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We show that in experimental atomic force microscopy studies of the lifetime distribution of
mechanically stressed folded proteins the effects of externally applied fluctuations can not be dis-
tinguished from those of internally present fluctuations. In certain circumstances this leads to
artificially non-exponential lifetime distributions which can be misinterpreted as a signature of pro-
tein complexity. This work highlights the importance of fully characterizing and controlling external
sources of fluctuation in mechanical studies of proteins before drawing conclusions on the physics
at play on the molecular level.

I. INTRODUCTION

Atomic force microscopy (AFM) has emerged as a pow-
erful tool with which to study biologically relevant sys-
tems [1, 2]. Probing the response of a protein to an ap-
plied mechanical force allows for the direct investigation
of the physical properties of the protein [3, 4]. Recent
experiments have used lifetime distributions of a single
folded protein under constant applied mechanical force
to probe physics at the molecular scale [5, 6]. To do
so, a folded protein is put under tension and the time
to unfolding is measured. Many such individual experi-
ments are collected (often over the course of days or even
weeks) and their lifetimes combined to estimate the life-
time distribution. Such lifetime distributions have been
studied experimentally for both Ubiquitin and the 27th
domain of immunoglobulin (I27) [7, 8]. In some instances
non-exponential behavior has been reported in measure-
ments of Ubiquitin [9, 10], and associated with glassy dy-
namics [9]. Static configurational disorder of the folded
protein structure combined with the Bell model [11] has
recently been proposed as a plausible explanation for the
observed stretched-exponential unfolding time distribu-
tions [12, 13].
Non-exponential lifetime distributions in physical sys-

tems are often a signature of underlying complex pro-
cesses with multiple timescales operating at the micro-
scopic level [15–17]. Characterizing the range of rates
present can provide insights on the fundamental physical
mechanisms driving the decay process. However, non-
exponential distributions can also arise in systems that
are characterized by a single timescale, if external fluc-
tuations are able to propagate through non-linearities of
the system. Thus, if non-exponential behavior is to be
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FIG. 1: Schematic representation of a typical AFM setup for
protein measurements. The deflection of the cantilever is mea-
sured as a differential voltage on the quadrant photodetector.
In order to achieve a force measurement one must convert the
voltage measured on the photodector into a displacement of
the tip and then measure the spring constant of the cantilever
(typically done using the thermal tune method [14]).

taken as proof of complex internal workings the effects of
external fluctuations must be understood.

II. RANDOM BELL MODEL

In his model for cellular adhesion [11], G.I. Bell needed
a relationship between rate and mechanical force. He
used a phenomenological relation that was found by
Zhurkov and Kuksenko in a study of crack propagation
in stressed bulk polymers [18]. In analogy with the Ar-
rhenius relation at a given temperature T , this relation
postulates an exponential relationship between the un-
folding rate α and the applied external force F given by

α = α0e
βFx, (1)
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where α0 is the unfolding rate at zero applied force,
β = 1/kBT and x is a model parameter with units of
length, usually interpreted as the distance to the tran-
sition state [19]. This relationship was subsequently re-
ferred to as the “Bell model” and applied to the dynamic
strength of molecular bonds [20] and molecular measure-
ments of protein unfolding by AFMs [21]. In the appli-
cation of this model to protein measurements configura-
tional disorder enters as a source of fluctuation for x and
is sufficient to explain experimental results [12, 13]. In
principle, however, one could consider the effects on the
lifetime distribution of fluctuations in all of the parame-
ters, α0, β, F and x.
Fluctuations in α0 or x would provide a window into

the physics on the microscopic scale [12, 13], whereas fluc-
tuations in β and F simply arise from the experimental
conditions and provide no insight into protein physics.
We introduce the terminology Random Bell Model

to indicate a model similar to the Bell Model (Eq.1)
in which each parameter is assumed to be randomly
distributed. We will probe this model to determine the
impact of various sources of fluctuations on the resulting
distributions of rates and lifetimes.

III. SOURCES OF FLUCTUATIONS

Most experiments are done at room temperature, with-
out strict thermal regulation, leading to fluctuations in
temperature. However, even in a poorly controlled envi-
ronment, the upper bound for thermal fluctuations will
be on the order of 5°, leading to fluctuations in β of less
than 2%. For the sake of brevity we will not consider
these fluctuations as being significant. By definition, α0

is the rate at temperature T and zero applied force, and
should be inherent to the folded protein structure. We
will therefore assume that α0 does not fluctuate within a
given protein, nor from one molecule to the next. Note
that if it proved relevant, it would be straightforward
to extend the following results to include fluctuations in
both β and α0.
This leaves us with sources of fluctuations in F and x

to consider. As previously mentioned, fluctuations in x
are the physical quantity of interest which may be masked
by fluctations in F . In current experiments many sources
of fluctuations in force are present. Readily visible are
the fluctuations in the force value observed over a single
experimental trace. These fluctuations include

1. Thermally induced fluctuations [22] in the position
and curvature of the cantilever tip as well as the
position of the sample.

2. Fluctuations induced at high frequencies by the
force feedback system (setup dependent).

3. Mechanical vibrations transmitted through the
AFM to the cantilever tip or the sample (setup de-
pendent) [23].
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FIG. 2: Probability density of rate P (α), given by Eq. 11,
presented as a Log-Log plot. The curves correspond to val-
ues of βF̄ x̄ = 6.11 and α0 = 10−3s−1, as given in refer-
ence [13], for a fixed value of σω = 0.2, but varying values of
(σφ, σξ) = (0, 0.2) in black, (0.05, 0.19) in orange,(0.1, 0.17) in
red, (0.15, 0.13) in purple. Note that (σφ, σξ) = (0, 0.2) leads
to a log-normal distribution of unfolding rates, represented by
a parabola in Log-Log scales.

The combined magnitude of these fluctuations has been
estimated to be ≃ 10% for the apparatus in [10]. Less
apparent, but likely more significant, are the fluctuations
from experimental run to run induced by the calibration
of the system (see Figure 1). These fluctuations include

1. Errors in the calibration of the spring constant
of the cantilever (estimates vary from 10%[24] to
20%[25] for the generally used thermal tune method
of calibration).

2. Time dependent drift in the spring constant of the
AFM cantilever (on the order of 14% in 60 minutes
[25]).

Therefore, a worst case estimate of the overall magnitude
of the force fluctations would be between 20% and 25%.

IV. UNFOLDING RATE AND TIME

DISTRIBUTIONS

A. Unfolding rate distribution

Let F and x be random variables with respective means
F̄ and x̄ and standard deviations σF and σx. We intro-
duce dimensionless random variables φ and ξ such that

F = φF̄ , (2)

x = ξx̄. (3)

These two random variables are described by the joint
probability density J(φ, ξ). By definition the probability
density of the product ω = φξ is given by

Pω(ω) =

∫ +∞

−∞

dφdξJ(φ, ξ)δ(ω − φξ). (4)
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To simplify the previous relation, let’s perform the fol-
lowing change of variables,

u1 = φ, (5)

u2 = φξ, (6)

whose Jacobian is

J =

∣

∣

∣

∣

1 0
ξ φ

∣

∣

∣

∣

= |φ| = |u1|. (7)

Then Eq.4 becomes

Pω(ω) =

∫ +∞

−∞

du1du2

1

|u1|
J

(

u1,
u2

u1

)

δ(ω − u2). (8)

The distribution of their product ω = φξ is then given
by the Rohatgi formula [26]

Pω(ω) =

∫ +∞

−∞

dξ

|ξ|
J

(

ξ,
ω

ξ

)

. (9)

This expression of Pω does not require φ and ξ to be inde-
pendent, nor of any particular distribution. To proceed
further, however, we will make the experimentally rea-
sonable assumption that the variables ξ and φ are two in-
dependent Gaussian variables, with mean 1 by construc-
tion and standard deviations σξ = σx/x̄ and σφ = σF /F̄ .
Note that we do not make any assumption on the rela-
tive importance of these two kinds of fluctuations. The
distribution of ω is obtained by numerical integration of
Eq.9.
The distribution of rates α is obtained through the

change of variables

α = α0 exp
(

βF̄ x̄ω
)

, (10)

leading to the following probability density of unfolding
rates :

Pα(α) =
1

βF̄ x̄α
Pω

[

1

βF̄ x̄
ln

(

α

α0

)]

. (11)

An example of such a rate distribution is presented in
figure 2. We observe a systematic change in the tails of
P (α) as the relative weight of σφ and σξ is varied. As
these changes are in the tails they may prove difficult to
access experimentally.

B. Unfolding time probability distributions

The directly measurable cumulative unfolding time
distribution is given by a Laplace transform of the rate
distribution as

C(t) = 1−

∫ ∞

0

dαPα(α)e
−αt. (12)

The corresponding probability density is then given by
P (t) = dC

dt (t).
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FIG. 3: Dependence of unfolding time statistics on the rela-
tive weight of external fluctuations (σφ) and internal fluctua-
tions (σξ) for a fixed value of total fluctuations (σω = 0.20),
and for βF̄ x̄ = 6.11, α0 = 10−3s−1. All four plots are for
varying values of (σφ, σξ) = (0, 0.2) in black, (0.05, 0.19) in
orange,(0.1, 0.17) in red, (0.15, 0.13) in purple. a) Cumula-
tive probability function of unfolding times. The grey line is
the best exponential fit. b) Difference between each curve in
(a) and the curve for (σφ, σξ) = (0, σω). c) Probability density
function of unfolding times. d) Difference between each curve
in (c) and the curve for (σφ, σξ) = (0, σω). The distributions
shown in (a) and (c) are experimentally indistinguishable.
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Figures 3a and 3c show plots of the cumulative proba-
bility distributions and the probability density functions
for a fixed value of σω, the standard deviation of the
product variable ω, and different values of σφ and σξ.
The overall shape of the distribution appears to depend
only on σω: The resulting distributions differ by less than
0.1% and thus are indistinguishable for all values of σφ

and σξ for a fixed value of σω.
If σφ very nearly equals zero (i.e. no fluctuations in

the externally applied force) no confusion is possible:
any deviation from a strictly single exponential lifetime
distribution must be attributed to internal fluctuations
as described by σξ [13]. However this cannot be the
case experimentally. Given these sources of fluctuation
it is unlikely that σφ is negligible. Consequently, a good
estimate of σφ must be obtained before one can hope to
learn anything about σξ or its origins.

C. Skewness of the rate distribution

We have shown that unfolding time statistics are
largely insensitive to the origin of the fluctuations. How-
ever, we note that the underlying rate distribution be-
comes asymmetric as the ratio between σφ and σξ grows,
as shown in Figure 2. One way to separate the sources of
disorder would be experimentally measure the assymetry
of the rate distribution as characterized by the skewness.
At present such a measurement is experimentally inacces-
sible because unfolding rates are not experimentally mea-
surable quantities. Instead, they must be estimated from
the observed unfolding times using statistical techniques
with all of their incumbent limitations, drawbacks, and
errors [9, 10]. We include the following study of the skew-
ness for two reasons. First, it is the dominant evidence
of the separability of internal and external fluctuations.
Second, we do so as a way to motivate the development
of experimental tools to allow such a measurement to be
effected.
The skewness γ of the distribution P (α) is defined as

γ =
〈(α− ᾱ)3〉

〈(α− ᾱ)2〉3/2
, (13)

where ᾱ is the mean unfolding rate and 〈· · · 〉 stands
for the average over Pα. Figure 4 presents the evo-
lution of the skewness γ by varying the ratio of σφ and
σξ for several fixed values of σω, the standard deviation
of the product ω = φξ. We observe that the overall
scale of the skewness grows with increasing σω while the
maximum, for fixed σω, always occurs when σφ = σξ.
Note that skewness is of necessity symmetric under in-
terchange of σφ and σξ because of the symmetry of the
original problem. Therefore, γ must have a turning point
when σφ = σξ.

Ideally, one should first accurately estimate σφ, then
a measurement of γ will allow for σξ to be read off the
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FIG. 4: Evolution of the rate distribution skewness γ as
a function of σφ/σξ, for 6 different values of σω, colored
from top to bottom as σω = 0.20 (black), 0.19 (purple),
0.18 (brown) 0.17 (red), 0.15 (orange), and 0.10 (yellow) for
βF̄ x̄ = 6.11, α0 = 10−3s−1.
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FIG. 5: Evolution of the rate distribution skewness γ(σφ, σξ)
as a function of σξ, for different values of σφ, increasing by
step of 0.025 from 0.05 (bottom black curve) to 0.325 (top
purple curve), with βF̄ x̄ = 6.11, α0 = 10−3s−1.

graph presented in Figure 5. Perhaps more realistically,
one can start with a fairly poor estimate of σφ and then
measure γ in a series of experiments in which additional,
controlled, amounts of force fluctuation are injected into
the experiment to allow for a differential measurement of
σξ.

V. CONCLUSIONS

In this article we analyzed the effects of both internal
and external fluctuations on unfolding time statistics in
the context of the random Bell model. We highlighted the
extremely weak effect these different origins have on the
measurable unfolding time distributions, as illustrated in
Fig.3. Thus it is difficult to attribute non-exponential ki-
netics solely to the physics of a protein. This observation
ultimately comes from the fact that lifetime distribution
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measurements rely on the assumption that the unfolding
times are independent and identically distributed (IID).
However, in the presence of external fluctuations this as-
sumption may no longer be justified, particularly if data
is gathered over the course of multiple days or weeks us-
ing multiple AFM cantilevers with multiple calibrations.
Even if the underlying behavior of a protein were per-
fectly exponential such a lumping together of the data
will yield non-exponential lifetime distributions. Statis-
tical analyses, such as the maximum likelihood estimator
[27], might provide a way to relax the assumption of IID,
at the cost of some arbitrariness in the choice of the like-
lihood function [28].
In this article we have focused on the application to

constant force protein measurements, however, these ar-
guments can be equally well applied to other afm exper-
iments. As an example, fluctuations in the calibration
of experimental setups can have significant consequences
on landscape reconstructions using force extension mea-
surements [29].
Taken as a whole, these results indicate that it is ex-

tremely difficult to experimentally distinguish between
internal and external sources of fluctuations by measur-
ing lifetime distributions. External fluctuations can mask
the more interesting internal fluctuations. As a necessary
but not sufficient prerequisite to measuring the magni-

tude of internal fluctuations one must first minimize and
quantify the level of external fluctuations. Therefore, the
internal physics will remain obscured unless AFM force
experiments are accompanied by an estimation of the
types and magnitudes of external fluctuations and the
way that such fluctuations propogate through the mea-
sured quantities.

In light of these findings there is a need for new exper-
imental methods in order to gain insight into the physics
at play on the molecular scale without relying on a statis-
tical analysis. One promising route is to avoid statistical
analysis of collected unfolding time by focusing on pro-
tein dynamics. In the spirit of nano-rheology experiments
[30, 31], direct measurements of the dynamical global re-
sponse of individual molecules appears as a promising
route to understand how interatomic interactions con-
tribute to the mechanical properties of a protein.
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Brujić, Jean-Yves Fortin, Efim Kats, Herbert Lannon,
John Royer and Timothy Ziman for discussions and com-
ments.

[1] J. Alonso and W. Goldmann, Life sciences 72, 2553
(2003).

[2] A. Alessandrini and P. Facci, Measurement science and
technology 16, R65 (2005).

[3] J. Zlatanova and K. van Holde, Molecular cell 24, 317
(2006).

[4] S. Cohen and A. Bitler, Current Opinion in Colloid &
Interface Science 13, 316 (2008).

[5] A. Oberhauser, P. Hansma, M. Carrion-Vazquez, and
J. Fernandez, PNAS 98, 468 (2001).

[6] M. Schlierf, H. Li, and J. Fernandez, PNAS 101, 7299
(2004).

[7] S. Garcia-Manyes et al., Biophysical Journal 93, 2436
(2007).

[8] S. Garcia-Manyes, L. Dougan, C. Badilla, J. Brujić, and
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