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ABSTRACT 
 
Exposure of Saccharomyces cerevisiae to alkaline pH represents a stress condition that 

generates a compensatory reaction. Here we examine a possible role of the protein kinase-A (PKA) 
pathway in this response. The phenotypic analysis reveals that mutations that activate the PKA 
pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances 
tolerance to this stress. We observe that alkalinisation causes a transient decrease in cAMP, the main 
regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 
transcription factor which, together with Msn4, mediates a general stress response by binding to STRE 
sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction 
in response to alkaline stress. An msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic 
analysis reveals that after 10 minutes of alkaline stress, the expression of many induced genes (47%) 
depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate 
that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive 
response to this kind of stress and that this response involves Msn2/Msn4-mediated genome 
expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is likely 
not restricted to regulation of Msn2 function. 
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INTRODUCTION 
 
The regulation of the activity of the cAMP-PKA pathway plays a major role in the control of 

metabolism and cell proliferation in yeast cells, mostly linked to the available carbon source. In S. 
cerevisiae, for instance, in response to a rapidly fermentable carbon source, such as glucose, the 
pathway activates the Cyr1 adenylate cyclase, which results in a transient increase in cAMP levels. 
PKA is a heterotetramer composed of two catalytic subunits and two regulatory subunits. The catalytic 
subunits can be encoded by three, largely redundant genes (TPK1, TPK2 and TPK3), whereas the 
regulatory subunits are encoded by a single gene (BCY1). Binding of the second messenger cAMP to 
the regulatory subunits, results in dissociation of the complex and activation of PKA. Restoration of 
cAMP levels is controlled by the low- and high-affinity phosphodiesterases, encoded by PDE1 and 
PDE2, respectively, which hydrolyze cAMP to AMP. Sequentially, PKA affects diverse downstream 
targets, often at the gene transcription level, including stimulation of cell growth and cell cycle 
progression, upregulation of glycolysis, downregulation of gluconeogenesis and mobilization of 
glycogen and trehalose [1-5]. 
 PKA can be activated in response to glucose by two parallel signalling pathways. The first one 
involves the Ras1 and Ras2 small GTPases, which are activated by glucose uptake and 
phosphorylation. The active (GTP-bound) Ras proteins increase the activity of the adenylate cyclase. 
In turn, the GDP/GTP exchange on the Ras proteins is controlled by the guanine nucleotide exchange 
factors (GEF) Cdc25 and Sdc25. The reverse process is accelerated by the Ira proteins (encoded by 
IRA1 and IRA2), which act as Ras GTPase activating proteins (GAP) and maintain Ras in the GDP-
bound, inactive state. The second involves Gpr1, a putative G protein-coupled receptor, and its Gα 
protein Gpa2. Both pathways converge to activate adenylate cyclase, resulting in the generation of 
cAMP [1-3]. 
  Activation of PKA has a major impact on gene expression. Consequently, several 
transcription factors are among the known PKA targets. Two of those are Msn2 and Msn4, which 
mediate the transcription of the so-called stress response element (STRE)-controlled genes [6-8]. 
STRE-regulated genes are involved in important processes, such as carbohydrate metabolism and 
growth regulation, as well as in adaption to diverse types of stress, including heat, DNA damage, 
oxidative and osmotic stresses [9-12]. Under growth–promoting conditions (growth on glucose, 
absence of stress,..) Msn2 and Msn4 are phosphorylated and reside in the cytosol. Upon glucose 
exhaustion or other stress conditions [13], they become hypophosphorylated and translocate to the 
nucleus, where they induce expression of the STRE-controlled genes. PKA plays a very important role 
inhibiting nuclear import of Msn2/4, either through direct phosphorylation of their nuclear localization 
signal [13-15] or indirectly via the protein kinases Yak1 and Rim15.  
 S. cerevisiae grows far better at acidic than at neutral or alkaline pH and, consequently, even a 
modest alkalinization of the medium represents a stress situation that is able to trigger a compensatory 
multifactorial response (see [16] for review). Alkaline stress activates diverse signaling pathways, 
including the Rim101-Nrg1 [17;18], the calcium / calcineurin [19-21], and the Wsc1-Pkc1-Slt2 MAP 
kinase pathways [22]. Alkalinisation of the environment also disturbs nutrient homeostasis, as deduced 
from its impact on iron/copper and phosphate uptake/utilization pathways [19;23]. Work in our 
laboratory in the past years has evidenced that alkaline pH stress has also a profound impact on the 
expression of genes encoding glucose uptake and metabolism-related proteins, in the sense that 
exposure to high pH would mimic a situation of glucose starvation [20;21]. Given the strong link 
between carbohydrate metabolism and the PKA pathway, we speculated that alkaline stress might 
involve changes in the activity of this pathway and, specifically, that the correct adaptation to high pH 
could entail its downregulation. Indeed, in this paper we show that alkaline pH stress causes a transient 
decrease in cAMP levels and that change in the activity of the PKA pathway alters tolerance to 
alkaline pH. Our data also indicates that the adaptive response to high pH involves PKA-regulated, 
Msn2/Msn4-mediated gene remodelling. 
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Experimental 

 
Yeast strains and growth conditions 
Yeast cells (strains are listed in Table 1) were grown at 28°C in YPD medium (10 g/l yeast extract, 20 
g/l peptone, and 20 g/l dextrose) or, when carrying plasmids, in synthetic complete medium [24] 
containing 2% glucose and lacking the appropriate selection requirements. Single kanMX deletion 
mutants, in the BY4741 background, except MAR231, were generated in the context of the 

Saccharomyces Genome Deletion Project [25]. 
Strain MAR231 was made by transforming BY4741 with a bcy1::kanMX4 cassette obtained 

from the strain KKY385 [26] by PCR amplification using primers 5´-bcy1_disr 
(GAGGAGCATACGACTTCGGC) and 3´-bcy1_disr (CTGTCTTGTAGATCCTTTGG). Strains 
CCV35 and CCV36 were constructed as follows. A 1.6 Kbp pde1::kanMX4 cassette was amplified 
from genomic DNA of the BY4741 pde1::kanMX4 strain with oligonucleotides 5’-pde1 
(CAAGGATCGTTACCCGGTA) and 3’-pde1 (GACTTATGTTGGGATAGGGG). The purified 
DNA fragment was used to transform strains W303 or PM942 [27], to yield CCV35 and CCV36, 
respectively. Strains CCV37 and CCV38 were obtained transforming W303-1A wild type and 
MCY5278 strains with a SNF1::LEU2 disruption cassette [21] and strains CCV174 and CCV175 were 
generated by transforming W303-1A and MCY5278 strains with the 2.1 kb nrg1::nat1 cassette from 
plasmid pBS-nrg1::nat1 as described in [28]. Strain AGS66 contains an integrated STRE(7x)-lacZ 
reporter system at the URA3 locus [29].  
 
Plasmids 
The following plasmid constructs were used in this work. The reporter plasmid pHXK1-lacZ was 
generated as follows. The HXK1 upstream DNA region containing -624 and +39, relative to the 
starting ATG, was amplified by PCR with added BamHI/PstI restriction sites and cloned into the same 
sites of YEp357 [30]. Plasmid YCp50-RAS2Ala18Val19 [31] expresses the RAS2Ala18Val19 hyperactive Ras2 
allele [32] from the centromeric YCp50. Plasmid pG2CT-112.2 expresses the constitutively active 
GPA2R273A allele from the episomal YEplac112 backbone [31]. Plasmid pAMS366 contains a tandem 
of four CDRE elements from the FKS2 gene fused to the lacZ reporter [33]. pPHO84-LacZ contains a 
PHO84-LacZ reporter fusion as described in [19]. pKC201 contains the ENA1 promoter fused to LacZ 
([34;35]. 
 
Growth Tests 
The sensitivity of different yeast strains to alkaline pH was assayed by drop test on YPD plates 
containing 50 mM TAPS adjusted with KOH at different pH values. Growth in liquid medium at high 
pH was performed in 5 ml cultures or in 96-well plates (250 µl), at 28 °C in YPD medium buffered 
with 50 mM TAPS and adjusted with KOH at the indicated pH values. Growth was monitored by 
measuring the A at 660 nm. BY4742 and DC90 cells, at an initial A660 of 0.001, were grown for 17 and 
24 h respectively. Strains prepared from the W303-1A genetic background were grown from an initial 
A660 of 0.01 for 17 h (wild type and MCY5278 strains) and for 21h (CCV37 and CCV38 strains).  
 
Measurements of cAMP levels  
Measurements were made as described in [36]. Briefly, BY4741 cells were grown to an OD660 of 
approximately 1.0 in YPD at 28ºC, and then the culture was centrifuged and resuspended in YPD 
containing 50 mM TAPS pH 8. Aliquots of 10 ml were filtered at the indicated times and extracted in 
the cold with 1 ml 2 M perchloric acid. After neutralization with 1 ml of 1.8 M KOH and 0.4 M 
KHCO3 and centrifugation, samples were purified with Amprep SAX minicolumns (Amersham, code 
RPN 1918), eluted with methanol-HCl and dried under vacuum. Assays were performed by a 
competitive binding method with the Amersham cAMP enzymeimmunoassay (EIA) system (code 
RPN 225). For calculation of yeast concentrations, one unit of absorbance at 660 nm was equivalent to 
2.6 mg wet weight/ml. In other set of experiments, pH was raised to 8.2 by addition of KOH (35 mM, 
final concentration). Control cells received the same concentration of KCl. 
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β-Galactosidase Activity Assay 
Yeast cells were grown to saturation in the appropriate dropout media and then inoculated into YPD 
(or YP plus 4% glucose, when indicated) at pH 5.5. Growth was resumed until A660 0.5–0.7, and 
cultures were centrifuged for 5 min at 1620 × g. Cells were resuspended in YPD or YP 4% glucose 
where indicated (no induction) or YPD (or YPD 4% glucose) plus 50 mM TAPS adjusted to pH 8.0 
(alkaline stress), and growth was resumed for the indicated times. In all cases, β-galactosidase activity 
was measured as described previously [37]. 
 
Microscopy techniques 
For Msn2 subcellular localization experiments, the indicated strains were transformed with plasmid 
pMSN2-GFP (a generous gift of F. Estruch, University of Valencia, Spain), a YCplac111-based vector 
that contains a C-terminal Msn2-green fluorescent protein fusion [13]. Cells were grown in YPD or YP 
2% ethanol until an A660 of 0.8 to 1.0 was reached. Cultures (5 ml) were treated as follows: addition of 
100 μl of 1 M KCl (control cells, pH 5.5) or addition of 100 μl of 1 M KOH (alkaline stress, pH 8.0). 
Samples (500 μl) were taken at the appropriate times and fixed for 5 min by adding 30 µl of 37% 
formaldehyde. Cells were harvested, washed three times with a phosphate-buffered saline solution 
(PBS), and concentrated 10-fold before visualization. In all cases the cells were visualized with a 
fluorescein filter using a Nikon Eclipse E800 fluorescence microscope (magnification, x1000). Digital 
images were captured with an ORCA-ER 4742-80 camera (Hamamatsu) using the Wasabi software. 
Intracellular distribution of Msn2-GFP was quantified by scoring at least in 200 cells per sample into 
one of three possible categories: cytoplasmic (fluorescence in the cytoplasm only), nuclear-
cytoplasmic (fluorescence in the cytoplasm and nucleus), and nuclear (fluorescence in the nucleus 
only). 
 
RNA purification, cDNA synthesis, and DNA microarray experiments 
For RNA purification, 50 ml of yeast culture (strains W303-1A and MCY5278) was grown at 28°C in 
YPD medium until an A660 of 0.6 to 0.8, KOH or KCl was added from a concentrated stock solution (1 
M) to reach a final concentration of 20 mM (pH 8.05 and pH 5.5 respectively). Yeast cells were 
harvested by filtration after 10 and 30 min and washed with cold water; dried cells were kept at –80 °C 
until RNA purification. Total RNA was purified using a RiboPure-Yeast kit (Ambion, Inc.) following 
the manufacturer's instructions. RNA quality was assessed by denaturing 0.8% agarose gel 
electrophoresis, and RNA quantification was performed by measuring absorbance at 260 nm in a 
BioPhotometer (Eppendorf). Transcriptional analyses were performed using DNA microarrays 
containing PCR-amplified fragments from 6014 S. cerevisiae open reading frames [20;38]. 
Fluorescent Cy3- and Cy5-labeled cDNA probes were prepared from 8 μg of purified total RNA by 
the indirect dUTP labelling method using a CyScribe post-labelling kit (Amersham Biosciences).  

Pre-hybridization, hybridization, and washes were carried out as recommended by The 
Institute for Genomic Research with minor modifications. Briefly, prehybridizations of the DNA 
microarrays were carried out at 42 °C for 1 h in a solution containing 5× SSC, 0.1% SDS and 1% 
bovine serum albumin. For hybridization, dried Cy3- and Cy5-labeled probes were resuspended in 35 
μl of hybridization solution (50% formamide, 5× SSC, 0.1% SDS) each and mixed. Five μg of salmon 
sperm DNA was added to the mix before denaturation for 3 min at 95 °C. DNA microarrays were 
hybridized in an ArrayBooster hybridization station (Sunergia Group) for 14 h at 42 °C. The scanner 
ScanArray 4000 (Packard Instrument Co.) was used to obtain the Cy3 and Cy5 images with a 
resolution of 10 μm. The fluorescent intensity of the spots was measured and processed using the 
GenePix Pro 6.0 software (Molecular Devices). Spots with either diameter smaller than 120 μm, or 
fluorescence intensity for Cy3 and Cy5 lower than 150 units were not considered for further analysis. 

For each condition assayed, two independent experiments were performed, and dye swapping 
was carried out for each experiment. Microarray data was deposited at the Gene Expression Omnibus 
(GEO) and can be retrieved under accession number GSE27925. Data from different experiments were 
combined, and the mean was calculated. A given gene was considered to be induced or repressed 
when the mean of the ratios (alkaline stress versus no stress) was >2.0 or <0.50, respectively. Software 
from the GEPAS server (gepas.bioinfo.cipf.es/) was used to carry out clustering and other data 
analyses [39]. According to the expression of these genes in the msn2 msn4 strain, different levels of 
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dependence on these transcription factors were defined. Thus, genes showing a mutant/wild type ratio 
0.67 > X > 0.50 were considered "weakly dependent" (WD); those with a ratio 0.50 > X > 0.25 were 
ranked as "strongly dependent" (SD) and those with a ratio ≤  0.25 were defined as "totally dependent" 
(TD). Likewise, genes induced more than 2.5-fold in wild type cells and considered not induced (i.e 
ratio alkaline stress/no stress) <1.3) in msn2 msn4 cells were also considered as totally dependent. This 
score is the same employed in our previous report on calcineurin dependence of high pH response 
[20]. 
 
 
RESULTS 
 
Manipulation of upstream elements of the PKA pathway affects growth at alkaline pH.  

Our starting hypothesis was that adaptation to high pH stress should entail a decrease in the 
PKA pathway activity. Therefore, we speculated that mutations increasing the activity of the pathway 
should result in decreased tolerance to alkaline pH. We first tested strains lacking components of the 
Gpr1/Gpa2 sensing pathway, such as gpr1, gpa2, rgs2 (lacking a GAP of Gpa2), gpb1 or gpb2 
(lacking multistep regulator of cAMP-PKA signalling) (Figure 1A). However, none of these strains 
showed altered tolerance to alkaline pH (not shown). In contrast, deletion of ira1 or ira2, the GAPs of 
Ras1 and Ras2 results in increased sensitivity. This phenotype was enhanced in the double ira1 ira2 
mutant (Figure 1B). Conversely, expression of the Cdc25 WΔN1 allele, which lacks the N-terminal 
domain of Cdc25 and elicits constitutive activation of Ras proteins, also results in poor growth at high 
pH (Figure 1B). All these manipulations lead to increased Ras activity and hyperactivation of the PKA 
pathway. In contrast, the effect on high pH tolerance of the expression of the Cdc25 WΔN2 allele, 
which does not lead to increase in PKA activity, was barely noticeable. These results were confirmed 
by expression of the hyperactive Ras allele RAS2Ala18Val19 from a centromeric plasmid [31]. Among 
other phenotypes, expression of this allele decreases heat shock tolerance. As it can be observed 
(Figure 1C), expression of the RAS2Ala18Val19 allele decreases alkaline pH tolerance. In contrast, 
expression of a constitutively active form of Gpa2 (pG2CT-112.2) constructed by replacing the 
arginine at position 273 with an alanine [31] did not alter high pH tolerance. 

 
 Alkaline pH stress transiently decreases the levels of cAMP.  

The levels of cAMP determine the interaction between the regulatory subunit (Bcy1) and the 
catalytic subunits (Tpk) of PKA and are, therefore, crucial for the activity of the kinase. We have 
measured the levels of cAMP after shifting the cells from pH 5.5 to media buffered to pH 8.0 and 
found that this treatment drastically decreases the concentration of the second messenger in the first 5-
15 minutes, followed by a recovery to the initial levels after 30 min of stress (Figure 2A). A similar 
result was obtained when KOH was directly added to the exponentially growing cultures to raise the 
pH. In this case, decrease in cAMP levels was apparent even only 2 min after stress (not shown).  
Raising pH of the liquid medium up to values of 8.2 did not result in detectable cell lysis, as 
determined by microscopic examination, viability counting, or release of alkaline phosphatase activity 
to the medium. 
 Our data was consistent with the possibility that a drop in cAMP levels, leading to 
downregulation of PKA activity, could be an adaptive strategy to confront high pH stress. Therefore, 
we considered that mutations directly resulting in increased cAMP levels should be deleterious for 
cells subjected to alkaline pH stress. The PDE1 and PDE2 genes encode the yeast cyclic AMP 
phosphodiesterase activity, which degrades cAMP to AMP. When the single mutants are grown on 
alkaline pH plates, a growth defect can be observed for the pde2 mutant (lacking the high affinity 
isoform) that is exacerbated in the double pde1 pde2 mutant strain (Figure 2B).  
 Lack of Bcy1, the regulatory subunit of PKA, leads to constitutive PKA activity, which results 
in a variety of phenotypes (impaired growth on different carbon sources, temperature sensitivity, etc., 
see [2] and references therein). Although the quantification of the effect is difficult, because of the 
relatively poor growth of the bcy1 mutant even under standard conditions, we can show that this strain 
exhibits a dramatic alkaline pH-sensitive phenotype (Figure 2C). The same effect was observed in the 
W303-1A background (data not shown). Similarly, we tested if a decrease in PKA activity could 
improve growth at high pH. Since complete lack of PKA activity is not compatible with survival, for 
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this experiment we resorted to a strain lacking TPK1 and TPK3 and carrying an attenuated allele of 
TPK2 (tpk2w3) as sole source of PKA activity. As it can be observed in Figure 2D, the relative growth 
of this strain in alkaline pH medium versus non-restrictive conditions is higher than the wild-type 
strain. In essence, the data presented so far shows that yeast cells respond to the alkalinisation of the 
medium with a sharp decrease in the intracellular level of cAMP. The observation that when PKA 
activity is attenuated cells grow better at high pH, whereas any situation resulting in increased PKA 
activity makes cells more sensitive to this condition, supports the notion that downregulating PKA 
activity contributes to adaptation to alkaline pH stress. 
 
Alkaline pH stress promotes entry of Msn2 in the nucleus and STRE-dependent promoter activation. 
  Nuclear localization of Msn2, a transcription factor that, together with Msn4, regulates the 
general stress response of S. cerevisiae, is controlled by PKA activity [13;14;40]. We considered that 
alkaline pH-triggered downregulation of the PKA activity could result in the translocation of Msn2 to 
the nucleus and that this transition might have a relevant effect in the pH-induced adaptive response. 
To test this possibility, an Msn2-GFP fusion was introduced into wild type cells and the cultures 
subjected to alkaline treatment. As it can be observed in Figure 3A and B, exposure to high pH (8.0) 
triggers an almost immediate entry of Msn2 into the nucleus, which reached a maximum after 5 min 
(Figure 3B). Nuclear localization of Msn2 was transient and after 10-15 min the transcription factor 
was again mostly cytosolic. Interestingly, when the same experiment was carried out in a strain 
lacking the IRA2 gene (sensitive to alkaline pH, see Figure 1B), entry of Msn2 to the nucleus was 
somewhat delayed and nuclear localization was a less general effect than in the wild type strain. 
Nuclear translocation of Msn2 was also evaluated in cells subjected to alkaline stress (pH 8.0) growing 
in the presence of ethanol as carbon source (Figure 3B). In this case, Msn2 showed both cytoplasmic 
and nuclear/cytoplasmic distribution in unstressed cells. Interestingly, exposure of cells to 
alkalinisation resulted in only a modest increase in the percentage of cells showing 
nuclear/cytoplasmic distribution, but very few cells with only nuclear Msn2. Therefore, subcellular 
distribution of Msn2 in response to alkaline stress is affected by the carbon source in which cells are 
grown. 

We then investigated if the Msn2 and Msn4 transcription factors are necessary for normal 
tolerance to high pH stress. As shown in Figure 4A, lack of the transcription factors reduces somewhat 
tolerance to high pH, suggesting that they are components of the adaptive response to alkalinisation. 
Remarkably, additional deletion of all three PKA catalytic subunits (which is feasible in the absence of 
the transcription factors) yields cells that are even more sensitive than the msn2 msn4 mutant. It should 
be noted that in this case the msn2 msn4 strain was transformed with a centromeric plasmid which 
contains a TRP1 marker. The introduction of this marker in the reference strain was necessary for 
accurate comparison because the tpk msn2,4 strain was constructed using the TRP1 gene as marker, 
and it has been reported [41] that the absence of this gene somewhat decreases tolerance to high pH. 
This results suggested that, besides its role on Msn2,4 function, regulation of PKA activity may exert 
additional effects on high pH tolerance. This notion was reinforced by the result of the experiment 
shown in figure 4B. In this case, we observed that expression of the hyperactive form of RAS2 further 
decreases high pH tolerance even in the absence of Msn2/Msn4 transcription factors, suggesting again 
that not all the effects relevant for alkaline tolerance mediated by PKA are necessarily based in the 
activation of Msn2/Msn4. On the other hand, cells lacking the Snf1 kinase are sensitive to alkaline pH 
and Snf1 has been reported to repress Msn2 function. Therefore, we considered whether the sensitive 
phenotype of snf1 cells could be due to deregulation of Msn2 function. As shown in Figure 4C, snf1 
cells are more sensitive than the msn2 msn4 mutant to alkaline pH. In addition, deletion of msn2 msn4 
further increases sensitivity to alkaline pH of the snf1 mutant. Therefore, deregulation of Msn2/Msn4 
is not at the basis of the snf1 alkali-sensitive phenotype.  

Because Msn2 is known to bind to STRE elements in response to glucose shortage and other 
forms of stress, we tested the activation of a synthetic promoter containing a tandem of seven STRE 
elements fused to the LacZ reporter (strain AGS66). As shown in Figure 5A, this promoter exhibited a 
very fast activation, with a peak of activity after 15 min of shifting cells to pH 8.0. This activation was 
much faster than that observed when the LacZ gene is expressed from a PHO84 promoter, which is 
considered a gene with a relatively late response to high pH stress [19] and it was completely 
abolished in a msn2 msn4 strain (not shown). Remarkably, the response was also faster than that 
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obtained from a synthetic promoter based in a cluster of four copies of the CDRE motif from the 
calcineurin-responsive FKS2 gene. It must be noted that calcineurin/Crz1 mediated response is 
considered to be an early response to alkaline pH stress [19;20]. We also tested the response to 
alkaline pH of HXK1, encoding hexokinase, a gene with predicted STRE elements in its promoter [10] 
and known to be induced by high temperature (37ºC) and oxidative stress in a msn2 msn4 dependent 
way [12]. As it is shown in Figure 5B, expression from the HXK1 promoter induced by high pH stress 
was as fast as the one induced by exposure to 37ºC, although the level of β-galactosidase activity 
declines faster (likely due to yeast-promoted acidification of the medium). Remarkably, in the msn2 
msn4 strain the basal activity of the promoter, as well as the response to both stress conditions, is 
dramatically reduced. However, a small increase can still be detected after 30 min of exposure to high 
pH stress, suggesting an Msn2/4-independent input to the promoter, which could be attributed to 
activation of calcineurin, as this gene was demonstrated to be induced by calcium as well as by high 
pH [21]. 

 
Relevance of Msn2/Msn4 transcription factors in the transcriptional response to high pH stress. 

Since these results indicated that Msn2/4 could be responsible for the response of certain 
genes to alkaline pH stress, we considered necessary to evaluate up to what extent this pathway is 
responsible for the remodelling of gene expression observed upon exposure to high pH. To this end, 
DNA microarray analysis was conducted using wild type and msn2 msn4 strains subjected to pH 8.0 
for 10 and 30 min. After 10 min of exposure to high pH, 331 genes were induced at least 2-fold in 
wild type cells, whereas only 186 were found in the msn2 msn4 cells strain (from a total number of 
3463 genes with valid data, Figure 6 and Supplemental Data).  

Gene Ontology (GO) analysis of the genes induced in the wild type strain yielded, as expected, 
an excess of genes related to carbohydrate metabolism (p<7.74E-09), in particular to trehalose 
(p<5.05E-08) and glucose (p<1.42E-06) and glycogen (p<1.61E-03) metabolisms. Analysis of the 
msn2 msn4 dependence for induction revealed that 157 genes required the presence of the transcription 
factors for full induction (Figure 6). While dependence was limited in some cases (62 genes were rated 
as weakly dependent, WD), the majority of the short-term induced genes were strongly (57) or totally 
(38) dependent of the presence of Msn2 and Msn4. Gene Ontology analysis of the 95 genes defined as 
SD or TD revealed a strong excess of genes encoding proteins involved in trehalose (p<9.40E-09) and 
glycogen (p<1.46E-07) metabolism. A similar analysis of genes showing weak dependence provided 
no distinctive profile.  

Exposure of cells to pH 8.0 for 30 min resulted in 241 genes induced in the wild type strain, 
whereas 296 genes increased expression at least 2-fold in the msn2 msn4 mutant (Figure 6). In this 
case, the level of dependence of the transcription factors was much lower (only 50 genes). In addition, 
the vast majority (40) was weakly dependent; nine were ranked as SD and only one as TD. Gene 
Ontology analysis of the set of SD plus TD genes did not produce any specific profile. Therefore, 
Msn2 and Msn4 transcription factors are responsible for the induction of a substantial subset of the 
early alkali-responsive genes. Analysis of repressed genes showed 146 and 279 genes repressed at 
least 0.5-fold in the wild type strain after 10 and 30 min of shift to high pH, respectively. The absence 
of msn2 msn4 did not result in activation of any of these genes.  

The ENA1 gene encodes a Na+-ATPase that has been repeatedly reported to be strongly 
induced upon alkaline pH stimulation. Interestingly, our microarray data indicate that deletion of 
MSN2/4 does not affect induction of the ATPase gene at short-term (10 min) but results in higher-
than-normal expression after 30 min of stress (Figure 7A). In an attempt to identify a possible cause 
for this behaviour we searched our microarray raw data for changes in expression of genes encoding 
known regulatory components of ENA1. We observed that after 10 min after alkalinisation of the 
medium, the expression of NRG1, a known repressor of ENA1 expression, was essentially identical in 
wild type and msn2 msn4 cells. However, after 30 min the expression of NRG1 was decreased by 37% 
in the msn2 msn4 strain compared to the wild type. To explore a possible influence of this change on 
the response of ENA1, we evaluated the expression from the ATPase gene promoter in wild type and 
msn2 msn4 cells deleted for NRG1 by means of a LacZ reporter. As it can be observed (Figure 7B), 
high-pH dependent expression from the ENA1 promoter is stronger in the msn2 msn4 mutant than in 
the wild type strain, thus confirming the microarray data. Moreover, the induction observed upon 
alkaline pH stimulation in the nrg1 strain is virtually identical to that observed in the msn2 msn4 nrg1 
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triple mutant, suggesting that changes in the Nrg1 levels could be at the basis of the abnormal response 
of ENA1 in the msn2 msn4 mutant.  

 
DISCUSSION 
 Exposure to alkaline stress triggers a set of responses that are known to be mediated by 
different signaling pathways, such as the calcineurin/Crz1, the Rim101, and the Slt2 pathways [16]. 
PKA mediates a major signaling pathway that is crucial for linking stress responses and cell 
proliferation. Therefore, the major goal of this work was to evaluate the relevance of the PKA pathway 
in the adaptive response to high pH stress. We observe that mutations leading to activation of PKA 
result in decreased alkaline pH tolerance, whereas those that lead to inhibition of the pathway yield 
cells with increased tolerance. Our results also show that exposure to high pH provokes a sharp and 
transient decrease in the cAMP levels, which may lead to downregulation of PKA activity. In this 
regard, a previous work reported a transitory increase of cAMP levels as a result of sudden 
acidification of the cytosol [42]. It is worth noting that these authors noticed that Gpa2 was not 
required for the stimulation of cAMP accumulation in response to intracellular acidification. 
Remarkably, we observe that only alterations in the small G proteins Ras1 and Ras2 branch of the 
pathway do result in changes in tolerance to alkaline pH, whereas mutations in diverse genes involved 
in the Gpr1/Gpa2 glucose sensor system do not produce phenotypic effects. This suggests that the 
observed changes are due to alteration of intracellular glucose metabolism and not to defects in the 
extracellular glucose detection system and reinforce the notion that changes in cytosolic pH may result 
in fluctuations in cAMP levels and consequent regulation of PKA activity. In the case of sudden 
alkalinisation of the medium, the sharp decrease in cAMP levels would inhibit PKA activity and allow 
cells for adaptation to the stress. 
 Our results show that alkalinisation of the medium triggers a very fast entry of the Msn2 
transcription factor to the nucleus (2-5 min). This time frame is very similar to that observed when 
cells are shifted to low glucose [13;14]. Interestingly, the fact that we observe only a very modest 
response in ethanol-grown cells suggests that nuclear transition of Msn2 is related to alkaline stress-
induced alterations in glucose signalling. We also show that Msn2 and Msn4 are important for 
mediating a substantial part of the transcriptional response induced by alkalinisation of the medium. It 
is conceivable that this response constitutes one of the factors that allow normal tolerance to the stress, 
since the msn2 msn4 mutant is sensitive to high pH (Figure 4A). Moreover, our results suggest that 
regulation of Msn2 function in response to high pH is the result of inhibition of PKA. It is known that 
intracellular localization of Msn2 can be regulated not only by PKA but also by the Snf1 kinase 
[43;44] and the TOR pathway [44;45], thus raising the possibility that these two pathways could 
contribute to the alkaline pH-triggered entry of Msn2 into the nucleus. In fact, activation of the Snf1 
pathway has been previously linked to high pH stress [21;28;46]. However, we observe that mutation 
of SNF1 yields cells even more sensitive to alkaline pH than those lacking msn2 msn4, and that 
deletion of both factors in a snf1 background further decreases tolerance. Furthermore, we have 
observed that, within the time-span shown in Figure 3A, entry into the nucleus of Msn2 is not affected 
by the lack of the protein kinase Snf1 after alkaline treatment (data not shown). Finally, comparison of 
the dependence level for Msn2,4 of the short-term transcriptional response to high pH described in this 
work with the dependence on Snf1, evaluated in a parallel project (Casamayor, A., Ruiz, A., Serrano, 
R., Platara, M., Ferrer-Dalmau, J. & Ariño, J. unpublished work), indicates low overlap (only 34 of the 
157 genes reported as Msn2,4-dependent in this report are found to exhibit some degree of dependence 
for the Snf1 kinase). As an example, most of the genes encoding enzymes involved in trehalose 
metabolism whose expression is increased by alkalinisation are Msn2,4-dependent, but not Snf1-
dependent. Therefore, our results do not support the notion that activation of Msn2/4 by high pH is 
mediated by the Snf1 kinase.  

The PKA and TOR pathways illustrate diverse ways of functional interaction in the regulation 
of cell growth, showing some functional overlap [47]. However, a role of the TOR pathway in 
regulation of Msn2 function in response to high pH is questionable, because with the only exception of 
the ure2 strain (a very pleiotropic strain), mutants in genes of the pathway do not show altered 
tolerance to high pH nor alkalinisation triggers increased expression of well-established readouts for 
inhibition of the TOR pathway, such as GAP1, GLN1 or GDH1 (our own data, not shown). Two 
protein kinases, Yak1 and Rim15, have been reported to modulate Msn2 function in response to PKA 
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activation (see [5] for review). However, yak1 and rim15 mutant strains are not sensitive to high pH 
(data not shown) and, furthermore, it has been proposed that Yak1 regulates Msn2 function by an 
unknown mechanism that does not implicate the control of Msn2 subcellular localization. Therefore, 
the most likely scenario is that Msn2 entry into the nucleus after high pH stress is caused by inhibition 
of PKA activity.  

Comparison of the time sequence of the events described in our work is rather coherent, with a 
very fast decrease in cAMP levels and subsequent entry of Msn2 in the nucleus, followed by a 
massive, fast (10 min), and transient activation of Msn2/4 dependent genes, as deduced by DNA 
microarray transcriptomic analysis. It is remarkable that, after 30 min of high pH stress, the 
transcriptional response becomes largely msn2 msn4-independent. In fact, our data (Figure 5A) 
suggest that Msn2/Msn4 may be responsible for the first chronological set of transcriptional responses 
to alkaline stress, even a faster response than that mediated by the calcineurin/Crz1 pathway, which 
were currently defined as early responses [19;20].  

 
It has been widely documented that expression of the ENA1 Na+-ATPase is potently induced 

by alkaline pH (see [48] and references therein). An interesting observation derived from our 
microarray data is that the increase in ENA1 expression is virtually identical in wild type and msn2 
msn4 cells at short times (10 min), but is further enhanced by the lack of Msn2/4 at 30 min. 
Interestingly, we observed long time ago a similar effect by using a LacZ translational fusion of the 
ENA1 promoter and a different msn2 msn4 mutant strain [19], although at that moment it was not 
further characterized. Our observations suggest that lack of Msn2/4 results in either activation of a 
positive regulatory element for ENA1 expression or removal of a negative regulator. It is well known 
that Nrg1 acts as a repressor of ENA1 expression by directly binding to the gene promoter, thus 
participating in alkaline pH signalling [18;49;50]. We observe here that NRG1 levels decrease after 30 
min of high pH stress and that alkaline pH induction of ENA1 is not further increased by mutation of 
msn2 msn4 in a nrg1 deletion background. This suggests that the enhanced expression of the ATPase 
gene in the msn2 msn4 mutant can be due to a decrease in the amount of the Nrg1 repressor. In this 
regard, it must be noted that the remarkable effect of lack of RIM101 in the expression of the ATPase 
gene [18;19;28], is fully mediated by a rather small change (2.8-fold) in NRG1 mRNA levels [18]. 

 
Our data also suggest involvement of the PKA pathway in high pH tolerance in way that 

would be independent of the Msn2/4 transcription factors. This is based in the combination of tpk and 
msn2,4 mutations and in the observation that hyperactivation of RAS2 in the msn2 msn4 mutant still 
increases high pH sensitivity (Figure 4B). A possible explanation could be based in a cooperative role 
of PKA and calcineurin pathways in the adaptive response to high pH stress. In this regard, it was 
reported that PKA can phosphorylate Crz1, promoting its exit from the nucleus and thus opposing the 
action of calcineurin [26]. Therefore, inhibition of PKA may result in further enhancement of 
calcineurin/Crz1-mediated responses. A further step of complexity may exist in the interaction 
between the calcineurin and the PKA pathways, as it was recently reported that Crz1 may exert a 
destabilization effect on Msn2 levels upon calcium treatment [51]. In this context, it is conceivable 
that entry of Crz1 in the nucleus, following activation of calcineurin by high pH may serve, in addition 
to activate calcineurin/Crz1-responsive promoters, as a negative feed-back system to avoid persistent 
activation of Msn2/4-responsive genes. This regulatory system may contribute to the transient 
Msn2/4-dependent transcriptional effect observed in our work. 
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Legends 

 
Figure 1. Effect of mutations in the upstream components of the PKA pathway on alkaline pH 
tolerance. A) A simplified schematic depiction of the PKA signaling pathway. See Introduction for 
additional information. B) Upper panel. Three dilutions of cultures of wild type BY4741 cells and the 
isogenic kanMX disruption derivatives ras1, ras2, sds25 and ira2 mutants were spotted on YPD plates 
adjusted at the indicated pHs. Middle panel. Wild type strains W303-1A and its ira1::LEU2 (strain 
SC7), ira2::URA3 (SC8) and ira1::LEU2 ira2::URA3 (PM903) derivatives were spotted as indicated 
above. Lower panel. Wild type strains W303-1A and isogenic cells expressing the W∆N1 or W∆N2 
alleles of CDC25 were spotted. All plates were incubated for 3 days. C) Wild type strain W303-1A 
was transformed with the indicated plasmids. Positive clones grown overnight in synthetic selective 
medium and spotted on YPD plates adjusted at the indicated pH and growth was monitored after 2 
days. YCp50-RAS2* expresses a hyperactive allele (Ras2Ala18Val19) of the Ras protein. YEp-GPA2* 
generates a constitutively active Gpa2R273A version of the protein. 
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Figure 2. Changes in PKA pathway activity influence high pH tolerance. A) Wild type (WT) 
BY4741 cells were subjected to alkaline pH stress as described in Materials & Methods and cultures 
processed for cAMP determination. Data correspond to the means ± S.E.M of at least four independent 
experiments. B) Wild type W303-1A cells and its derivatives pde1 (strain CCV35), pde2 (PM942) and 
pde1 pde2 (CCV36) were spotted on YPD plates adjusted at the indicated pHs. Growth was monitored 
after 2 days. C) Strain BY4741 (WT) and its bcy1 derivative (strain MAR231) were grown on YPD 
plates adjusted at the indicated pH for 3 days. D) Wild type strain BY4742 (open bars) and its 
derivative DC90 (tpk1 tpk2w3 tpk3, closed bars) were grown on liquid YPD media as described in 
Materials and Methods. Growth is represented as percentage over the same strain at initial pH 5.5. 
Data are the average ± SEM from two independent experiments. 
 
Figure 3. Alkaline pH triggers nuclear entry of the Msn2 transcription factor. Cultures of wild 
type BY4741 (WT) and its ira2::kanMX derivative (right panels) were transformed with plasmid 
pMsn2-GFP and subjected to pH stress (8.0) on YPD medium as described in the text. Samples 
collected at the specified times and fixed for fluorescence microscopy. B) BY4741 cells carrying the 
pMsn2-GFP construct were grown to exponential phase (A660 0.8) on YPD or YP containing ethanol 
(2%) as carbon source, shifted to pH 8.0. The subcellular distribution of the Msn2-GFP fusion was 
monitored for at least 200 cells per time point. Open bars denotes fully cytoplasmic, closed bars, 
nuclear/cytoplasmic, and crossed bars, fully nuclear localization. Data shown correspond to a 
representative experiment. Three independent experiments were performed with similar results. 
 
Figure 4. Effect of lack of Msn2 and Msn4 transcription factors on high pH tolerance. A) Upper 
panel. Wild type W303-1A alone (WT) was plated along with strain MCY5278, a W303-1A derived 
strain lacking both MSN2 and MSN4 genes. Lower panel, strain MCY5278 was transformed with 
centromeric plasmid YCp22 (which carries a TRP1 gene marker, see main text for explanation) and 
plated with the equivalent strain but lacking all three TPK genes [14]. Dilutions of the cultures were 
grown for 2 days at the indicated pH. B) Strain W303-1A (WT) and the msn2 msn4 derivative 
transformed with the empty plasmid YCp50 or the same plasmid carrying a hyperactive RAS2Ala18Val19 

allele (RAS2*). Dilutions of the cultures were spotted on YPD plates at the indicated pHs and growth 
monitored after 2 days. C) Strain W303-1A (open bars) and its msn2 msn4 derivative (closed bars) 
carrying a wild type allele of SNF1 (+) or a snf1 deletion (-) were grown at the indicated pHs. Growth 
is denoted as the percentage compared to the same strains cultured at pH 5.5. Data are mean ± SEM 
from two independent experiments performed by triplicate.  
 
Figure 5. Alkaline pH stress induces STRE-mediated transcriptional activation. A) The wild type 
strain DBY746 was transformed with episomal plasmids pPHO84-LacZ (pPHO84) and pAMS366 
(pCDRE). These strains, together with strain AGS66 (carrying a STRE(7x)-LacZ reporter system 
integrated at the URA3 locus) were grown and subjected to high pH stress (pH 8.0). β-galactosidase 
activity was measured as described and it is represented as percentage over the maximum value for 
each strain. B) Wild type strain W303-1A (continuous lines) and its msn2 msn4 derivative 
(discontinuous lines) were transformed with the HXK1-LacZ reporter. Cultures grown on YP (plus 4% 
glucose) were subjected to high pH (8.0, triangles) or high temperature (37 ºC, squares) and samples 
taken at different times for β-galactosidase activity measurements. Non-induced cultures are denoted 
by circles. In all cases, data correspond to means ± SEM from 6 independent experiments. 
 
Figure 6. Msn2/Msn4 dependence of the transcriptional response to alkaline stress. Upper panel, 
number of genes induced in the wild type and the msn2 msn4 strain after 10 or 30 min of alkaline 
stress, deduced from the DNA microarray analysis. Lower panel, evaluation of the Msn2/Msn4 level 
of dependence of the transcriptional response to high pH after 10 min (open bars) and 30 min (closed 
bars). Ind, Independent; WD, weakly dependent; SD, strongly dependent; TD, totally dependent. See 
main text for definitions.  
 
Figure 7. The dependence of ENA1 expression on the presence of Msn2/Msn4. A) Fold-change of 
ENA1 expression deduced from microarray data for W303-1A wild type cells (WT, empty bars) and 
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15 
 

MCY5278 (msn2 msn4, filled bars) exposed to pH 8.0 for the indicated times. Data are mean ± SEM 
from 4 microarray experiments. B) Strains with the indicated genotype (+, wild type allele; -, deletion 
mutant) were transformed with plasmid pKC201, which bears a LacZ fusion of the ENA1 promoter. 
Exponential cultures were resuspended in medium buffered at pH 5.5 (empty bars) or pH 8.0 (filled 
bars) for one hour and β-galactosidase activity measured. Data are mean ± SEM from 6 to 9 
independent experiments.   
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TABLE 1. Yeast strains used in this work. Except otherwise indicated, single BY4741-
derived kanMX disruptans not listed here correspond to the systematic gene disruption project 
[25]. 
 

 
 
 

Name Relevant genotype Source / reference 

BY4741 MATa his3Δ1 leu2Δ met15Δ ura3Δ [25] 

MAR231 BY4741 bcy1::kanMX4 This work 

W303-1A MATa ade2-1, can1-100, his3-112, leu2-3, trp1-1, ura3-1 [52] 

SC7 W303-1A ira1::LEU2 [42] 

SC8  W303-1A ira2::URA3 [42] 

PM903 W303-1A ira1::LEU2 ira2::URA3  [42] 

WΔN1 W303-1A cdc25::CDC25 aa907–1589/URA3 [53] 

WΔN2 W303-1A cdc25::CDC25 aa1147–1589/URA3 [53] 

CCV35 W303-1A pde1::kanMX4 This work 

PM942 W303-1A pde2::URA3 [27] 

CCV36 W303-1A pde1::kanMX4 pde2::URA3 This work 

MCY5278 W303-1A msn2::kanMX4 msn4::hphMX4 Gift from M. Carlson 

CCV174 W303-1A  nrg1::nat1 This work 

CCV175 W303-1A msn2::kanMX4 msn4::hphMX4 nrg1::nat1 This work 

tpk123 msn2 msn4 W303-1A tpk1::URA3 tpk2::HIS3 tpk3::TRP1 msn2::HIS3 
msn4::TRP1 [14] 

CCV37 W303-1A snf1::LEU2 This work 

CCV38 W303-1A msn2::kanMX4 msn4::hphMX4 snf1::LEU2 This work 

BY4742 MATα his3Δ1 leu2Δ met15Δ ura3Δ [25] 

DC90 BY4742 tpk1::kanMX::HIS3 tpk2w3 tpk3::LEU2 J.M. Thevelein 

DBY746 MATa ura3-52 leu2-3112 his3-1 trp1-239 D. Botstein 

AGS66 DBY746 URA3-STRE(7x)-lacZ [29] 

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



Gpb1/2

Cyr1

ATPAcAMP

Tpk1,2,3

Msn2/4

Msn2/4

Ras1/2

AMP Bcy1

GTP

Ras1/2
GDP

Ira1/2

Gpr1

Gpa2

Rgs2

Pde1/2

Cdc25

Sdc25

ras1

ras2

sdc25

ira2

8.3YPD

WT

ira1

ira2

ira1 ira2

YPD

WT

cdc25 W�N1 

cdc25 W�N2

8.2

Figure 1 Casado et al.

WT

YPD 8.2 pH

YCp50 Ø

YCp50-RAS2*

YEplac112 Ø

YEp-GPA2*

8.0Plasmid YPD

A)
B)

C) pH

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Acc
epted M

anusc
rip

t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



0

20

40

60

80

100

120

140

160

5.5 7.2 7.6 7.8 8.2

tpk1 tpk2w3 tpk3
wild type

A)

C)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0 5 10 15 20 25 30

Time (min)

fm
ol

cA
M

P
/ m

g 
w

et
 w

ei
gh

t

pH

R
el

at
iv

e 
G

ro
w

th
 (

%
)

7.9 8.1

pde1 pde2

WT

pde1

pde2

WT

bcy1

YPD 8.0 pH

B)

D)

Figure 2 Casado et al.

YPD pH

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Acc
epted M

anusc
rip

t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



WT +
pMsn2-GFP

2 5 10 15 Alkaline shift 
(min)0

ira2 +
pMsn2-GFP

Figure 3 Casado et al.

0

10

20

30

40

50

60

70

80

90

100

2 5 10 150 2 5 10 150 min

YPD YP Ethanol

A)

B)

P
er

ce
nt

ag
e 

of
 c

el
ls fully cytoplasmic

nuclear / cytoplasmic

fully nuclear

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Acc
epted M

anusc
rip

t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



YCp50

YCp50

RAS2*

YPD 8.0Strain Plasmid

WT 

msn2 msn4 

msn2 msn4 

pH

YPD 8.1

WT

msn2 msn4

tpk1 tpk2 tpk3
msn2 msn4

pHA)

B)

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
G

ro
w

th
 (

%
)

SNF1

pH7.2 7.3 7.4 7.7Figure 4 Casado et al.

C)

YPD 8.0 pH

msn2 msn4 + YCp22

wild type

msn2 msn4

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Ac
ce

pt
ed

 M
an

us
cr

ip
t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



Time (min)

E
xp

re
ss

io
n 

le
ve

l (
%

)

0

20

40

60

80

100

0 20 40 60 80 100 120

pPHO84
pCDRE
pSTRE

Figure 5 Casado et al.

Time (min)

�-
ga

la
ct

os
id

as
e

ac
tiv

ity

A) B)

STRE(7X)-LacZ
0

200

400

600

800

1000

1200

0 15 30 45 60 75 90

msn2 msn4

wild type

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Acc
epted M

anusc
rip

t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



Figure 6 Casado et al.

10 min

30 min

153 33178

138 158103

0
10
20
30
40
50
60
70
80
90

P
er

ce
nt

ag
e

of
 g

en
es

Ind WD SD TD

wild type msn2 msn4

10 min

30 min 

Biochemical Journal Immediate Publication. Published on 13 Jul 2011 as manuscript BJ20110607
T

H
IS

 IS
 N

O
T

 T
H

E
 V

E
R

S
IO

N
 O

F
 R

E
C

O
R

D
 -

 s
ee

 d
oi

:1
0.

10
42

/B
J2

01
10

60
7

Acc
epted M

anusc
rip

t

Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.

© 2011 The Authors Journal compilation © 2011 Portland Press Limited



Figure 7 Casado et al.
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