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A Nonlinear Stein Based Estimator for

Multichannel Image Denoising

Caroline ChauxMember |IEEE Laurent Duval Member IEEE,

Amel Benazza-Benyahia, and Jean-Christophe Pes§eeipr Member IEEE

Abstract

The use of multicomponent images has become widespreadthétimprovement of multisensor
systems having increased spatial and spectral resolutidowever, the observed images are often
corrupted by an additive Gaussian noise. In this paper, wénéerested in multichannel image denoising
based on a multiscale representation of the images. A ratiliie statistical approach is adopted to take
into account both the spatial and the inter-component taiioas existing between the different wavelet
subbands. More precisely, we propose a new parametric meamliestimator which generalizes many
reported denoising methods. The derivation of the optinsathmeters is achieved by applying Stein’s
principle in the multivariate case. Experiments perforroadnultispectral remote sensing images clearly

indicate that our method outperforms conventional wavedgtoising techniques.
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. INTRODUCTION

Many real world images are contaminated by noise during thejquisition and/or transmission. In
particular, multichannel imaging is prone to quality detpon due to the imperfectness of the sensors
often operating in different spectral ranges [1], [2]. Ider to alleviate the influence of such disturbing
artifacts on subsequent analysis procedures, denoisimgpap as a crucial initial step in multicomponent
image enhancement. In this context, attention has beentpaléveloping efficient denoising methods.
Usually, the noise removal problem is considered as a reigre@roblem. The challenge thus resides in
finding realistic statistical models which lead to both effitiand tractable denoising approaches. To this
respect, linearly transforming the signal from the spal@inain to a more suitable one may drastically
improve the denoising performance. The rationale for suchaastormation is the observation that
some representations possessing good energy concemt@atiodecorrelation properties tend to simplify
the statistical analysis of many natural images. For irtgtathe Discrete Wavelet Transform (DWT)
constitutes a powerful tool for image denoising [3], [4]. TD&/T, computed for each channel/component
separately, usually yields “larger” coefficients for sigfehtures and “smaller” ones for noise since it
forms an unconditional basis for several classes of regigaals [5]. For monochannel signals or images,
the seminal work of Donoho and Johnstone has shown that a warelet coefficient thresholding
constitutes a simple yet effective technique for noise cédo [6]. Based on Stein's Unbiased Risk
Estimator (SURE), they have proposed the SUREshrink techniqu&iibsequently, several extensions
of their work have been performed,qg. in [8]-[11]. Recently, the denoising problem in the wavelet
domain has gained more attention in the case of multichanmees. Indeed, the increasing need for
multicomponent images in several applications such asgakiinaging and remote sensing has motivated
a great interest in designing tractable denoising methedgdted to this kind of images. Componentwise
processing can be performed for each modality, but a joinbidéng should be preferred in order to exploit
the cross-channel similarities in an efficient way [12]. Thebpem of a joint estimation in the wavelet
domain has been formulated in [13]. More precisely, the digeiat threshold estimators was investigated
in two situations: overcomplete representations of a noiggge [14] and multiple observations of the
same image [13]. A scale-adaptive wavelet thresholdingdeagyned for multichannel images in the case
of an i.i.d. (independent identically distributed) Gaassvector noise whose components are independent
and have the same variance [15]. In a Bayesian framewor&raigwior models have been considered such
asmultivariateBernoulli-Gaussian ones [16]. A generalized Gaussiamildigton was also considered for

modelling the marginal distribution of each subband in eawénnel and a simple shrinkage was applied
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depending on the local spectral activity [17]. A vectordxh$east-square approach was also investigated
in the wavelet domain [18]. Recently, the application of S&eprinciple [19]-[21] in the multivariate
case has motivated the design of a nonlinear estimator ih [B2this paper, links existing between
the proposed nonlinear estimator and Bayesian approachiesdiscussed. In particular, the structure of
the estimator was motivated by a multivariate Bernoullu&aan model reflecting the sparseness of the
wavelet representation as well as the statistical depaneeexisting between the different components.
We point out that the form of the estimator in [22] is not thensaas the one proposed in this paper.
In particular, the estimator in [22] does not involve anyeirolding operation. Moreover, the estimator
does not allow to take into account spatial dependenciesriytthose existing between the multichannel
data at a given position.

In parallel to these works, the idea of performing a jointtEpadenoising of the coefficients, rather
than using a conventional term-by-term processing, hasgaden statistics. This idea, stemming from
an incentive for capturing statistical dependences betvepatial neighboring wavelet coefficients, was
first investigated for single component images in both noyeBmn and Bayesian cases [23], [24]. A
successful extension was also carried out in the case ofiamaifinel images by considering hybrid
(spectral and spatial) neighborhoods [25].

In this paper, we aim at building a new estimator allowingahet into account the various correlations
existing in multichannel image data. This estimator alsoviges a unifying framework for several
denoising methods proposed in the literature. More prBgiser contributions are the following.

e The method applies to any vector-valued data embedded intavamigte Gaussian noise. As illustrated
later on, many examples of such multivariate contexts ricéenponent, spatial and inter-scale) can be
found. They naturally include multivariate denoising ob&al with vectors of samples sharing the same
spatial position in different channels.

e The estimator can be computed in any image representationidoRor instance, in addition to wavelet
domains, usually considered in conventional denoisindnods, we propose to exploit more general frame
decompositions such as the dual-tree wavelet transforiy [28].

e The computation of the estimated value can be performed Wilnelp of various observations. Again,
our method includes most of the reported estimation metlatiag in that way. Furthermore, it offers
a great flexibility in the choice of these auxiliary data.

e The form of the proposed estimator is quite general. Moreigedc we focus on deriving thresholding
estimators including an exponent parameter and a linear@ptimal parameters are derived from Stein’s

principle.
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e The denoising approach allows to handle any covariance xnhgiween the multichannel noise
components.

Notwithstanding its generality, the proposed approachaiestractable and compares quite favorably
with state-of-the-art methods. The paper is organized dsws! In Section I, we present the relevant
background and introduce notations for a general fornaratif the estimator, based on the concept of
Reference Observation Vector. In Section lll, we descrilseptoposed multivariate nonlinear estimator.
In Section IV, we give the specific form taken by this new estomé&ir multichannel images decomposed
by a wavelet transform or ai/-band dual-tree wavelet transform. In Section V, experimlergsults
are given for remote sensing images showing that the prdpestmator outperforms existing ones and
some concluding remarks are drawn in Section VI.

Throughout this paper, the following notations will be uskd:M be an integer greater than or equal
to 2,Ny; ={0,...,M —1} andN3, = {1,...,M —1}; Z, R andR, are the sets of integers, reals and
positive reals;[.] denotes rounding towards the immediate upper integerdBegi denotes the Fourier
transform of a functioru, (4,,)mez IS the Kronecker sequence (equal to Inif= 0 and O otherwise),

(f)L = fif f>0and0 otherwise, andl{A} = 1 if condition A is true and O otherwise.

[I. BACKGROUND
A. General formulation of the multichannel estimator

In multisensor imaging,B vectors of observed data samples’) (k))ick, ..., (") (k))kek, are
provided whereB is the number of effective sensors diids a set of spatial indice&(C Z?). Generally,
these data correspond to noisy realizationsBofunknown signals(s() (k))xek, ..., (%) (k))kex,
respectively. Subsequently, our task will consist in dengjsimethods to reduce the noise present in
the observations. Two alternatives can be envisaged inctiisext. On the one hand, a monochannel
approach builds an estimatéﬁbgk) of s() (k) only from the observationg-®) (k))ycxk, for each channel
b e {1,...,B}. On the other hand, a multivariate technique attempts imast s(*) (k) by accounting
not only for the individual data sefr(® (k)}xex, but also for the remaining ones- (V) (k)}yek, ...,
{r® D) heere, {r® () here, - {7 (k) bcexc.

Thus, one of the simplest relevant denoising approach dsrisisalculating the estimated valﬁébgk)
of s(k) as

3% = O 0) W
where f is a scalar function defined on the real line. For instance,rmksdge function can be used,

possibly involving some threshold value. Such a techniquemsmonly used in regression, when outliers
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have to be removed in order to improve the representativithe fit [28]. Although+(®) (k) does not
necessarily depend on other observed samples, for stedctignal or image analysis, neighboring
samples often present some correlations. Consequentlyparovement can be expected fﬁgbek) is
calculated with the help of a subsﬁtfgf)(k) of observed sample locations. Average or median filtering
[29, p. 243-245] are examples where the estimated sampkndsmn its neighborhood. As a result, a

more general estimation rule is:

%) = p (KD er® ) @

With underlying Markovian assumptions, the context{gsét) (k) he eR(Y) (k) €N be restricted to a limited
number of values around the sample locatioriThese values can be gathered in a veetdi(k) which
will be designated as thReference Observation VectROV). We have then

Al

%) = e (o)), 3)

The multivariate case can also be described by such a forihwia allow the ROV to contain additional
samples from the remaining channels in order to exploit thericomponent statistical dependencies.

Another degree of freedom lies in the choice of a suitable alonfior data representation. While
virtually any transform can be chosen, special attentios Ibeen paid to multiscale transforms. For
example, if a decomposition onto a-band wavelet basisM > 2) [30] is performed, the observed
images are represented by coefficienjj%(k) defined at resolution level] > 1 and subband index
m € N2, and the corresponding ROV will be denotéj(@,)n(k). Since the noise is usually less correlated
than the data, the DWT is applied in order to provide a sparsaresentation of the data of interest,
before further analysis [3], [4]. The goal becomes to geeeeatimatesﬁj(,z(k) of the unknown wavelet
coefficientSSE.f’I)ll(k) of the original images:

Ao = £E, (1)), (%)

Then, the inverse DWT is applied to the estimated coefficientgder to reconstruct the estimated signal
ﬁ(bgk) in the spatial domain. In the literature concerning demgjstwo key issues have been addressed.
The first one lies in the definition of the ROV. The second one caoiscdre choice of an appropriate
function f or, in other words, a suitable expression of the estimatothé next subsection, we give a

brief overview of the main ROVs proposed until now.
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B. Reported ROVs in the DWT domain

Popular componentwise methods operating in the DWT domanvesushrink [5] and SUREshrink

[7]. They both employ a very basic ROV reduced to a scalar value

T

(k) = 7 (k). (5)
Similarly to what can be done in the spatial domain, the wawedefficients can also be processed by
block rather than individually, again in a mono-channel way [434], [31]-[33]. The main motivation
for this technique is to exploit the spatial similaritiesween neighboring coefficients in a given subband.
The introduction ofd — 1 spatial neighbork; ,..., k41 of the current sample indexed fyin the ROV

allows to take into account the spatial dependencies:

+0)

) () = [ k), r D (k) (k)] T 6)

(
J,m > jm ,m

For higher dimensional data, the ROV may also consist offiodefits sharing similar orientations,
possibly within different scales [34]. Another generdiiaa of the scalar case takes into account the
inter-scale similarities between the current coefficierd #re homologous ones defined at other scales.
Based on empirical observations in image compression [83%]las been proposed to use the current
coefficient ancestors at coarser scglesl, j+2, ..., jm eventually up to the coarsest level[36]-[38]:
the ROVFg.f’r)n(k) thus includes the correspondinigy — j + 1 coefficients at locatiork, in subbandm,
at resolution level;.

In the case of multicomponent data, additional samplesol@d from the different channels can be
included in the ROVs, as shown in [34], [39] for color imagenas| as for multispectral image denaising.

Basically, theinter-componentorrelations can be taken into account through the follgnROV [22]:

) (k) = [l ), )T v

Tim
Such a ROV includes all the coefficients of all channels at tineesgpatial location, in the same subband
m and at the same resolution levgl In [25], a more sophisticated multicomponent R®§?r)n(k) has
been defined which combines both spagéinati multichannel neighbors. As particular cases, such an ROV
encompasses the ROV in (7) and, also the ROV in (6). In additioe ROV may include coefficients
from different subbands.

A final potential extension of the ROVs is related to the choitthe transform. Indeed, it has been long
observed that a decomposition onto a wavelet basis suffarsd lack of shift-invariance as well as a poor

directionality, resulting in denoising artifacts at lowgsal to noise ratios. A simple way for alleviating
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these problems is to use a frame decomposition built from ianuof wavelet bases. In particular,
a number of papers [40]-[42] have demonstrated significapramements in scalar shrinkage when
resorting to a translation-invariant wavelet represémtatThe latter can be viewed as a decomposition
onto a union of shifted versions of a unique wavelet bakisband dual-tree wavelet decompositions [27]
constitute another example of a union of 2 (resp. 4) wavedse® in the real (resp. complex) case. The
corresponding mother wavelets are then derived from thedivtstby Hilbert transforms, which results
in an improved directional analysis. For such frame decaitipos, one can extend the notion of ROV
to include samples produced by the different wavelet bastoohpositions operating in parallel. These
facts will be further developed to motivate the applicatadrihe general estimator proposed in this paper

to an M-band dual-tree wavelet frame [27].

C. A unifying framework for shrinkage functions

In the aforementioned works, the estimation is often pené by shrinkage, so exploiting the sparse-
ness of the representation. The most well-known method wasoped in the pioneering works of Donoho

and Johnstone [5]. The estimating functigris then given by

F () = sign(r, (1) max{|r{'7, (k)| = A, 0} (®)
for a soft thresholding with threshold value> 0, wheresign(-) is the signum function. Equivalently,
by using the ROV in (5), the estimating function can be exgedsas

) (k)| — A
f (1) = (‘ im ) > (k). ©)
k +

T mK)|

Some works [43] have focused on the improvement of the schlamkage rule, yielding for instance
smoother functions such as the garrote shrinkage based4dnwhich is defined as:
. T2 = A
FEDL)) = | 25— k). (10)
J (b) (k)2 . J

Several authors have proposed vector-like generalizatotige scalar shrinkage. Cai and Silverman [23],

’ 7,m

have proposed a block estimator which takes into accounéetieegy of the neighboring coefficients in
each subband, as expressed as in (6). This estimator domihatenaximum likelihood estimator when
the block size is greater than 2. This method, named “NeigtiB|aconsists in applying the following

shrinkage rule:

—(b) 2 Y3 2
0) IF7 (k)] — Ado
Sim(k) = | 22 ) (k) (11)
IE” (k)12 !
J,m +
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: (b)
(k) is a subpart of the RO\éj’m(k)

is the associated vector of estimated valug$, denotes the classical Euclidean normRst and o2

where A > 0, d is the number of components in the RO\?’BH
denotes the noise variance. Such a function is clearly regeni of the scalar garrote shrinkage defined
in (10). Based on an asymptotic minimax study, Cai and Sileersuggested appropriate values for
and d. They considered both overlapping and non-overlappingamgsiof this approach. In particular,
. (b) .
the so-called “NeighCoeff” method corresponds to the calserw@m(k) reduces to a scalar estimate.
Then, the corresponding estimating function is:
—(b) 2 Y32
@ 17 m(K)[|* — Ado b
FED ) = ( s i (K). (12)
175 m (Kl .

In the meantime, Sendur and Selesnick [45] introduced a Bayeapproach allowing to model inter-

scale dependencies between two consecutive levels. Thasmsaoonsequently formulated the problem

in the 2-band wavelet domain. In their approach, the ROV\jergbyffl)n(k) = [r§?111(k), r§217m([%1)]T,
(b)

fer’m([%}) being the “parent” ofr](.f’l)n(k) (at the next coarser resolution). By considering as a prior

model the non-Gaussian bivariate probability density fiomc

p(sgf’iq(k),sg«?lm([l;))mexp(—f\/!si-?n(kﬂh|s§-?21,m<[‘2‘1>\2), >0 (13)

the following Maximum A Posteriori (MAP) estimator was dexive

0 (10| — VB
F (5 (k) = (” s~ ) (k) (14)
+

| ¥ )l
where the noise variance is again denotedr-By
More recently, in the context of signal restoration protdef@ombettes and Wajs [46] have studied the
properties of proximity operators corresponding to theisohs of some convex regularization problems.
In particular, an interpretation of one of their resultshie following. Let us adopt a Bayesian formulation
by assuming that the vectdéf’r)n(k) is a noisy observation of the vect(séf’r)n(k) of multichannel
coefficients at locatiork, embedded in white Gaussian noise with varianée Further assume that
the vector3s§f’3n(k) are independent of the noise, mutually independent and hawegor distribution
proportional toexp(—\||-||) with X > 0. The MAP estimation oég.f’zn is found by solving the optimization
problem:

J,m

Y Lo 2O g2
min Ajul| + 55 lu =75, ()11 (15)

It is shown in [46] that the minimizer of the MAP criterion is

_(b ~
W) <rr§,3n<k>u - Acf?) v

Sj7m - —_(b r],m
L)

(k). (16)
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The three previous block-thresholding estimators have likgived from different perspectives and
they have also been applied in different ways. However, fioissible to describe them through a general

shrinkage factom(||f§f’r)n]\5), where

VT e Ry, (7)) = (T—/\>+ (17)

-
andg > 0 and)\ > 0 take specific values in each of the aforementioned block astirs. We also remark
that this generalized shrinkage obviously encompassesatftie@nd garrote thresholdings provided in (9)
and (10).

Ill. PROPOSED NONLINEAR ESTIMATOR
A. Notations

We will now propose a more general adaptive estimator that ke applied in any representation
domain. We will therefore drop the indicgsandm and we will consider the general situation where an

observation sequende(k))ycz: of d-dimensional real-valued vectorg € N, d > 1) is defined as
vk € 7%, t(k) =5(k) +n(k), (18)

where(Ti(k))kez2 is aN (0, T™) noise ands(k))xez- is an identically distributed second-order random

sequence which is independent @f(k))xez>. We will assume that the covariance matiiX™ is
invertible. These random vectors are decomposed as

(k) = [f(k)], (k) = {f(k)], (k) - {7“‘1 a9
£(9 509 09

wherer(k), s(k) andn(k) are scalar random variables. We aim at estimating the firspooents(k)
of the vectors(k) using an observation sequen@gk)).cx WhereK is a finite subset o.2. We recall
that, although (18) does not introduce an explicit depecedretweers(k) and the vector(k) of the
lastd — 1 components of (k), such a statistical dependence may exist, due to the dependetween

the components dd(k) themselves. The estimated sequence will be denote(cﬁby))keK.

B. Form of the adaptive estimator

In order to gain more flexibility in the denoising procedute following generalized form of shrinkage

estimate will be considered:
A

s(k) = m(lFk)1?) q"T(k), (20)
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where the functiom, (-) is given by (17) withA > 0, 3 > 0 andq € R%. The vectorq corresponds to a
linear parameter. We notice, in particular, that if the shi@d value\ is set to zero, the considered
estimator reduces té‘(k) = q't(k). This shows that linear estimators constitute a subset of the
considered class of estimators. In addition, by an appatgdhoice of the vectay, estimators consisting

of a preliminary decorrelation of the data followed by a #ire@lding step also appear as special cases of
the proposed estimator. Note that, in conventional mudiictel data analysis, it is customary to decorrelate
the data before processing. The most common examples are fisehal conversions (like those from
stereo to mono in sound processing or from RGB to luminahceftinance components in color image
or video processing). When the data modalities are lessiatdized (for instance in satellite imaging),
adaptive methods such as the Karhunegasotransform or Independent Component Analysis (ICA) [47]
can be used. The latter adaptive transforms can also be pedomn the wavelet domairg.g.in each
subband.

Furthermore, in order to limit the computational complexitythe implementation of the estimator, it
can be useful to constrain the vecipto belong to some vector subspace of reduced dimen#iend.

Let P € R¥*? pe the matrix whose column vectors form a basis of this sutespale have then = Pa

wherea € R?. As a simple example, by choosing

whereI,; denotes the identity matrix of siz& x d’, we see that we only introduce in the estimator a
linear combination of the firs#’ components of the vectai(k). In summary, the proposed form of the

estimator is parameterized by 5 anda for a given choice ofP.

Our objective is to find the optimal parameters that minimieeduadratic risk defined &\, 5,a) =
E[|s(k) — §(k)]2], for a predefined value dP. It is easy to show that the risk reads:

A

R(), ,a) = E[|s(k) = 5(k)|’]
= E[|s(k)|’] + E[ln([F(0)[|7)a" P Tr (k)] — 2E[m([F(k)|F)a" P E()s (k)] (21)
The minimization of the risk is not obvious for any observatimodel. Indeed, since the(k) are
unknown, it seems impossible to express the rightmost &rx(||T(k)||”)a’ P Tr(k)s(k)]. However, in

the case of &aussiannoise, it is possible to apply an extension of Stein’s pritecid9] for deriving

an explicit expression. In the next subsection, we willesttid prove such an extended Stein’s formula.
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C. Stein’s formula

Proposition 1: Let f : R — R be a continuous, almost everywhere differentiable fumcsioch that:

v € RY, fim F(®)exp ( _ (-6 (F(;)) (t— 9)) —0; (22)
E[|f(¥(k))|*] < +oo and E[Ha’;i(( ] < +oo. (23)
Then,
ELF((00)s(1)] = ELF (1)) — £[ 275 5] efmnl. (22
Proof: Let T : R? — R? be a continuous, almost everywhere differentiable fumctioch that
0 € RY. Ht”llniooT(t) exp ( _(t-9) (r(;o) (t — 0)) _ o (25)
BT <+ and E[| T, ] < o (26)

where|| - ||r is the Frobenius norm. In this multivariate context, Steinisgple [19] can be expressed

as
e (1)Ve OT(T (k) (m
EIT(r())s" (0] = ET(r(i)r ()] — €| 2T (27)
Eq. (24) follows by choosing@ : t +— [f(t),0,...,0]" and focusing on the top-left element of matrix
E[T(r(k))s" (k). L]

D. Risk expression

We define the functiory : u +— n,(|lul|’) a"’PTu. It is easy to check that this functiof satisfies

the conditions of Prop. 1. Consequently, the last term canabmilated thanks to (24). This yields

E150) (709 = El 170 ~ €[22 70)] Tyt 28)

whereI'™") = E[@(k)n(k)]. We then have
(EM) _ rpr(p ORI | (eqa oy 22 BT

or(k) or(k) or(k)
— o 1070017 > 2T Py (Ir0) P
= ma([F09)1° Pa + XF()ET (K)Pa 29)

whereé(k) = 1{|| t(k)||® > A} T(k)/ || ¥(k)|®2. This leads to the following expression of the risk:

R(X. ,a) = E[lr(k) — f(£(k))’] + 2E[na([F (k)| *)]a" P T 4 20a P TE[E(K)T ()T — o°
(30)
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whereo? = E[|n(k)|?].
We will now look for parameters, g anda that minimize the risk expression (30) for a given choice

of P.

E. Determination of the parameter
We first aim at calculating the value afthat minimizes the risk (30). By noticing that the risk is a
quadratic convex function ad, the minimization can be performed by differentiating tva and then
finding a*(\, 8) such thatoR/da (X, 3,a*(A, 8)) = 0. It readily follows that
* — — _ —1 _ —
a*(\, f) = (PTEMX(IT(k)|”) (k)T (K)]P) " P (E[na(IF(k)[|”)r (k)F(k)]

— E[(IF) )T — NE[E (k) (k)]T™M). (31)

F. Determination of the parametersand

Starting from (30), the risk?(\, 3,a) can be re-expressed &\, 5,a) = E[p) g.a(k)] where

pasa(k) = az(k)A + a1 (k)A + ao(k) (32)
and
ag(k) =r%(k) — o? + 1{|| ¥(k)[|® > A}Ja' P T (2 @ 4 (a"™PTr(k) —27(k)) f(k))
B (r(k) —a'PTr(k)) F(k) - T FT(kK)r@En _
ar(k) = 2a P ( EE 0700 S )09 > )
o (a PTE(k))?
az(k) = 1{|| F(k) |7 > )\}W

In practice, under standard mixing assumptions (iofk))xcz: and (s(k))xez2 [48], R(A, 8,a) can be
estimated via an empirical averagA%(A,ﬂ, a) computed overK, provided that the data length® =
card(K) is large enough. Following a procedure similar to the seargilemented for the SUREshrink
estimator, we will subsequently determine optimal values and for this consistent risk estimate. More
precisely, the norms of the ROM$T(k)||)kex are first sorted in descending order, so tf@tk; )| >
|Ir(k2)|| > ... > ||r(kk)||. To study the variations oﬁ(A,ﬁ,a) w.r.t. A, we consider the case when
Ae I, withip e {1,...,K+1} and

[”f(kl)HBa OO) if 19 =1
Liy = § (ki) |1°, [T(ksy—1)||P) if dp €{2,...,K} (33)
[0, [T (kr)]1”) if i = K + 1.
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On the intervall;,, the risk estimate then takes the following fotm:

io—1

K
R( ( Z PA,B,a z) + Z pA,@a(ki)) (34)

ip—1 10—1 i9—1

K(/\QZ (k) +2Y i) + Y aolk; —i—Zr (K +1—ig)o 2). (35)

i=1 i=1 i=1 1=1g

A
In other words,R(\, 5,a) is a piecewise second-order polynomial functionof Assume now that
i0 € {2,..., K}. For given values off anda, the minimum oveiR of the polynomial in (35) is reached

at

i ek (36)
2571 an(ki)

The minimum over(|[¥(k;, )|/, |F(k;,—1)||°] of the estimated risk is therefore given by

Xio(B,2) =

IF (i) 17 i Ay (8,2) = [IF(kio—1)]1
A (B,a) = X, (8, a) it \i,(3,a) €I, (37)
IF(ei) 17 i Ay (8,2) < IIF(ks,) )17,
The minimizersAj(3,a) and A} ,(5,a) of the estimated risk ovef; and Ix,; can be found in a

similar way. The global minimizeA* (3, a) of the estimated risk is subsequently computed as

A (B,a) = arg min ]}%(Afo(ﬁ,a),ﬁ,a). (38)

(A:O(ﬁva))1§i0§K+l
To determine the optimal valug*(a) of the exponents, we can then proceed to an exhaustive search

over a setV of possible values for this parameter by choosing
A
f#'(a) = argmin R(X*(5,a), 3, a). (39)

In our experiments, it was observed that a restricted setfefvasearch values is sufficient to get good

results.

G. lterative optimization algorithm

The optimal expression of the vectaris derived in a closed form in Section IlI-E as a function of
the parametera and 5. In this way, the optimization problem simply reduces to tletermination of

the latter two parameters. On the other hand, gtvea procedure for determining the optimal values of

'We adopt here the conventign;_, - = >/, - =0.
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A and g is described in Section IlI-F. In order to get optimized valogéshe estimator parameters, we
therefore propose to apply the following iterative optiatisn approach:
1) Initialization: Fix P and V. Set the iteration numbegr= 1 anda® = [1,0,...,0]" € R¥
2) lIterationp
a) Setg® = g*(alP~D) and A?) = \*(®) alP~1) as described in Section IlI-F.
b) Seta® = a*(A®) 3()) using (31) where the expectations are replaced by sampiteatss.
3) Setp «— p+ 1 and goto step 2 until convergence.

4) Return the optimized valugs\(), 3 a(?)) of the parameters.

We point out that, although we were not able to prove the agaree of the optimized parameters,
A
the generated sequentB(AP), 3() alP)))  is a decreasing convergent sequence. This means that the

generated parameters at each iteration of the algorithowdth decrease the risk value.

V. MULTICOMPONENT WAVELET DENOISING

Our objective here is to apply the nonlinear estimator dmyad in the previous section to noise
reduction in degraded multicomponent images by considewavelet-based approaches. The original
multichannel image is composed 8f ¢ N* components;) of size L x L, with b € {1,..., B}. Each
image component) is corrupted by an additive noisé?, which is assumed independent of the images

of interest. Consequently, we obtain the following noisgetvation field-(*) defined by:

vkeK, k) =s%)+n® k), (40)
whereK = {1,..., L}2. Following a multivariate approach, we define:
sk) = [sWDK),.. 5D )T
Vk € K, nk) 2 nO),... . nBx)T . (41)
k) = OB )T

Obviously, the observation model (40) can be rewritterivkse K, r(k) = s(k) + n(k). In many
optical systems, the noise stems from a combination of plotand electronic noises cumulated with
guantization errors. Subsequently, we will assume that thisenvector procesa is zero-mean iid
Gaussian with covariance matdX™. In [1] and [2], this was shown to constitute a realistic asption
for satellite systems. It is worth noticing that a non diaajomatrix '™ indicates that inter-component

correlations exist between co-located noise samples.
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Hereafter, we will use two decompositions. The first one cdsmsis a critically decimated\/-band
wavelet transform whereas the second one, corresponds Ad-bBand dual-tree wavelet decomposition

we recently proposed [27], which permits a directional gsial of images.

A. M-band wavelet basis estimation

1) Model: We first consider an\/-band orthonormal discrete wavelet transform (DWT) [30]rove
resolution levels applied, for each chanhgto the observation field®). This decomposition produces
M?—1 wavelet subband sequenoé?fn, m € N2,\{(0,0)}, each of sizd; x L; (whereL; = L/M7)?,

at every resolution level and an additional approximation sequemf;l% of size Ly x L, at resolution

level J.
b b b H(b b H(b
iﬁ,fn ;5,2,1 (%m0 Sam) (o e )
WT WT DTT DTT

b b b b
s(® f @ f (0 RO 1 @ f ()
n®_— n(®)
iid A7(0, (™)) iid A7(0, T(™))

WT DTT
b b H(b
" (s o)

Fig. 1. Considered models in the wavelet transform domain (left) and inldbétree transform domain (right).

On the one hand, the linearity of the DWT yields (see. Figvk)e K;, rjm(k) =s;jm(k)+n;mk)
whereK; = {1,...,L;}* and

A

Sjm (k) = [s$ k), ..., s (1)) T,
A

nj.m(k) = [nlh, k), ..., 02 (1)),

[

rjm(k) 2 [ k), . )T

9 j’m
On the other hand, the orthonormality of the DWT preserves dpatial whiteness oh; ,,. More
specifically, it is easily shown that the latter field is an i.i(0, ') random vector process.
A final required assumption is that the random veci@rsa (k))rcx are identically distributed for any

given value of(j, m).

2For simplicity, L is assumed to be divisible hy/”.
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2) Associated estimatorAs described in Section Ill, our estimator can be directlyliggpto the M-
band DWT coefficients. As in conventional approaches, thecqpation coefficientsife. 7 = J and
m = (0,0)) are kept untouched. The parametars,, 5;m andq;m can be determined adaptively, for
every subbandj, m) and every component In this case, the ROV can be scalar, spatial, inter-comptone

or combined spatial/inter-component. More detailed exampiill be given in Section V.

B. M-band dual-tree wavelet frame estimation

H; HLM|—» —-|TM|—~| H,

Lo
& Ho- =]
e |-.|1M|—. —.|TM|-.| IR }:I'

e Mo e

i Mo ]
i

Fig. 2. Pair of analysis/synthesig-band para-unitary filter banks.

71,0,0 M-band
Prefiltering |©-00| ~ M-band filter bank U2,m
r (Fy) filter bank . —
1 Linear
combinaison
of the
° "Dual” subbands uf
JH "Dual” 71,0,0 M-band ——
Prefiltering|_©:9-0 M-band filter bank
(F2) filter bank
Linear (u1,m)m(0,0)
combinaison
of the (U} ) m(0,0)
subbands [
STEP 1 STEP 2 STEP 3

Fig. 3. Dual-tree2D.

1) A brief overview of the decompositiohe M-band real dual-tree transform (DTT) consists in
performing two separabl&/-band orthonormal wavelet decompositions in parallel lastiiated by Fig.

2. The one-dimensional wavelgls,, ).cn:, corresponding to the primal tree (upper branch) are assumed
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known and the “dual tree” one{s/;,%)mem (used in the lower branch) are built so that they define Hilbert
pairs with the primal ones. This reads in the frequency domaine N}, @{n(w) =—1 sign(w)zfm(w).
Details of construction are given in [27] and the global sobeof the decomposition is shown in Fig. 3.
An important point is that the dual-tree decompositionudels a post-processing, consisting of a linear
isometric combination of the primal/dual subbands (see B)g.This post-processing constitutes an
essential step for obtaining a directional analysis. FmaNo sets of coefficients (primal and dual ones)
are obtained, which means that this representation ingadvémited redundancy of a factor two.

2) Model: Applying this decomposition to a multichannel image haviBgcomponents and using
similar notations to Section IV-A.1, we obtain the followingefficients for the original data, the observed

ones and the noise, respectively:

o before post-processings; m(k), sgm(k)), (rjm(k), rgm(k)), (n,m(k), ngm(k));
« after post-processingv; m(k), V;Im(k)), (wjm(k), u]}-fm(k)), (Wjm(k), wﬁm(k)).

Note that a post-processing is not applied to all subbanes [87]) as the Hilbert condition is only
verified by mother wavelets. As a consequence, the lineards@mncombination is not performed for
subbands processed by low pass filters. More precisely, teeppocessing consists of the following

unitary transform of the detail coefficients: for att € N2,

VkeK;,  wim(k) = \}i(nj,m(k) +nll (k) and wi (k) = k(nmm(k) “nfl (k). @2)

Similar relations hold for the original and observed datatft@mmore, invoking the linearity property of
the transform, these coefficients are related by (see. Figght)x.
vk € Kj, rj,m(k) = Sj7m(k) + Ilj,m(k) and ijm(k) = Vj}m(k) + Wj7m(k)
Fin (k) = 8jim (k) + 155, (k) W) (k) = Vi (k) + wiin (k). (43)

J,m J,m Js J,m

3) Noise statistical propertiestn our recent work [49], [50], a detailed analysis of the eosatistical
properties after such a dual tree decomposition has beé@riped. In the sequel, some of the main results
we obtained are briefly summarized. Let us recall the definitibthe deterministic cross-correlation

function between the primal and dual wavelets: for(all, m’) € N2,

V7 € R, Yo (T) = /_ - Y (), (2 — 1) da. (44)

We have obtained the following expressions for the covagdrelds: for allj € Z, m = (m;, m2) € Ni[,

m’ = (m},mh) € N3, k = (ki,ko) € K; andk’ = (K}, k) € K;, with the index differencer,, =
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pi —ph, i€ {1,2}:
E[mjm (k) (0, m (k) ']
E[n}'y, (k) (0] (K)) 7]

E [ m (k) (0} (&) 7] = T3, (A ) Yo,y (D)

=T®™5a,, 0a,. 0a, OA,,

It can be further noticed that, fan # 0, the random vectora; ,, (k) and nfm(k) at a given location
k are mutually uncorrelated.
After post-processing, the covariances of the transformmde coefficient fields can be easily deduced

from (42): for all (m, m’) € N37 and (k, k') € K3,

EWjm (k) (W (k) '] =E[0jm (k) (000 (') 7] + E [0 (k) (0] (K)) ] (45)
E W] o () (W (K) ] =E [0 () (100 (K')) '] = B[ (k) (1] (K)) '] (46)
E[Wj,mn (k) (Wi () '] =0. (47)

In summary, noise coefficients are inter-tree correlatedrbethe post-transform whereas after the post-
transform, they are spatially correlated. This constitaie$mportant consequence of the post-processing
stage.

4) Associated estimatoin the M-band DTT case, the primal and dual coefficients are both etna

For each componente {1,..., B}, the estimator reads: for the subbands which are not lipearhbined
(m ¢ Ny,),
A+ (b) _(b (®) b
San (k) = 0 ([F (011 m) (@) TF () (48)
AH(b b H(b) b\ T_H(b
Sanl1) = my (|1 1)) (@) T k), (49)

and, for the combined subbands (€ N7j,),

A(0) () ®) b b

Gan (k) = 1,00 ([0, () m) () "0 () (50)
AH(b _H(b HO) o H(b)\ T-H(b

anlle) = ngg<||<uj,£n><k>>||ﬁm ) (@) W ), (51)

where T; (b)( k) and rH(b)( k) (resp.ﬁg’) (k) and u ( )) are the ROVs for the primal and dual
coefficients before (resp. after) post—transformatlon. Biryi to the DWT case(\; m, 3jm,qd;,m) and

(A Jm,ﬁ m 4, H ) can be adaptively determined by minimizing the quadratk dver the frame coef-
ficients for every subbandj, m) and every componerit in each tree. Furthermore, the approximation

coefficients are also kept untouched. The denoised multighanmages are then obtained from the
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estimated wavelet coefficients by inverting the DTT using th&naal reconstruction developed in [27].
In this case, a great flexibility exists in the choice of the R8\¥ce the latter can be scalar, spatial,
inter-component, inter-tree or combined spatial/in@mponent/inter-tree as will be illustrated in the

next section.

V. NUMERICAL RESULTS

We now provide numerical examples showing the efficiency effoposed method. In our simulations,
we consider different multichannel remote sensing images. the sake of clarity, we only provide
experimental results concerning two multispectral imadée first one designated as Tunis corresponds
to a part of a SPOT3 scene depicting a urban area of the city o8 = 3). The second one named
Trento is a Landsat Thematic Mapper image having initiallyesegchannels. The thermal component
(the sixth component) has been discarded since it is nolasitu the remaining ones. Hence, the test
image Trento is & = 6 component image. In order to obtain reliable results frortaissical viewpoint,
Monte Carlo simulations have been conducted. Accordingutcegperiments, averaging the mean square
error over five noise realizations is sufficient to obtain ¢stesit quantitative evaluations.

In the following, we discuss several topics: in particulse compare our method with other recently
proposed estimators, possibly having a multivariate stirec Then, we consider different pre-processings
that can be performed on the multichannel data before amplyie estimator, thus expecting improved
results. The ROV being defined in a generic way in the previooiose we also study the influence
of specific choices of this ROV on the denoising performancevel$ as the influence of the wavelet
choice (considering various/-band filter banks). When different decompositions are peréa, we
set the maximum decomposition level so that the size of tigroxpmation fields remain the same.
Consequently, we decompose the images avewels for a4-band filter bank structure antlevels for
a dyadic one.

If o) denotes the standard deviation of the clean multichanmapoaents® (of size L x L) we

define the initial and the final signal to noise ratios ﬁ‘iﬂgg and, SNF,%?])I in the b-th channel as:

a
by A (O.(b))sz b A (U(b))zLQ
SN \nitial — 10 loglo <H5(b)_r(b)||2 s and SNF%N&U =10 loglo m . (52)

Then, all theB channel contributions are averaged into global values efitlitial and final signal to

noise ratio SNRita and, SNRnal.
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TABLE |

BRIEF DESCRIPTION OF THE TESTED METHODS

Acronym | Description ‘ Ref. H Acronym Description ‘ Ref. ‘
Biv. Bivariate shrinkage method [45] Multivariate methods
BLS-GSM | Bayesian Least Squares (BLS)| [34] || ProbShrink| Multivariate method for3-band images using | [39]
Gaussian Scale Mixture (GSM (- x.) critically decimated DWT and taking into
using critically decimated DWT account a (x .) neighborhood in each channel
BLS-GSM | BLS-GSM using critically [34] || ProbShrink| Multivariate method for3-band images [39]
+ parent decimated DWT and taking into red. ( x.) | using undecimated DWT and taking into
account the parent coefficient account a (x .) neighborhood in each channel
BLS-GSM | BLS-GSM using a full [34] || Surevect Estimator based on an extended SURE [22]
red. steerable pyramid approach using a critically decimated DWT
(redundant transform)

Curvelets | Block estimator using curvelet | [51]

transform:7.5 times redundant

A. Comparison with existing methods

We aim in this section at comparing the proposed approadh sgveral existing denoising methods
which are briefly described in Table I. Tests are performed 6m2ax 512 SPOT image of Tunis city
(B = 3) (as some multivariate methods are limited3tband images) corrupted by an additive zero-mean
white Gaussian noise with covariance matﬁ?” = 02 I, wherelz denotes the identity matrix of size
B x B.

We first study techniques that use orthogonal wavelet tramsfoWwe employ Daubechies wavelets of
order4 in all the following estimators:

1) the Bivariate shrinkage, which takes into account istale dependencies, the last level being

processed by inverting children and parent role [45];

2) the BLS-GSM method developed in [34] including or not the pareighborhood and considering

a3 x 3 spatial neighborhood;

3) the ProbShrink estimator [39] for multivariate data witt8 & 3 spatial neighborhood (in each

channely!

4) the Surevect estimator [22], which only takes into acconmlticomponent statistical dependencies;

3We use the toolbox available from Portilla’s websitet p: / / ww. i 0. csi c. es/ PagsPers/ JPortill a/.

“We use the toolbox available from#Ririca’s websiteht t p: / / t el i n. rug. ac. be/ ~sanj a/ .
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5) the proposed estimator where the set of values take/ﬁj(.fﬂy isV =1{0.5,1,1.5,2}, the ROV is
represented in Fig. 5(b). A subspace constraint is addedemeld:torqgf’l)n o] that(qgf’r)n)ngf’r)n(k)

reduces to a linear combination of the multichannel dathetbonsidered location and the 4 spatial

nearest neighbors.

TABLE I
DENOISING RESULTS(AVERAGE VALUES COMPUTED OVER3 CHANNELS) ON TUNIS IMAGE USING NON REDUNDANT

ORTHOGONAL TRANSFORMS(SEE TAB. |) WITH DAUBECHIES WAVELETS OF ORDER4 (LENGTH 8).

o2 SNRunit Biv Probshrink| BLS-GSM | BLS-GSM | Surevect| Proposed
(3 x 3) + parent
650.3| 5.081 || 11.85 11.86 12.05 12.14 13.08 1341
410.3| 7.081 || 12.89 12.84 13.11 13.21 14.12 1451
258.9| 9.081 || 13.99 13.91 14.26 14.36 15.24 15.69
163.3| 11.08 | 15.19 15.08 15.49 15.60 16.43 16.95
103.1| 13.08 | 16.49 16.37 16.81 16.93 17.70 18.27
65.03| 15.08 || 17.88 17.54 18.22 18.35 19.04 19.64

The obtained results are provided in Table Il (the initial SNR®y be different in each channel although
the noise variance is fixed). For the first three methods, degoigs been performed for each component
of the multichannel data. For orthogonal wavelets, Prob&Heiads to better results when it is associated
to a spatial neighborhood than when considering only thelpislue to be estimated. It performs quite
similarly to the Bivariate shrinkage. The BLS-GSM estimatorpeutorms these two methods providing
a gain of approximatively.2 dB (up to0.3 dB by including the parent coefficient in the neighborhood).
Nevertheless, the Surevect estimator brings more significamtovements and it can be observed that
our method leads to even better numerical results what&eeimitial noise level is. The new structure
of the estimator coupled with a spatial and spectral blodc@ssing may explain such an improvement.
Furthermore, the gain increases as the initial SNR increagleish is interesting in satellite imaging
where the noise is often of low intensity. To be fair, we woliké to mention that, although Bivariate
shrinkage, Probshrink and BLS-GSM were designed for monochamage denoising, extensions of
these methods to the multivariate case could probably besaed.

In the monochannel case, it has been reported that the usedahdant transforms often brings
noticeable improvements in denoising [51]. We subseguetmpare methods that have been proved to

be very efficient when combined with a redundant analysis:

1) the curvelet denoising [51] using a curvelet frame witledundancy approximatively equal T
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and a block thresholdingy;

2) the BLS-GSM method using steerable pyramids Wittrientations, including the parent neighbor-
hood and & x 3 spatial neighborhood as described in [34],

3) the ProbShrink estimator for multivariate data using uirdated wavelet transform [39] (with
Daubechies wavelets of leng#) and taking into account & x 3 or no spatial neighborhood;

4) the Surevect estimator [22], extended to DTT (with Daubeshvavelets of lengtB);

5) the proposed estimator using a DTT where- {0.5,1,1.5,2}, the ROV is represented in Fig. 6(b).
The vectorqg.f’t)n (resp.qffﬁ)) is such that it introduces a linear combination of the nohiinnel

data in the primal (resp. dual) tree at the considered locand the 4 spatial nearest neighbors.

TABLE 1l
DENOISING RESULTS(AVERAGE VALUES COMPUTED OVER3 CHANNELS) ON TUNIS IMAGE USING REDUNDANT

TRANSFORMS(SEETAB. |) WITH DAUBECHIES WAVELETS OF ORDER!) (LENGTH 8).

o2 SNRunit || Curvelets| BLS-GSM red | Probshrink red| Probshrink red| Surevect| Proposed

+ parent 3 x3) (Ix1) DTT DTT
650.3 | 5.081 11.91 12.92 13.00 13.33 13.54 13.71
410.3| 7.081 12.94 14.00 14.04 14.38 14.59 14.80
258.9| 9.081 14.04 15.15 15.13 15.50 15.70 15.97
163.3 | 11.081 15.17 16.38 16.28 16.68 16.87 17.21
103.1 | 13.081 16.33 17.68 17.51 17.92 18.11 18.52
65.03 | 15.081 17.56 19.04 18.76 19.20 19.41 19.88

It is worth pointing out that the same noisy images as useddmbn redundant case have been processed
by the redundant transforms. As shown in Table lll, curngeléd not seem really appropriate in this
multichannel context in spite of their promising resultstiie monochannel one. ProbShrink and BLS-
GSM methods are very efficient in the redundant case and Prol&tns its superiority when using an
inter-component neighborhood. The methods using a DTT diatperthe existing ones in all the cases.
We point out that the DTT has a limited redundancy of a factoo@gared with the other considered
redundant decompositions. It can be noticed that our meginoddes better results than Surevect. The
observed gain increases as the initial SNR increases and tam significant improvements with respect
to critically decimated transforms of abot25 dB. It is also interesting to note that the observed gain
in terms of SNR leads to quite visible differences. In Fig. 4pged versions of the first channel of the

Tunis image are displayed, for a low value of the initial SNR§ dB). We can notice that the proposed
SWe employ theCur vel ab 2. 0 toolbox which can be downloaded frohi t p: / / www. cur vel et . or g.
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(@) (b) (©)
' ‘
(d) (e) (f)

Fig. 4. Cropped versions of Tunis image (chanhet 1, initial SNR equal to4.66 dB) and (a) Original image, (b) Noisy

image, (c) Denoised image using ProbShrink réddx 1), (d) Denoised image using BLS-GSM red. + parent method, (e)

Denoised image using curvelets and (f) Denoised image using our mgthmgaloying a DTT).

method (see Fig. 4-(f)) allows to better recover edges wisetlea three others (see Fig. 4-(c,d,e)) result
in more blurred images, where some of the original strustare missing. This is especially visible for
the image denoised with the BLS-GSM estimator (see Fig. 4-(d)).

In the following, we focus on the method introduced in thipgraand more specifically on the variations

of its performance according to the parameter setup.

B. Pre-processing stage

In order to improve the denoising performance in the mudtioiel context, additional linear procedures
can be applied. Actually, different linear pre-processiofj the components may be envisaged:
e The simplest idea consists in decorrelating the spectralpooents of the image to be estimated in
order to process them separately. Knowing the noise cawaianatrixI'™), we can deduce the original
data covariance matrix (assumed here to be spatially auhsi® = '™ — '™ from the observed
data covariance matrik(*). More precisely, by performing an eigendecompositioT'6?, we seek for

an orthogonal matri@XU(®) such thatT'®) = USD®) (U®)T whereD®) is a diagonal matrix. Then,
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the transformed multichannel image (6U®)) Tr(k))x and it is corrupted by a spatially white zero-
mean Gaussian noise with covariance matfiX®)) ' T(®)U®), We then proceed to the nonlinear wavelet
estimation of the decorrelated components as describdeeiprevious sections.
e Instead of decorrelating the components, we may try to mhkentstatistically independent or, at
least, as independent as possible. A number of ICA (Indegggn@Gomponent Analysis) methods have
been developed for this purpose in recent years [47]. Indhse, a linear transforiW®) (which is not
necessarily orthogonal) is applied to the multichannehdat

The proposed estimator already includes an optimized lineanrbination of some of the components
of the ROV. It is therefore expected to provide competitiesuits w.r.t. techniques involving some linear
pre-processing. In order to make fair comparisons and at@lthe improvements resulting from the
optimization of the linear part of the estimator, we provilenulations where the ROV is the same
whatever the pre-processing is (we have chosen the same BR@Vtlae previous sections). In addition,
when a decorrelation or an ICA is employed, the linear parthef estimator is chosen equal to the
identity. We finally propose to compare these results withnapk linear MSE estimator based on a
linear combination of coefficients from different channels.

Numerical results displayed in Table IV allow us to evalutie proposed approach without optimiza-
tion of the linear parameter vector, the same estimator aoedbwith an ICA of the multichannel data
(using the JADE algorithm [47]) or a pre-decorrelation stagd, finally our approach with an optimized

linear part. From these results, it is clear that includingnedinear processing is useful for multichannel

TABLE IV
INFLUENCE OF DIFFERENT PREPROCESSINGS ONIUNIS IMAGE DENOISING (02 = 258.9). SYMLETS OF LENGTH 16 ARE

USED.

TransformH ChanneIH SNRuit H Without transf.‘ ICA ‘ Decorrelation‘ MSE Lin. ‘ Opt. lin. ‘

b=1 8.664 13.84 14.66 15.15 15.18 15.75

DWT b=2 9.653 14.39 15.03 15.36 15.28 15.89
b=3 8.926 15.15 13.85 15.11 15.26 15.84

Average || 9.081 14.46 14.51 15.21 15.24 15.83

b=1 8.664 14.13 14.37 15.43 15.42 15.94

DTT b=2 9.653 14.66 14.67 15.64 15.53 16.09
b=3 8.926 15.38 14.26 15.26 15.52 15.98

Average || 9.081 14.72 14.43 15.44 15.49 16.00

image denoising. The ICA only brings slight improvementssgiioly due to the fact that the associated
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transform is not orthogonal. Pre-decorrelating the dataifsigntly increases the SNR, however the fully

optimized version of our estimator remains the most effectnethod.

C. Influence of the neighborhoods
The ROV can be defined as desired and plays a prominent role iootisruction of our estimator.
We study here the influence of different choices of the ROV:

1) ROV1 corresponds to an inter-component neighborhoocenhDWT is employed (see Fig. 5(a)),
we havefg.f’r)n(k) = [(r(b/)(k))b,]T, while for a DTT (see Fig. 6(a)), we use

j,m
(k) = [(r ), (1)), 1T and @ (k) = [(ulh X)), (53)
k) = (&), . (), )T k) = (%), )T (54

2) ROV2 corresponds to a combination of a spadiat 3 and an inter-component neighborhood as

considered in the previous sections and shown in Figs. 5()68n).

sjuauodwo? [esoads g

sjuauodwoo [endads g

@ (b)

Fig. 5. Representation of the different considered ROVs in the DWT doifthe black triangle will be estimated taking
into account the white ones); (a) ROV1 the purely inter-component ndg(ld ROV2 combining inter-component and spatial

dependencies.

The linear part of the estimator is defined as in Section V-A.
The corresponding results are given in Table V. In order topmane different possible wavelet choices,
the results are provided both for symlets of lengthand a4-band filter bank given in [52] which is

denoted by AC. These results can also be compared with thegiwessin Section V-A where Daubechies
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syusuoduwiod
(paysep) fenp g + g

syusuodwod
(paysep) fenp g + g

e e e e

Post-processing Post-processing
(a) (b)

Fig. 6. Representation of the different considered ROVs in the DTT agmath and without post-processing stage (the
black triangle will be estimated taking into account the white ones); (a) RO¥Iptinely inter-component one and (b) ROV2

combining inter-component and spatial dependencies.

TABLE V
INFLUENCE OF THE NEIGHBORHOOD INTUNIS IMAGE DENOISING (AVERAGE VALUES COMPUTED OVER3 CHANNELS ARE

PROVIDED AND 2 = 258.9) USING SYMLETS(LENGTH 16) (TOP) AND AC FILTER BANK (LENGTH 16) (BOTTOM).

Transform H SNRut H ROV1 \ ROV2 H Transform \ SNRui H ROV1 \ ROV2 \

DWT (symlets)| 9.081 15.42 | 15.83 || DWT (AC) | 9.081 || 15.49 | 15.76
DTT (symlets) || 9.081 15.77 | 16.00 DTT (AC) 9.081 || 15.88 | 16.01

filters of length8 are used.

Concerning the neighborhood influence, we note that takita ascount spatial dependence leads to a
significant improvement w.r.t. inter-component dependence

Concerning the wavelet choice, it appears that the 4-bandvA@lets yield slightly better results than
the dyadic symlets choosing ROV1 and equivalent resultesing ROV2. Both outperform Daubechies

wavelets wathever the ROV chosen.
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D. Various noise levels
In this section, we consider that the image channels areigi@d at different noise levels. Thus, the

noise is spatially white, zero-mean, Gaussian with comae;amatrixr‘gn) = Diag(c?,...,0%). The

TABLE VI

DENOISING RESULTS ONTUNIS IMAGE CONSIDERINGI‘gn) AND USING SYMLETS (LENGTH 16).

’ ChanneIH ot ‘ SNRhit H Surevect DWT| Proposed DWTH Surevect DTT| Proposed DTT

b=1 25.89 | 18.66 20.58 21.16 20.85 21.24
b=2 258.9| 9.653 18.53 18.61 18.75 18.82
b=3 491.9| 6.138 14.20 14.55 1451 14.69
Average 11.49 17.76 18.11 18.04 18.25

resulting numerical results are displayed in Table VI witle tcorresponding noise levels, when our
estimator is used with ROV2. Noticeable differences canlimens/ed when comparing Surevect with our

method both considering DWT and DTT transforms.

E. Increased number of channels

A strong advantage of the proposed method is that, unlikeymariticomponent approaches limited to
RGB (3 components) images, it may process any kind of multichaimages, whatever the number of
channels is. We consider here thehannel Trento image. We apply the Surevect estimator (bsitigu
DWT and DTT), the BLS-GSM estimator (taking into account the paceefficient), and our estimator

using ROV2. From the results provided in Table VII, we see,thdtile the number of channels is

TABLE VII

RESULTS OBTAINED APPLYING DIFFERENT ESTIMATORS ONTRENTO IMAGE (02 = 258.9).

Channel|| SNRni: || Surevect| Proposed|| BLS-GSM red| Surevect| Proposed
DWT DWT + parent DTT DTT
b=1 -2.907 8.661 8.945 8.311 8.984 9.251
b=2 -6.878 8.375 8.427 6.536 8.805 8.839
b=3 -3.836 8.288 8.443 7.341 8.647 8.761
b=4 2.428 9.525 9.799 9.836 9.901 10.01
b=5 4.765 11.18 11.52 11.38 11.61 11.77
b=26 -1.560 9.545 9.685 8.167 9.945 10.00
Average || -1.331 9.262 9.470 8.596 9.649 9.770

increased, our method still outperforms the other onescépewhen a DTT is used. With the increase

of the number of channels, the reduced redundancy of the DTdnbes another attractive feature of the
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proposed approach.
VI. CONCLUSION

In this paper, we have proposed a nonlinear Stein based ¢stifoawavelet denoising of multichannel
data. Due to its flexible form, the considered estimator gaizes many existing methods, in particular
block-based ones. Although the proposed approach has Ippéiachto satellite images, it could also be
used in any multivariate signal denoising problem. Besitles estimator has been used in conjunction
with real dual-tree wavelet transforms but complex onegterdframe decompositions could be envisaged
as well. In the context of frame representations, it showlddver be noticed that the proposed estimator
minimizes the risk over the frame coefficients and not on thedmstructed signal, which may be
suboptimal [21], [53]. Another question that should be stigated in future work is the ability of
the proposed framework to exploit inter-scale dependenicieaddition to spatial and inter-component
ones, as considered in [21] for the mono-channel case. ker dodobtain an interscale denoising method,

an appropriate ROV should be defined and the interscaletststef the noise should be available.
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