j -y 2