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Soret motion in non-ionic binary molecular mixtures
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We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on
standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility
and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and
the ratio of Hamaker constants. Our results account for several features observed in experiment,
such as a linear varition with the composition; they confirm the general rule that small molecules
migrate to the warm, and large ones to the cold.
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I. INTRODUCTION

The Soret effect describes the non-uniform composi-
tion of a complex fluid or molecular mixture in a tem-
perature gradient [1]. In the steady state one observes
that some components accumulate at the cold side of the
sample, whereas others rather migrate in the opposite
direction [2—8]. This thermophoresis, or thermal diffu-
sion, is driven by thermodynamic forces that act on the
different components.
For charged colloids in an electrolyte solution, several

mechanisms have been singled out: The temperature gra-
dient induces a non-uniform pressure and permittivity in
the electric double layer, which drive the particle to the
cold [9]. On the other hand, the Seebeck effect of the
electrolyte solution induces a macroscopic electric field
which imposes on a suspended particle an electrophoretic
velocity that may take either sign, depending on the elec-
trolyte properties [10]. Standard colloidal transport the-
ory provides an overall satisfactory picture for the ther-
mophoretic velocity, and in particular describes its vari-
ation with the salinity and the pH value [11, 12].
Surprisingly, the situation is less clear for mixtures

of non-ionic molecules and dilute polymer solutions, al-
though dispersion forces are the only molecular interac-
tion. We mention several aspects that add complexity
in the case of a binary mixture as illustrated in Fig. 1.
First, molecular mixtures generally comprise comparable
volume fractions of their components and thus cannot
be treated in the low-dilution limit [13—18]. Second, in
charged systems macroscopic hydrodynamics works well,
since both the Debye length and the solute size are large
compared to the solvent molecular structure [6—8]; this
continuum approximation is less obvious for short-ranged
dispersion forces [19]. Third, as a related aspect, the
interaction energies of each molecular species are com-
parable; thus it is not suffiicient to consider the forces
acting on a “solute” molecule; both components have to
be treated on an equal footing, and the Soret motion
arises from the competition of their transport velocities
[20, 21]. Finally we note that, contrary to the case of col-

 

FIG. 1: Schematic view of a binary mixture of spherical beads.
In a mean-field approach, the transport coefficients are calcu-
lated for each species in a homogeneous liquid.

loidal particles, the kinetic energy is important in mole-
cular mixtures, and contributes significantly to the ther-
mal diffusion [22]. These aspects have been addressed
by previous authors, mainly in terms of heat-of-transfer
models [23—26] and numerical simulations of the molecu-
lar dynamics [27—34]

In this paper we study the Soret mobility in binary
mixtures. From the condition of mass conservation, we
derive in section 2 a formal expression for the Soret coeffi-
cient that depends on the thermal transport and diffusion
coefficients ξi and Di of the two components. Using van
der Waals potentials and low-Reynolds number hydrody-
namics, we calculate in section 3 the ξi and in particular
evaluate their dependence on the molecular size. In Sec-
tion 4 we discuss our main results in view of the most
important parameters and compare with experimental
findings.
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II. THE SORET COEFFICIENT

We consider a binary system with volume fractions
φ1 = φ and φ2 = 1 − φ. For the sake of simplicity we
suppose that the mass density does not depend on the
composition, in other words, that both components have
the same density as the binary mixture. Yet note that
the density does depend on temperature.
The diffusion kinetics with respect to composition

changes are expressed in terms of the current related to
φ [1],

J1 = −D∇φ− φ(1− φ)DT∇T, (1)

where D is the mutual diffusion coefficient of the two
components; the drift term is proportional to the tem-
perature gradient with the mobility DT . In the case of
a closed system in contact with two heat reservoirs at
different temperatures, this current vanishes in the sta-
tionary state; the spatial variation of the molar fraction
is described by the Soret coefficient

ST =
DT

D
. (2)

If both ST and ∇T are constant, Eq. (1) can be inte-
grated in closed form. In the dilute limit φ→ 0, colloidal
or macromolecular dispersions are well described by cal-
culating both the Einstein coefficient and the mobility
for a single suspended particle from the solute-solvent
interactions.
The above Eq. (1) follows from rather general consid-

erations on heat and mass flows in a non-uniform tem-
perature [1], yet does not give explicit expressions for D
and DT . In order to relate these coefficients to the phys-
ical parameters of the liquid, we rewrite the currents of
each component as

Ji = −Di∇φi + φiui − φiū, (3)

where Di describes the diffusive motion of a given mole-
cule, ui its drift velocity, and ū is the center-of-mass ve-
locity ū. In the simplest case the tracer diffusion coeffi-
cient reads as

Di =
kBT

6πηRi
, (4)

where η is the viscosity of the mixture and Ri the hy-
drodynamic radius. The transport velocity accounts for
thermally driven motion in a temperature gradient,

ui = −ξi∇T, (5)

with the molecular mobility ξi of compenent i. The
center-of-mass or background velocity ū assures the con-
dition J1 + J2 = 0 which results from mass conservation
[1]; for thermal diffusion in electrolyte solutions its role
has been spelt out by Kirkwood and co-workers [35, 36].
Here we are intereseted in the steady state where the

current of each component vanishes separately, J1 = 0 =

J2. Eliminating the gradients ∇φ1 = −∇φ2 from (3)
and solving the remaining equation for the center-of-mass
velocity, we find

ū =
u1φ1/D1 + u2φ2/D2

φ1/D1 + φ2/D2

. (6)

This expression is the average of the quanitities (5), with
the weight of each term is given by the volume fraction
divided by the diffusion coefficient.
Replugging ū in (3) one obtains the current of compo-

nent 1,

J1 = − (φ1D2 + φ
2
D1)∇φ

1
+ φ

1
φ
2
(u1 − u2) ,

and comparing with (1) one readily identifies the quanti-
ties DT and D. The thermal diffusion coefficient is given
by the difference of the mobilities of the two species,

DT = ξ1 − ξ2. (7)

This implies that the species with the larger mobility
moves to the cold, e.g., for ξ2 > ξ1 we have DT < 0 for
component 1. It turns instructive to consider the partic-
ular case ξ1 = 0. The the thermophoretic mobility DT

of component 1 is entirely determined by the transport
coefficient ξ2. Eq. (7) has a simple physical meaning: In
general the molecules of component 2 have a tendency
to migrate to the cold (ξ2 > 0); as a consequence, they
push those of species 1 in the opposite direction towards
higher temperature.
The mutual diffusion coefficient arises as the weighted

mean of the molecular coefficients,

D = φ
1
D2 + φ

2
D1. (8)

This corresponds to the expression of a simple model de-
velopped for molecular mixtures [37, 38]. A more com-
plex result arises when including in the currents (3) addi-
tional terms, such as the concentration gradients of other
species Dij∇cj .
Thus we obtain the Soret coefficient

ST =
ξ1 − ξ2

φ1D2 + φ2D1

. (9)

Except for the sign, this expression is symmetric under
exchange of the two species; thus we have −ST for com-
ponent 2. Eqs. (7)—(9) constitute the main result of the
formal part of this paper. In the remainder we calculate
the mobility DT .

III. DISPERSION FORCES

In this section we evaluate the mobility ξ for a single
solute molecule interacting with solvent through disper-
sion forces. The main issue is the variation of ξ with the
size of the solute particle.



3

The interaction energy between the particle and the
surrounding liquid is obtained by integrating the van der
Waals potential over their respective volumes,

ϕ = −
H

π2

∫
dV dV ′

|r− r′|6
, (10)

where the Hamaker constant takes values H ∼ 10−20 J,
which at room temperature corresponds to several kBT .
This form has been used for calculating the dispersion
forces between two macroscopic bodies [39].
For the hydrodynamic treatment we rather need the

potential energy density in the liquid phase. In turns out
convenient to evaluate the integral in ϕ for the effective
volume VS occupied by a single liquid molecule at posi-
tion r. Replacing this volume with the inverse number
density of liquid molecules, VS = 1/c, we have

cϕ(r) = −
H

π2

∫
dV ′

|r− r′|6
, (11)

where the remaining integral runs over the solute particle.
The van der Waals potential acting on each liquid

molecule results in an excess pressure P = −cϕ close
to the solid surface. The concentration c of the liquid
phase, and thus the pressure P , vary along the solute
surface, giving rise to motion of the surrounding fluid.
In the following we first consider the simple case of a flat
solid boundary and then generalize to a spherical solute
particle of finite size.

A. Flat interface

In the case of a large solute, the volume integral in (11)
can be taken over an infinite half space. The resulting
expression is readily evaluated, and gives the well-known
result [39]

cϕ(z) = −
H

6πz3
, (12)

where z indicates the distance from the interface. Note
that because of the thermal gradient, the concentration
of solvent molecules c(x) varies along the surface.
The fluid dynamics is governed by Stokes’ equation. In

the vicinity of a flat surface, it takes a particularly simple
form which we discuss in terms of local coordinates x and
z as defined in Fig. 2. The vertical velocity component
vanishes, whereas a finite velocity vx occurs along the
surface and obeys η∂2zvx = ∂xP . With Stokes boundary
conditions this equation is readily integrated [19, 40], and
gives the velocity well beyond the range of interaction of
the van der Waals potential,

vB = −
1

η

dc

dx

∫
∞

d0

dzzϕ(z). (13)

The lower bound d0 is required in order to assure con-
vergence of the integral. In physical terms, this cut-off

 T∇  
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z 

FIG. 2: Boundary layer approximation at the surface of a
solute particle.

parameter accounts for the minimal distance of atoms of
the liquid and the particle.
Performing the integral in (13) gives H/(6πd0). In a

non-uniform temperature the concentration varies as

∇c = −cβ∇T, (14)

with the thermal expansion coefficient β. Thus we obtain
the quasislip velocity of the liquid

vB =
Hβ

6πηd0

dT

dx
. (15)

In the frame attached to the solid boundary, the liquid
flows to higher temperatures.

B. Spherical particle

Now we account for a finite solute volume in the van
der Waals potential (11). In the case of a homogeneous
spherical particle of radius R, the integral is readily per-
formed,

cϕ(r) = −
4H1

3π

R3

(r2 −R2)3
. (16)

In the limit R→∞ one readily recovers with z = r −R
the expression for a macroscopic body, Eq. (12). Strictly
speaking, Stokes’ equation no longer separates in parallel
and normal components; using (13) close to a curved
surface corresponds to the boundary layer approximation
[40].
Here we describe finite-curvature corrections that arise

from the modified van der Waals potential (16). Inserting
the vertical distance z = r − R in (13) and performing
the integral one finds

vB =
Hβ

6πηd0

dT

dx
F

(
d0
R

)
, (17)
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FIG. 3: The function F (d0/R) in the range 0 ≤ d0/R ≤ 1. In
the limit x → 0 one recovers with F (0) = 1 the mobility of
large particles. The function F strongly decreases as the par-
ticle radius R becomes comparable to the cut-off parameter
d0.

where the finite size of the bead is accounted for by

F (x) =
3

2
x ln

(
x

x+ 2

)
+
3x2 + 9x+ 4

(x+ 2)2
(18)

with the shorthand notation x = d0/R. For large par-
ticles (R → ∞) this function takes the value F (0) = 1,
and decreases monotonically as the radius R becomes
smaller. This is due to the fact that a smaller particle
volume exerts a weaker force on the surrounding fluid.
The projection of the constant macroscopic tempera-

ture gradient ∇T on the particle surface varies with the
polar angle θ defined in Fig. 2. The corresponding ori-
entational average of the velocity vector vB results in a
factor 2

3
[40]; noting moreover that the particle moves in

the direction opposite to the surrounding fluid, one finds

ξ =
2Hβ

9πηd0
F

(
d0
R

)
. (19)

In the limit of large particles (R ≫ d0) we recover the
result given previously in Ref. [19].

C. The cut-off parameter d0

The physical meaning of the cut-off parameter intro-
duced in Eq. (13) is twofold. The van derWaals potential

(10) is based on a continuum approximation that ignores
the molecular structure and thus leads to a divergency
in the interaction energy if two beads of volumes V and
V ′ are in contact. The common practice of regularization
consists in a cut-off parameter that accounts for the finite
distance of the two bodies; in a physical picture d0 may
be viewed as the minimum distance of atoms of different
beads, and thus is of the order of an Angström.
In Eq. (13) the length d0 takes a somewhat different

meaning. The integral gives the solution of the paral-
lel component of Stokes’ equation, which describes the
balance of viscous and dispersion forces along the parti-
cle surface; the integrand is related to the shear stress
in the vicinity of the bead under consideration. Thus
d0 accounts for the length scale where continuum hydro-
dynamics cease to be valid, and is related to the mole-
cular size; the notion of shear flow or velocity gradient
is meaningless at shorter distances, as illustrated by the
right panel of Fig. 2.
In the case of a large solute particle, R1 ≫ R2, it is

save to identify d0 with the size of a solvent molecule R2.
Its value is less obvious if both components are of similar
size. The length d0 subsumes the cut-off of macrosccopic
hydrodynamics on a molecular scale. Using the relation
d0 ≈ R in the form factor one finds that F takes a value
of about 15%.

IV. BINARY SYSTEMS

Here we discuss the above results in view of experi-
mental findinigs on binary molecular mixtures and poly-
mer solutions. The mobilities ξi are calculated from a
mean-field model, where each molecule is considered as
a spherical bead that is surrounded by a continuous sol-
vent consisting of molecular species 1 and 2 of volume
fractions φi. Thus the transport coefficients ξi are given
by Eqs. (7) and (19), providing the general expression
for the thermophoretic mobility,

DT =
2β

9πηd0
[H1F1 −H2F2] , (20)

with the appropriate shape factors Fi = F (d0/Ri). In
a simple mean-field picture the Hamaker constants of
solute and solvent beads read as

H1 = φ1H11 + φ2H12,
H2 = φ1H12 + φ2H22,

(21)

where Hij describes the dispersion forces between ma-
teriels i and j.
Experiments on molecular mixtures give the Soret coef-

ficient rather than the mobility DT . Inserting the Stokes-
Einstein relation Di = kBT/6πηRi in the mutual diffu-
sion coefficient one finds

ST = β
4Reff

3d0

H1F1 −H2F2
kBT

, (22)
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where we have introduced the shorthand notation for the
effective radius

1

Reff
=

φ
1

R2
+

φ
2

R1
. (23)

Both Reff and the Hamaker constants depend on the vol-
ume fractions, thus giving rise to an intricate variation
with the composition. The mobility DT and the Soret
coefficient ST may take either sign, depending on the
relative values of the Hij and Fi.

A. Large particles

We start with the case of a dilute suspension of large
solute particles P in a molecular solvent S, as illustrated
in Fig. 2. With RP ≫ d0 and φP ≪ 1 we find that the
thermophoretic mobility

DT =
2β

9πηd0
(HPS − FSHSS) . (24)

is independent of the solute size RP . This is a particular
case of a generally valid statement, which has been shown
first for electrophoresis of particles much larger than
the Debye length, and applies equally well to chemical
and temperature gradients [40]. This limit has been dis-
cussed previously for thermophoresis of non-ionic parti-
cles [5, 41] and confirmed experimentally for nanospheres
in toluene [42].
The effective radius is that of the particle, Reff = RP ,

resulting in a Soret coefficient

ST = β
4RP
3d0

HPS − FSHSS

kBT
. (25)

The linear variation with the particle radius is related
to a constant mobility [40] and consitutes one of the few
rigorous results for colloidal transport.
The first term in (24) is due to solute-solvent disper-

sion forces that attract the particle to regions of higher
density and thus to lower temperature. The second one,
which describes solvent-solvent interactions, carries a mi-
nus sign. Its reduction factor FS = F (d0/RS) accounts
for finite integration volume of the potential energy den-
sity: The smaller the particle volume, the weaker are
the dispersion forces exerted by one solvent molecule on
its neighbor. Fig. 3 shows a significant reduction for
d0/R > 0.2. The above discussion suggests that the cut-
off parameter d0 is comparable to the molecular radius
RS and that the shape factor FS is small. Setting FS = 0
we recover the particle mobility to the result obtained
previously for a structureless solvent [19].

B. Dilute polymer solutions

At low dilution we set φ
1
= 0 in (20) and thus find

DT =
2β

9πηd0
(FPHPS − FSHSS) , (26)

TABLE I: Thermophoretic mobility DT of different polymers
in cyclooctane C8. The second row compares the mass of a
monomer to that of a solvent molecule, m = 104. The data
are from Ref. [55].

Polymer/solvent PE/C8 PDMS/C8 PS/C8

m (amu) 28/104 74/104 104/104

DT (µm2/sK) −2 −1.2 2.7

where the subscripts indicate the properties of a polymer
building unit and of a solvent molecule. Like other trans-
port coefficients, the thermophoretic mobility of high
polymers is independent of the molecular weight [43—53].
The mobility may be positive or negative, depending

on the form factors and Hamaker constants. Comparison
with our previous work reveals a difference concerning the
term proportional to βHSS: In the approach of Ref. [54]
this contribution is proportional to the inverse gyration
radius and thus vanishes for high polymers. The present
work treats solute and solvent motion on an equal foot-
ing, and leads to the more satisfactory form (26) where
the prefactor of βHSS is independent of the molecular
weight.
Note that the form factor FP describes a single mer.

For polymers made of large and heavy building blocks,
such as polystyrene, one expects a positive mobility. If
a single mer is smaller than a solvent molecule, one has
FP < FS, and a negative mobility. In physicial terms,
because of their stronger van der Waals potential, the
solvent molecules diffuse more rapidly to the cold and
thus push the polymer to regions of higher temperature.
This argument explains, at least qualitatively, the mo-
bilities of different polymers in cyclyoctane reported in
Ref. [55]; Table 1 shows that the polyethylene (PE) and
poly-dimethyl-siloxane (PDMS) are built of small mole-
cular units and diffuse to higher temperatures (DT < 0),
whereas the heavier polystyrene has a positive mobility.
An analysis of DT of polystyrene in various solvents in

terms of (19) with F = 1, led to values for d0 that range
from 0.6 to 1 nm, and correspond to the size of a solvent
molecule [8]. Eq. (26) shows that the sign of the mobil-
ity is determined by the ratio RP /RS, independently of
the precise value of d0. Even if the value of d0 and the
form of the function F should be taken with caution, this
equation indicates the tendency that the larger molecu-
lar units diffuse to lower T . There are additional effects
arising from the different Hamaker constants, weak hy-
drodynamic interactions between neighor beads, and the
kinetic energy.
The mutual diffusion coefficient at low dilution reads

D = kBT/6πηRh, where Rh is the hydrodynamic radius
of the polymer chain. With respect to the composition
and the molecular radii, the resulting Soret coefficient

ST = β
4Rh
3d0

FPHPS − FSHSS

kBT
(27)

behaves like the mobility DT . It is proportional to the
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hydrodynamic radius of the polymer coil and thus in-
creases with the chain length; this dependence has been
observed for polystryene in different solvents [44].

C. Molecular mixtures

We briefly discuss the three factors appearing in (22)
for organic molecules of comparable size. For most liq-
uids, the thermal expansion coefficient β takes values of
about 10−3 K−1. According to the above discussion of
the cut-off parameter, the ratio Reff/d0 is not very dif-
ferent from unity. Finally, the last factor expresses the
effective Hamaker constant in units of the thermal en-
ergy; with typical values for Hi ∼ 5kBT and Fi from
Fig. 2, one finds numbers of the order of 1 but hardly
larger than 4.
As noted in previous works, ST is proportional to the

thermal expansivity [5, 41, 56—58]; the remaining factors
in (22) depend on molecular details and in particular on
the composition. Indeed, the Soret coefficient of mixtures
of aliphatic and aromatic molecules is mostly hardly ex-
ceeds a few 10−3 K−1.
Fig. 4 shows the Soret coefficient as a function of the

composition φ for three values of the molecular size ra-
tio. In all cases the cut-off parameter d0 is equal to the
smaller radius. If both species are of equal size, the effec-
tive radius Reff is constant, and the Hamaker constants
result in a linear variation with φ. Unlike molecular radii
result in a non-uniform slope, as illustrated by the upper
and lower curves. A rather similar behavior has been ob-
served for binary liquids [13, 15]. For molecules of equal
size, the dependence on the interaction parameters agrees
well with numerical simulations [29].
In order to separate the dependencies of (22) on com-

position, size, and Hamaker constants, we consider in the
following several special cases.

D. Composition dependence at equal size

If both molecular species have the same size, the form
factors are identical, F = F1,2, and simplifiy the mobility

ST = β
4R

3d0
F

H0 + φ1δH

kBT
, (28)

where we have used φ
2
= 1 − φ

1
, and the shorthand

notation H0 = H12 −H22 and δH = H11 +H22 − 2H12.
As a remarkable property, this mobility varies linearly
with the volume fraction φ1. The parameters H0 and δH
may be positive or negative, and may result in a change
of sign of ST as a function of φ1. This is illustrated by
the middle curve of Fig. 4.
A roughly linear dependence on φ1 has been reported

for mixtures of benzene, toluene, and cyclohexane [13];
more complexe variations occur for flexible alkane chains,
sugars, and polar molecules such as acetone [14—18].
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FIG. 4: Soret coeffiicient as a function of the composition.
The radii are equal to the cutoff parameter d0, or twice d0;
the off-diagonal Hamaker constant is H12 = 3kBT , and the
thermal expansivity β = 10−3 K−1.

Both the linear variation with composition and the de-
pendence on the Hamaker constants agree with numerical
simulations of a Lennard-Jones binary liquid [32].

E. Size dependence at equal Hamaker constants

If the components have similar chemical properties,
their Hamaker constants do not vary much. When set-
ting H = Hij for all pair interactions, the mobility takes
a particularly simple form

ST = β
4 (F1 − F2)

3d0(φ1/R2 + φ2/R1)

H

kBT
, (29)

that is proportional to the difference of the form factors
of the two species. Since F is a mononotically increas-
ing function of the molecular radius, this means that the
smaller species migrates to the warm, and the larger one
to the cold. The second factor depends on the composi-
tion; the Soret coefficient is larger if the smaller species
is more abundant.
Real molecules are not spherical beads, and their size

cannot be reduced to a single radius. Still, the radius de-
pendence of the form factor expresses the dependence on
the molecular volume. Since most organic molecules have
rather similar densities, R may be equally well related to
the molecular mass; in the simplest case one has m ∝ R3.
Then (29) states that the heavier species migrates to the
cold, and the lighter one to the warm. This rule is con-
firmed by Soret data on various binary mixtures [14].
In their numerical simulation results of Lennard-Jones

liquids, Galliéro et al. found that the larger species mi-
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grate to the warm [29], which at first sight seems to con-
tradict the present result (29). Yet in view of the different
interaction potentials, this discrepancy is not surprising:
The simulations of Ref. [29] are based on a single atom-
atom Lennard-Jones potential ϕLJ = ε[(σ/r)12−(σ/r)6];
the size dependence is obtained by varying the length σ
at constant interaction parameter ε. The present work
describes the molecular interactions in terms of the van
der Waals potential (10) which reduces to the Lennard-
Jones form ∼ 1/r6 in the limit r ≫ R, but shows a more
complex variation at short distances. The Lennard-Jones
potential results in a force −∇ϕLJ ∼ ε/σ that becomes
weaker as the parameter σ increases. On the other hand,
the force derived from (10) increases with the molecular
radius.

F. Kinetic energy

In this paper we have only considered dispersion forces
and neglected the thermal agitation of the molecules.
That is why the Soret coefficient disappears in the ab-
sence of van der Waals interactions. On the contrary,
thermal diffusion in gas mixtures and aerosols is well de-
scribed by kinetic theory. Much numerical work has been
done on hard-sphere systems [30, 59].
From recent work on a simple hard-bead model it is

clear that the kinetic energy contributes significantly to
the Soret coefficient in liquids, and may even dominate
in the case of molecular mixtures [22]. The isotope effect
observed upon deuteration or replacing common carbon
12C with the heavier isotope 13C benzene, indicates that
the Soret coefficient consists of a “chemical” contribution
and a term depending on the molecular masses [13, 32].
Taking their sum one finds the total Soret coefficient

Stot
T = ST + Smass

T , (30)

where the chemical contribution ST is obtained in the
present work and the mass-dependent one has been de-
rived in [22]. For small molecules, both may be of com-
parable size. Thus a quantitative fit of experimental data
should include both contributions. Yet so far the kinetic
contribution has been derived only for binary mixtures
where both components are of equal size [22]; one may
expect that a size difference will signficantly affect the
mass dependent term.

V. SUMMARY AND CONCLUSION

Starting from the well-known expression for large
solute particles at low dilution, we have studied the de-
pendence of the Soret coefficient on the composition and
on the molecular size. As a main result, the form factors
F account for the fact that smaller beads have a weaker
van der Waals potential, and reduce the Soret motion
accordingly. As a general law, we find that the smaller
species migrates to the warm, due to its weaker dispersion
forces; this mechanism is fundamentally different from
the mass effect discussed in [22, 28, 29]. In the limit of
large particles, we find that the mobility DT becomes
independent of size, in accord with colloidal transport
theory [40].

A second important aspect concerns the variation of ST
with composition. Our findings show a rather complex
behavior that arises from the mutual diffusion coefficient
(8) and the effective Hamaker parameters, as illustrated
in Fig. 4. The change of sign is due to the composition
dependence of the Hamaker coefficients. Most of our re-
sults agree with previous numerical simulation studies on
Lennard-Jones binary liquids [28, 29, 32].
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