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RANDOM WALKS ON CO-COMPACT FUCHSIAN GROUPS

SÉBASTIEN GOUËZEL AND STEVEN P. LALLEY

Abstract. It is proved that the Green’s function of a symmetric finite range random walk on
a co-compact Fuchsian group decays exponentially in distance at the radius of convergence
R. It is also shown that Ancona’s inequalities extend to R, and therefore that the Martin
boundary for R−potentials coincides with the natural geometric boundary S1, and that the
Martin kernel is uniformly Hölder continuous. Finally, this implies a local limit theorem for
the transition probabilities: in the aperiodic case, pn(x, y) ∼ Cx,yR−nn−3/2.

1. Introduction

1.1. Green’s function and Martin boundary. A (right) random walk on a countable group
Γ is a discrete-time Markov chain {Xn}n≥0 of the form

Xn = xξ1ξ2 · · · ξn

where ξ1, ξ2, . . . are independent, identically distributed Γ−valued random variables. The
distribution of ξi is the step distribution of the random walk. The random walk is said to be
symmetric if its step distribution is invariant under the mapping x 7→ x−1, and finite-range
if the step distribution has finite support. The Green’s function is the generating function
of the transition probabilities: for x, y ∈ Γ and 0 ≤ r < 1 it is defined by the absolutely
convergent series

(1) Gr(x, y) :=

∞
∑

n=0

Px{Xn = y}rn
= Gr(1, x

−1 y);

here Px is the probability measure on path space governing the random walk with initial
point x. If the random walk is irreducible (that is, if the semigroup generated by the support
of the step distribution is Γ) then the radius of convergence R of the series (1) is the same for
all pairs x, y. Moreover, if the random walk is symmetric, then 1/R is the spectral radius of
the transition operator. By a fundamental theorem of Kesten [25], if the group Γ is finitely
generated and nonamenable then R > 1. Moreover, in this case the Green’s function is
finite at its radius of convergence (cf. [39], ch. 2): for all x, y ∈ Γ,
(2) GR(x, y) < ∞.

The Green’s function is of central importance in the study of random walks. Clearly,
it encapsulates information about the transition probabilities; in Theorem 9.1, we show
that the local asymptotic behavior of the transition probabilities can be deduced from the
singular behavior of the Green’s function at its radius of convergence. The Green’s function
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is also the key to the potential theory associated with the random walk: in particular, it
determines the Martin boundary for r−potential theory. A prominent theme in the study
of random walks on nonabelian groups has been the relationship between the geometry
of the group and the nature of the Martin boundary. A landmark result here is a theorem
of Ancona [2] describing the Martin boundary for random walks with finitely supported
step distributions on hyperbolic groups: Ancona proves that for every r ∈ (0,R) the Martin
boundary for r−potential theory coincides with the geometric (Gromov) boundary, in a
sense made precise below. (Series [35] had earlier established this in the special case r = 1
when the group is co-compact Fuchsian. See also [3] and [1] for related results concerning
Laplace-Beltrami operators on Cartan manifolds.)

It is natural to ask whether Ancona’s theorem extends to r = R, that is, if the Martin
boundary is stable (see [33] for the terminology) through the entire range (0,R]. One of
the main results of this paper (Theorem 1.3) provides an affirmative answer in the special
case of symmetric, finite-range random walk on a co-compact Fuchsian group, i.e., a co-
compact, discrete subgroup of PSL(2,R). Any co-compact Fuchsian group acts as a discrete
group of isometries of the hyperbolic disk, and so its Cayley graph can be embedded quasi-
isometrically in the hyperbolic disk; this implies that its Gromov boundary is the circle S1

at infinity.

Theorem 1.1. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ, the Martin boundary for R−potentials coincides with the geometric boundary S1 = ∂Γ.
Moreover, all elements of the Martin boundary are minimal.

This assertion means that (a) for every geodesic ray y0, y1, y2, . . . in the Cayley graph
that converges to a point ζ ∈ ∂Γ and for every x ∈ Γ,

(3) lim
n→∞

GR(x, yn)

GR(1, yn)
= KR(x, ζ) = K(x, ζ)

exists; (b) for each ζ ∈ ∂Γ the function Kζ(x) := K(x, ζ) is a minimal, positive R−harmonic
function of x; (c) for distinct points ζ, ζ′ ∈ ∂Γ the functions Kζ and Kζ′ are different; and (d)
the topology of pointwise convergence on {Kζ}ζ∈∂Γ coincides with the usual topology on

∂Γ = S1.
Our results also yield explicit rates for the convergence (3), and imply that the Martin

kernel Kr(x, ζ) is Hölder continuous in ζ relative to the usual Euclidean metric (or any visual
metric — see [23] for the definition) on S1 = ∂Γ.

Theorem 1.2. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ, there exists ̺ < 1 such that for every 1 ≤ r ≤ R and every geodesic ray 1 = y0, y1, y2, . . .
converging to a point ζ ∈ ∂Γ,

(4)

∣

∣

∣

∣

∣

∣

Gr(x, yn)

Gr(1, yn)
− Kr(x, ζ)

∣

∣

∣

∣

∣

∣

≤ Cx̺
n.

The constants Cx < ∞ depend on x ∈ Γ but not on r ≤ R. Consequently, for each x ∈ Γ and r ≤ R
the function ζ 7→ Kr(x, ζ) is Hölder continuous in ζ relative to the Euclidean metric on S1 = ∂Γ,
for some exponent not depending on r ≤ R.

The exponential convergence (4) and the Hölder continuity of the Martin kernel for r = 1
were established by Series [34] for random walks on Fuchsian groups. Similar results
for the Laplace-Beltrami operator on negatively curved Cartan manifolds were proved by
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Anderson and Schoen [3]. The methods of [3] were adapted by Ledrappier [30] to prove
that Series’ results extend to all random walks on a free group, and Ledrappier’s proof
was extended by Izumi, Neshvaev, and Okayasu [22] to prove that for a random walk on a
non-elementary hyperbolic group the Martin kernel K1(x, ζ) is Hölder continuous in ζ. All
of these proofs rest on inequalities of the type discussed in section 1.2 below. Theorem 1.3
below asserts (among other things) that similar estimates are valid for all Gr uniformly for
r ≤ R. Given these, the proof of [22] applies almost verbatim to establish Theorem 1.2. We
will give some additional details in Paragraph 4.2.

1.2. Ancona’s boundary Harnack inequalities. The crux of Ancona’s argument in [2] was
a system of inequalities that assert, roughly, that the Green’s function Gr(x, y) is nearly
submultiplicative in the arguments x, y ∈ Γ. Ancona [2] proved that such inequalities
always hold for r < R: in particular, he proved, for a random walk with finitely supported
step distribution on a hyperbolic group, that for each r < R there is a constant Cr < ∞ such
that for every geodesic segment x0x1 · · · xm in (the Cayley graph of) Γ,

(5) Gr(x0, xm) ≤ CrGr(x0, xk)Gr(xk, xm) ∀ 1 ≤ k ≤ m.

His argument depends in an essential way on the hypothesis r < R (cf. his Condition (*)),
and it leaves open the possibility that the constants Cr in the inequality (5) might blow up as
r→ R. For finite-range random walk on a free group it can be shown, by direct calculation,
that the constants Cr remain bounded as r → R, and that the inequalities (5) remain valid
at r = R (cf. [27]). The following result asserts that the same is true for symmetric random
walks on a co-compact Fuchsian group.

Theorem 1.3. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ,

(A) the Green’s function GR(1, x) decays exponentially in |x| := d(1, x); and
(B) Ancona’s inequalities (5) hold for all r ≤ R, with a constant C independent of r.

Note 1.4. Here and throughout the paper d(x, y) denotes the distance between the vertices
x and y in the Cayley graph GΓ, equivalently, distance in the word metric. Exponential decay
of the Green’s function means uniform exponential decay in all directions, that is, there are
constants C < ∞ and ̺ < 1 such that for all x, y ∈ Γ,
(6) GR(x, y) ≤ C̺d(x,y).

A very simple argument (see Lemma 2.1 below) shows that for a symmetric random walk
on any nonamenable group GR(1, x) → 0 as |x| → ∞. Given this, it is routine to show that
exponential decay of the Green’s function follows from Ancona’s inequalities. However,
we will argue in the other direction, first providing an independent proof of exponential
decay in subsection 3.3, and then deducing Ancona’s inequalities from it in section 4.

Note 1.5. Theorem 1.3 (A) is a discrete analogue of one of the main results (Theorem B) of
Hamenstaedt [21] concerning the Green’s function of the Laplacian on the universal cover
of a compact negatively curved manifold. Unfortunately, Hamenstaedt’s proof appears to

have a serious error.1 The approach taken here bears no resemblance to that of [21].

1The error is in the proof of Lemma 3.1: The claim is made that a lower bound on a finite measure implies
a lower bound for its Hausdorff-Billingsley dimension relative to another measure. This is false – in fact such
a lower bound on measure implies an upper bound on its Hausdorff-Billingsley dimension.
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Theorem 1.3 is proved in sections 3 and 4 below. The argument uses the planarity of the
Cayley graph in an essential way. It also relies on the simple estimate

lim
|x|→∞

GR(1, x) = 0,

that we derive from the symmetry of the random walk. While this estimate is not true
in general without the symmetry assumption, we nevertheless conjecture that Ancona’s
inequalities and the identification of the Martin boundary at r = R hold in general.

1.3. Decay at infinity of the Green’s function. Neither Ancona’s result nor Theorem 1.3
gives any information about how the uniform exponential decay rate ̺ depends on the step
distribution of the random walk. In fact, the Green’s function Gr(1, x) decays at different
rates in different directions x → ∂Γ. To quantify the overall decay, consider the behavior
of the Green’s function over the entire sphere Sm of radius m centered at 1 in the Cayley
graph GΓ. If Γ is a nonelementary Fuchsian group then the cardinality of the sphere Sm

grows exponentially in m (see Corollary 5.5 in section 5), that is, there exist constants C > 0
and ζ > 1 such that as m→∞,

|Sm| ∼ Cζm.

Theorem 1.6. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ,

(7) lim
m→∞

∑

x∈Sm

GR(1, x)2
= C > 0

exists and is finite, and

(8) #{x ∈ Γ : GR(1, x) ≥ ε} ≍ ε−2

as ε→ 0. (Here ≍ means that the ratio of the two sides remains bounded away from 0 and∞.)

The proof is carried out in sections 6–7 below (cf. Propositions 6.2 and 7.1), using the
fact that any hyperbolic group has an automatic structure [19]. The automatic structure will
permit us to use the theory of Gibbs states and thermodynamic formalism of Bowen [11], ch. 1.
Theorem 1.2 is essential for this, as the theory developed in [11] applies only to Hölder
continuous functions.

It is likely that ≍ can be replaced by ∼ in (8). There is a simple heuristic argument
that suggests why the sums

∑

x∈Sm
GR(1, x)2 should remain bounded as m → ∞: Since the

random walk is R−transient, the contribution to GR(1, 1) < ∞ from random walk paths
that visit Sm and then return to 1 is bounded (by GR(1, 1)). For any x ∈ Sm, the term
GR(1, x)2/GR(1, 1) is the contribution to GR(1, 1) from paths that visit x before returning to
1. Thus, if GR(1, x) is not substantially larger than

∞
∑

n=1

P1{Xn = x and τ(m) = n}Rn,

where τ(m) is the time of the first visit to Sm, then the sum in (7) should be of the same
order of magnitude as the total contribution to GR(1, 1) < ∞ from random walk paths that
visit Sm and then return to 1. Of course, the difficulty in making this heuristic argument
rigorous is that a priori one does not know that paths that visit x are likely to be making
their first visits to Sm; it is Ancona’s inequality (5) that ultimately fills the gap.
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Note 1.7. A simple argument shows that for r > 1 the sum of the Green’s function on the
sphere Sm, unlike the sum of its square, explodes as m→ ∞. Fix 1 < r ≤ R and m ≥ 1. Let
C0 bound the size of the jumps of the random walk, and let S̃m be the set of points with
d(1, x) ∈ [m,m + C0). Since Xn is transient, it will, with probability one, eventually visit the
annulus S̃m. The minimum number of steps needed to reach S̃m is at least m/C0. Hence,

∑

x∈S̃m

Gr(1, x) =

∞
∑

n=m/C0

∑

x∈S̃m

P1{Xn = x}rn

≥ rm/C0

∞
∑

n=m/C

P1{Xn ∈ S̃m}

≥ rm/C0P1{Xn ∈ S̃m for some n}
= rm/C0 .

Hence,
∑

x∈S̃m
Gr(1, x) diverges. The divergence of

∑

x∈Sm
Gr(1, x) readily follows if the

random walk is irreducible.

Note 1.8. There are some precedents for the result (7). Ledrappier [29] has shown that for
Brownian motion on the universal cover of a compact Riemannian manifold of negative

curvature, the integral of the Green’s function G1(x, y) =
∫ ∞

0
pt(x, y) dt over the sphere

S(̺, x) of radius ̺ centered at a fixed point x converges as ̺ → ∞ to a positive constant
C independent of x. Hamenstaedt [21] proves in the same context that the integral of G2

R
over S(̺, x) remains bounded as the radius ̺ → ∞. Our arguments (see Note 6.3 in sec. 6)
show that for finite range irreducible random walk on a co-compact Fuchsian group the
following is true: for each value of r there exists a power 1 ≤ θ = θ(r) ≤ 2 such that

lim
m→∞

∑

x∈Sm

Gr(1, x)θ = Cr > 0.

1.4. Critical exponent for the Green’s function. Theorem 1.6 implies that the behavior of
the Green’s function GR(x, y) at the radius of convergence as y approaches the geometric
boundary is intimately related to the behavior of Gr(x, y) as r ↑ R. The connection between
the two is rooted in the following set of differential equations.

Proposition 1.9. For any random walk on any discrete group, the Green’s functions satisfy

(9)
d

dr
Gr(x, y) = r−1

∑

z∈Γ
Gr(x, z)Gr(z, y) − r−1Gr(x, y) ∀ 0 ≤ r < R.

Although the proof is elementary (cf. section 2.1 below) these differential equations
have not (to our knowledge) been observed before. Theorem 1.6 implies that the sum in
equation (9) blows up as r → R−; this is what causes the singularity of r 7→ Gr(1, 1) at
r = R. The rate at which the sum blows up determines the critical exponent for the Green’s
function, that is, the exponent α for which GR(1, 1) − Gr(1, 1) ∼ C(R − r)α. The following
theorem asserts that the critical exponent is 1/2.
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Theorem 1.10. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ, there exist constants Cx,y > 0 such that as r→ R−,

GR(x, y) − Gr(x, y) ∼ Cx,y

√
R − r and(10)

dGr(x, y)/dr ∼ 1

2
Cx,y/

√
R − r.(11)

The proof of Theorem 1.10 is given in section 8. Like the proof of Theorem 1.6, it uses
the existence of an automatic structure and the attendant thermodynamic formalism. It
also relies critically on the conclusion of Theorem 1.6, which determines the value of the
key thermodynamic variable.

The behavior of the generating function Gr(1, 1) in the neighborhood of the singularity
r = R is of interest because it reflects the asymptotic behavior of the coefficients P1{Xn = 1}
as n → ∞. In section 9 we will show that Theorem 1.10, in conjunction with Karamata’s
Tauberian Theorem, implies the following local limit theorem.

Theorem 1.11. For any symmetric, irreducible, finite-range, aperiodic random walk on a co-compact
Fuchsian group with spectral radius R−1, there exist constants Cx,y > 0 such that for all x, y ∈ Γ,
(12) pn(x, y) ∼ Cx,yR−nn−3/2.

If the random walk is not aperiodic, these asymptotics hold for even (resp. odd) n if the distance from
x to y is even (resp. odd).

According to a theorem of Bougerol [10], the transition probability densities of a random
walk on a semi-simple Lie group follow a similar asymptotic law, provided the step dis-
tribution is rapidly decaying and has an absolutely continuous component with respect to
the Haar measure. The exponential decay rate depends on the step distribution, but the
critical exponent (the power of n in the asymptotic formula, in our case 3/2) depends only
on the rank and the number of positive, indivisible roots of the group. Theorem 1.11 shows
that – at least for SL(2,R) – the critical exponent is inherited by a large class of co-compact
discrete subgroups. For random walks on free groups [18], [27], most free products [38],
and virtually free groups that are not virtually cyclic (including SL2(Z)), [37], [28], [31], [40]
local limit theorems of the form (12) have been known for some time. In all of these cases
the Green’s functions are algebraic functions of r. We expect (but cannot prove) that for
symmetric, finite-range random walks on co-compact Fuchsian groups the Green’s func-
tions are not algebraic. However, we will prove in section 9 (Theorem 9.3) that the Green’s
function admits an analytic continuation to a doubly slit plane C\ ([R,∞)∪ (−∞,−R(1+ε)]),
and Theorem 1.10 implies that if the singularity at r = R is a branch point then it must be
of order 2. If it could be shown that the singularity is indeed a branch point then it would
follow that the transition probabilities have complete asymptotic expansions in powers of
n−1/2.

The most important step in our program – the proof of Ancona’s inequalities (The-
orem 1.3) – depends heavily on the planarity of the Cayley graph of the group. The
derivation of the subsequent results (including Theorems 1.6, 1.10 and 1.11) uses thermo-
dynamic formalism, which is possible since the Markov automaton associated to Fuchsian
groups is recurrent. Nevertheless, most of our techniques apply in arbitrary hyperbolic
groups. We expect that our results should hold (maybe in weaker forms) in this broader
context, but the proofs would require significant new ideas. The only results we are aware
of in this direction are the following polynomial estimates (that were suggested to us by an
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anonymous referee): for any symmetric, irreducible, finite-range, aperiodic random walk
in an hyperbolic group with spectral radius R−1, one has

CR−nn−3 ≤ pn(1, 1) ≤ CR−nn−1.

The upper bound follows from the fact that the sequence R2np2n(1, 1) is non-increasing and
summable, hence o(1/n). For the lower bound one uses Property RD (see for instance [16],
and especially Proposition 1.7 there to get quantitative estimates for hyperbolic groups):
there exists a constant C > 0 such that, for any function f supported in the ball B(1, n), the
operator norm of g 7→ f ⋆ g on ℓ2(Γ) is bounded by Cn3/2‖ f ‖ℓ2 . We apply this estimate
to f (x) = pn(1, x): the norm of the convolution with f is R−n, while ‖ f ‖ℓ2 = (p2n(1, 1))1/2.
Therefore, Property RD gives R−n ≤ Cn3/2(p2n(1, 1))1/2, proving the desired lower bound.

For random walks with non-symmetric step distributions, the local limit theorem holds
in free groups. We expect it to hold also in general hyperbolic groups. However, we do
not even know how to prove polynomial bounds for this case.

2. Green’s function: preliminaries

Throughout this section, Xn is a symmetric, finite-range irreducible random walk on a
finitely generated, nonamenable group Γ with (symmetric) generating set A. Let S denote
the support of the step distribution of the random walk. We assume throughout that S is
finite, and hence contained in a ball B(1,C0) for some C0 ≥ 1.

2.1. Green’s function as a sum over paths. The Green’s function Gr(x, y) defined by (1) has
an obvious interpretation as a sum over paths from x to y. (Note: Here and in the sequel a
path in Γ is just a sequence xn of vertices in the Cayley graph GΓ with x−1

n xn+1 ∈ S for all n).
Denote by P(x, y) the set of all paths γ from x to y, and for any such path γ = (x0, x1, . . . , xm)
define the weight

wr(γ) := rm
m−1
∏

i=0

p(xi, xi+1).

Then

(13) Gr(x, y) =
∑

γ∈P(x,y)

wr(γ).

Since the step distribution p(x) = p(x−1) is symmetric with respect to inversion, so is
the weight function γ 7→ wr(γ): if γR is the reversal of the path γ, then wr(γR) = wr(γ).
Consequently, the Green’s function is symmetric in its arguments:

(14) Gr(x, y) = Gr(y, x).

Also, the weight function is multiplicative with respect to concatenation of paths, that is,
wr(γγ′) = wr(γ)wr(γ′). Since the random walk is irreducible, every generator of the group
can be reached by the random walk in finite time with positive probability. It follows that
the Green’s function satisfies a system of Harnack inequalities: There exists a constant C < ∞
such that for each 0 < r ≤ R and all group elements x, y, z,

(15) Gr(x, z) ≤ Cd(y,z)Gr(x, y).
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Proof of Proposition 1.9. This is a routine calculation based on the representation (13) of the
Green’s function as a sum over paths. Since all terms in the power series representa-
tion of the Green’s function have nonnegative coefficients, interchange of d/dr and

∑

γ is
permissible, so

d

dr
Gr(x, y) =

∑

γ∈P(x,y)

d

dr
wr(γ).

If γ is a path from 1 to x of length m, then the derivative with respect to r of the weight wr(γ)
is mwr(γ)/r, so dwr(γ)/dr contributes one term of size wr(γ)/r for each vertex visited by γ
after its first step. This, together with the multiplicativity of wr, yields the identity (9). �

2.2. First-passage generating functions. Other useful generating functions can be ob-
tained by summing path weights over different sets of paths. Two classes of such generating
functions that will be used below are the restricted Green’s functions and the first-passage gen-
erating functions (called the balayage by Ancona [2]) defined as follows. Fix a set of vertices
Ω ⊂ Γ, and for any x, y ∈ Γ let P(x, y;Ω) be the set of all paths from x to y that remain in the
regionΩ at all except the initial and final points. Define

Gr(x, y;Ω) =
∑

P(x,y;Ω)

wr(γ), and

Fr(x, y) = Gr(x, y; Γ \ {y}).
Thus, Fr(x, y), the first-passage generating function, is the sum over all paths from x to y that
first visit y on the last step. This generating function has the alternative representation

Fr(x, y) = Exrτ(y)

where τ(y) is the time of the first visit to y by the random walk Xn, and the expectation
extends only over those sample paths such that τ(y) < ∞. Finally, since any visit to y by a
path started at x must follow a first visit to y,

(16) Gr(x, y) = Fr(x, y)Gr(1, 1).

Therefore, since Gr is symmetric in its arguments, so is Fr.

Lemma 2.1.

lim
n→∞

max
{x∈Γ : |x|=n}

GR(1, x) = 0.

Proof. If γ is a path from 1 to x, and γ′ a path from x to 1, then the concatenation γγ′ is a
path from 1 back to 1. Furthermore, since any path from 1 to x or back must make at least
|x|/C0 steps, the length of γγ′ is at least 2|x|/C0. Consequently, by symmetry,

(17) FR(1, x)2GR(1, 1) ≤
∞
∑

n=2|x|/C0

P1{Xn = 1}Rn.

Since GR(1, 1) < ∞, by nonamenability of the group Γ, the tail-sum on the right side of
inequality (17) converges to 0 as |x| → ∞, and so FR(1, x)→ 0 as |x| → ∞. Consequently, by
(16), so does GR(1, x). �

Several variations on this argument will be used later.
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2.3. Subadditivity and the random walk metric. A path from x to z that visits y can be
uniquely split into a path from x to y with first visit to y at the last point, and a path from y to
z. Consequently, by the Markov property (or alternatively the path representation (13) and
the multiplicativity of the weight function wr), Gr(x, z) ≥ Fr(x, y)Gr(y, z). Since Gr(x, z) =
Fr(x, z)Gr(1, 1) and Gr(y, z) = Fr(y, z)Gr(1, 1), we deduce that the function − log Fr(x, y) is
subadditive:

Lemma 2.2. For each r ≤ R the first-passage generating functions Fr(x, y) are super– multiplicative,
that is, for any group elements x, y, z,

Fr(x, z) ≥ Fr(x, y)Fr(y, z).

Together with Kingman’s subadditive ergodic theorem, this implies that the Green’s
function Gr(1, x) must decay at a fixed exponential rate along suitably chosen trajectories.
For instance, if

Yn = ξ1ξ2 · · · ξn

where ξn is an ergodic Markov chain on the alphabet A, or on the set AK of words of length
K, then Kingman’s theorem implies that

(18) lim n−1 log Gr(1,Yn) = α a.s.

where α is a constant depending only on r and the transition probabilities of the underlying
Markov chain. More generally, if ξn is a suitable ergodic stationary process, then (18) will
hold. Super-multiplicativity of the Green’s function also implies the following.

Corollary 2.3. The function dG(x, y) := log FR(x, y) is a metric on Γ.

Proof. The triangle inequality is immediate from Lemma 2.2, and symmetry dG(x, y) =
dG(y, x) follows from the corresponding symmetry property (14) of the Green’s function.
Thus, to show that dG is a metric (and not merely a pseudo-metric) it suffices to show that
if x , y then FR(x, y) < 1. But this follows from the fact (2) that the Green’s function is finite
at the spectral radius, because the path representation implies that

GR(x, x) ≥ 1 + FR(x, y)2
+ FR(x, y)4

+ · · · . �

Call dG the Green metric associated with FR. The Green metric associated with F1 has
been used by a number of authors, for instance in [7], [8] and [9]. The Harnack inequalities
imply that dG is dominated by a constant multiple of the word metric d. In general, there is
no domination in the other direction, unless one puts additional restrictions on the Green
function:

Proposition 2.4. If the Green’s function decays exponentially in d(x, y) (that is, if inequality (6)
holds for all x, y ∈ Γ), then the Green metric dG and the word metric d on Γ are equivalent, that is,
there are constants 0 < C1 < C2 < ∞ such that for all x, y ∈ Γ,
(19) C1d(x, y) ≤ dG(x, y) ≤ C2d(x, y).

Even when the group Γ is hyperbolic, this proposition does not imply in general that dG

is hyperbolic, since the quasi-isometry invariance of hyperbolicity only holds for geodesic
spaces, while (Γ, dG) is not geodesic in general. Nevertheless, Theorem 1.1 in [9] shows that
dG is hyperbolic when Ancona’s inequalities (5) are satisfied for r = R.
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2.4. Green’s function and branching random walks. There is a simple interpretation of
the Green’s function Gr(x, y) in terms of the occupation statistics of branching random walks.
A branching random walk is built using a probability distribution Q = {qk}k≥0 on the
nonnegative integers, called the offspring distribution, together with the step distribution
P := {p(x, y) = p(x−1 y)}x,y∈Γ of the underlying random walk, according to the following
rules: At each time n ≥ 0, each particle fissions and then dies, creating a random number
of offspring with distribution Q; the offspring counts for different particles are mutually
independent. Each offspring particle then moves from the location of its parent by making
a random jump according to the step distribution p(x, y); the jumps are once again mutually
independent. Consider the initial condition which places a single particle at site x ∈ Γ, and
denote the corresponding probability measure on population evolutions by Qx.

Proposition 2.5. Under Qx, the total number of particles in generation n evolves as a Galton-
Watson process with offspring distribution Q. If the offspring distribution has mean r ≤ R, then
under Qx the expected number of particles at location y at time n is rnPx{Xn = y}, where under Px

the process Xn is an ordinary random walk with step distribution P. Therefore, Gr(x, y) is the mean
total number of particle visits to location y.

Proof. The first assertion follows easily from the definition of a Galton-Watson process –
see [4] for the definition and basic theory. The second is easily proved by induction on n.
The third then follows from the formula (1) for the Green’s function. �

There are similar interpretations of the restricted Green’s function Gr(x, y;Ω) and the
first-passage generating function Fr(x, y). In particular, if particles of the branching random
walk are allowed to reproduce only in the regionΩ, then Gr(x, y;Ω) is the mean number of
particle visits to y in this modified branching random walk.

3. Exponential decay of the Green’s function

3.1. Hyperbolic geometry. In this section, we prove that the Green’s function of a sym-
metric random walk on a co-compact Fuchsian group decays exponentially. The proof is
most conveniently formulated using some basic ingredients of hyperbolic geometry (see,
e.g., [24], chs. 3–4).

For any co-compact Fuchsian group Γ there is a fundamental polygon F for the action of
Γ. The closure of F is a compact, finite-sided polygon whose sides are arcs of hyperbolic
geodesics. The hyperbolic disk D is tiled by the images xF of F , where x ∈ Γ; distinct
elements x, y ∈ Γ correspond to tiles xF and yF which intersect, if at all, in a single side or
vertex of each tile. Thus, the elements of Γ are in bijective correspondence with the tiles of
the tessellation, or alternatively with the points xO in the Γ−orbit of a distinguished point
O ∈ F ◦. The Cayley graph of Γ (relative to the standard generators) is gotten by putting
edges between those vertices x, y ∈ Γ such that the tiles xF and yF share a side. The word
metric d = dΓ on Γ is defined to be the (Cayley) graph distance. The hyperbolic metric
induces another distance dH(x, y) on Γ, defined to be the hyperbolic distance between the
points xO and yO. The metrics d and dH are both left-invariant.

The following fact is well known (see, e.g., [12], Theorem 1).

Lemma 3.1. The restriction of the hyperbolic metric dH to Γ and the word metric d on Γ are
equivalent.
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3.2. Barriers. To prove that the Green’s function decays exponentially fast, we will con-
struct barriers along the hyperbolic geodesic between two points xO and yO in such a way
that the total weight wR attached to paths crossing any of those barriers is small. Recall
that a path in Γ is a sequence xi such that successive jumps xnx−1

n+1
are all elements of S, the

support of the step distribution of the random walk. Recall also that S is symmetric and
contained in the ball B(1,C0) of radius C0 centered at the group identity 1. A halfplane is a
subset of D (or its intersection with ΓO) whose boundary is a doubly infinite hyperbolic
geodesic.

Definition 3.2. A barrier is a triple (V,W,B) consisting of nonoverlapping halfplanes V,W ⊂
D and a subset B ⊂ Γ disjoint from V ∪W such that every path in ΓO from V to W must
pass through B, and

max
x∈V

∑

b∈B
GR(x, b) ≤ 1

2
.

For distinct points ξ, ζ ∈ ∂D, a barrier between ξ and ζ is a barrier (V,W,B) such that ξ and
ζ are interior points of the arcs cl(V) ∩ ∂D and cl(W) ∩ ∂D, respectively. (We also say that
such a barrier (V,W,B) separates ξ and ζ.)

Observe that if (V,W,B) is a barrier then the distance between the hyperbolic geodesics
bounding V and W is positive: in particular, these geodesics cannot have a common
endpoint on ∂D. Moreover, the set B must have limit points in each of the two arcs of ∂D
separating cl(V) ∩ ∂D and cl(W) ∩ ∂D. Also, if (V,W,B) is a barrier then (i) for any g ∈ Γ
the translate (gV, gW, gB) is a barrier, and (ii) if V′,W′ are halfplanes contained in V,W,
respectively, then (V′,W′,B) is a barrier.

Theorem 3.3. For any two points ξ , η ∈ ∂D, there exists a barrier between ξ and η.

Before turning to the proof, we record an easy consequence.

Corollary 3.4. There exists K < ∞ such that for any two hyperbolic geodesics α, β at distance K
or greater there is a barrier (A,B,C) such that the halfplanes A and B are bounded by α and β,
respectively.

Proof. Let Q be the set of all pairs of distinct points (ξ, ζ) ∈ ∂D such that the geodesic with
endpoints ξ and ζ enters the interior of the fundamental polygon F . By Theorem 3.3, any
such pair ξ, ζ is separated by a barrier (V,W,B); the halfplanes V,W can be chosen to have
arbitrarily small (Euclidean) diameters, and so in particular we can assume that neither
V nor W intersects F . If (ξ, ζ) ∈ Q are separated by the barrier (V,W,B) then all nearby
pairs (ξ′, ζ′) are also separated by this barrier. Since Q has compact closure in ∂D × ∂D, it
follows that there is a finite set of barriers (Vi,Wi,Bi) and a constant δ > 0 such that (i) for
any pair (ξ, ζ) ∈ Q at least one of the barriers separates ξ from ζ, and (ii) for this barrier
(Vi,Wi,Bi) the Euclidean circles of radius δ centered at ξ and ζ intersectD only inside the
halfplanes Vi and Wi, respectively. Furthermore, the barriers can be chosen so that none of
the halfplanes Vi,Wi intersects the fundamental polygon F .

Suppose that α, β are hyperbolic geodesics at distance D greater than four times the
diameter ofF . Let γ be the geodesic segment of minimal hyperbolic length with endpoints
on α and β, and let M be the midpoint of this segment. Then there is an element g ∈ Γ
that maps the geodesic segment γ to a segment gγ which crosses F in such a way that
the midpoint gM lies in one of the tiles hF within distance diam(F ) of F . Let ξ, ζ be the
endpoints on ∂D of the doubly infinite geodesic extension of gγ. By construction, the pair



12 SÉBASTIEN GOUËZEL AND STEVEN P. LALLEY

(ξ, ζ) is an element of Q, so ξ and ζ are separated by one of the barriers (Vi,Wi,Bi). If the
distance D between α and β is sufficiently large, say D ≥ K, then the geodesics gα and gβ
will be entirely contained in the halfplanes Vi and Wi, respectively. (This is because the
midpoint gM of the connecting segment gγ lies within distance diam(F ) of F , so both
gα and gβ are at distance greater than D/2 − 2diam(F ) from F , and consequently, if D is
sufficiently large, must lie inside circles of Euclidean radius δ centered at points on ∂D.)
If gα and gβ are contained in Vi and Wi, then there is a barrier (gA, gB, gC) such that the
halfplanes gA and gB are bounded by gα and gβ. Finally, since translates of barriers are
barriers, it follows that (A,B,C) is a barrier with the desired property. �

The rest of this subsection is devoted to the proof of Theorem 3.3. The strategy is to
construct the barrier using typical trajectories of the random walk.

Lemma 3.5. There exist C > 0 and ̺ < 1 such that P1(GR(1,Xn) ≥ ̺n) ≤ C̺n.

Proof. Since Gr(1, x) = Fr(1, x)Gr(1, 1), it suffices to prove the corresponding statement where
the Green’s function GR(1,Xn) is replaced by the first-passage generating function FR(1,Xn).
Now any path γ of length n from 1 to a point x can be concatenated with any path γ′ from x
to 1, yielding a path from 1 to itself. If the path γ′ does not re-visit the point x the splitting
(γ, γ′) of the concatenated path is a last-exit decomposition, so the mapping (γ, γ′) 7→ γγ′ is
injective. Hence, summing the weights of all such paths gives a lower bound for GR(1, 1):
using the symmetry FR(x, 1) = FR(1, x), we obtain

GR(1, 1) ≥
∑

x

RnP1(Xn = x)FR(1, x) = RnE1(FR(Xn, 1)).

Therefore,

P1(FR(Xn, 1) ≥ ̺n) ≤ 1

̺n
E1(FR(Xn, 1)) ≤ CR−n̺−n,

and so the desired inequality holds with ̺ = R−1/2. �

Lemma 3.6. For almost all independent trajectories X0 = 1,X1, . . . and Y0 = 1,Y1, . . . of the
random walk,

∑

m,n∈N
GR(Xm,Yn) < ∞.

Proof. For fixed m and n, Y−1
n Xm is distributed as Xn+m, by symmetry of the step distribution.

Therefore,

P(GR(Xm,Yn) ≥ ̺m+n) = P(GR(Y−1
n Xm, 1) ≥ ̺m+n) = P(GR(Xn+m, 1) ≥ ̺m+n) ≤ C̺n+m,

by the previous lemma. Since this quantity is summable in m and n, Borel-Cantelli ensures
that, almost surely, GR(Xm,Yn) ≤ ̺m+n for all but finitely many pairs (m, n). �

We will construct barriers by first constructing pre-barriers as defined below.

Definition 3.7. A pre-barrier is a quadruple (V,W,A,B) of pairwise disjoint sets such that
V,W are non-overlapping halfplanes and A,B are subsets of Γ such that

(i) every path in Γ from V to W must enter A ∪ B, with first entrance at a point a ∈ A
and last exit at a point b ∈ B;

(ii) every path in Γ from V to B must pass through A; and
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(iii) we have
∑

a∈A,b∈B
GR(a, b) < ∞.

A pre-barrier (V,W,A,B) separates points ξ, ζ ∈ ∂D if ξ and ζ are interior points of the arcs
cl(V) ∩ ∂D and cl(W) ∩ ∂D, respectively.

Lemma 3.8. For any two distinct points ξ, η ∈ ∂D, there exists a pre-barrier separating ξ and η.

Proof. Choose two disjoint compact subintervals J and K in one of the connected compo-
nents of ∂D − {ξ, η} such that J is closer to ξ than K, and similarly choose J′, K′ in the other
connected component of ∂D − {ξ, η}.

Let Xn,X′n,Yn,Y′n be independent copies of the random walk starting from 1, and letΩ′ be
the event that Xn converges to J, X′n converges to J′, Yn converges to K and Y′n converges to
K′. The Poisson boundary of the random walk is identified with the topological boundary
S1, and the limiting measure has full support there since the group action is minimal on
the boundary. Therefore, Ω′ has positive probability. Moreover, Lemma 3.6 implies that
almost surely

∑

GR(X̃m, Ỹn) < ∞ for X̃ = X or X′ and Ỹ = Y or Y′. Consequently, there
exist two-sided infinite paths {xn}n∈Z connecting J with J′ and {yn}n∈Z connecting K with K′

such that
∑

m,n∈Z GR(xm, yn) < ∞. Since J ∪ J′ is disjoint from K ∪ K′, the trajectories xm and
yn are disjoint for large |m|, |n|. Modifying these trajectories at finitely many places (which
does not change the validity of

∑

m,n GR(xm, yn) < ∞) and then replacing each point of the
trajectory by a ball of radius 2C0 (so that a trajectory of the random walk can not jump past
the newly constructed set), we obtain the required pre-barrier. �

Theorem 3.3 follows from the previous lemma and the next lemma.

Lemma 3.9. If (V,W,A,B) is a pre-barrier separating ξ and η, then there exist halfplanes V′ ⊆ V
and W′ ⊆W such that (V′,W′,B) is a barrier separating ξ and η.

Proof. The only nontrivial point is the existence of a halfplane neighborhood V′ of ξ such
that maxx∈V′

∑

b∈B GR(x, b) ≤ 1/2.
Let V′ be a small neighborhood of ξ. Every path from V′ to B must go first through

A. Decomposing such a path according to the first visited point in A, we find that for any
b ∈ B,

GR(x, b) ≤
∑

a∈A
GR(x, a)GR(a, b)

≤ sup
a∈A

GR(x, a) ·
∑

a∈A,b∈B
GR(a, b)

≤ C sup
a∈A

GR(x, a).

By Lemma 2.1, GR(1, x) tends uniformly to 0 when |x| → ∞. Therefore, if V′ is small enough
then supa∈A GR(x, a) is smaller than 1/(2C). �

3.3. Exponential decay of the Green’s function.

Theorem 3.10. The Green’s function GR(x, y) of a symmetric, irreducible, finite-range random walk
on a co-compact Fuchsian group Γ, evaluated at its radius of convergence R, decays exponentially in
the distance d(x, y). In particular, there exist constants C < ∞ and ̺ < 1 such that for every x ∈ Γ,

GR(1, x) ≤ C̺|x|.
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To prove this theorem, we will show that disjoint barriers can be placed consecutively
along the hyperbolic geodesic from 1 to x (identified with O and xO) inD.

Lemma 3.11. There exists L > 0 with the following property. If x ∈ Γ satisfies d(1, x) ≥ nL for
some integer n ≥ 2, then there exist n barriers (Vi,Wi,Bi) such that

(i) the sets Bi are pairwise disjoint;
(ii) every path from 1 to x goes successively through B0,B1,B2, . . . ,Bn−1;

(iii) we have
∑

b0∈B0
GR(1, b0) ≤ 1/2; and

(iv) for any i < n − 1 and any bi ∈ Bi,

(20)
∑

bi+1∈Bi+1

GR(bi, bi+1) ≤ 1/2.

Proof. This is an easy consequence of Corollary 3.4 and Lemma 3.1. Let γ be the hyperbolic
geodesic segment from 1 to x; by Lemma 3.1, if L is sufficiently large then the hyper-
bolic length of γ is at least nK. Let β0, β1, . . . βn be the hyperbolic geodesics that cross γ
orthogonally at the points 1, y1, y2, . . . yn at distances 0,K, 2K, . . . , nK from the endpoint 1.
Corollary 3.4 implies that for each 0 ≤ i < n there is a barrier (Vi,Wi,Bi) such that Vi is
bounded by βi and Wi by βi+1. These have all the desired properties. �

Proof of Theorem 3.10. Let x ∈ Γ be a vertex such that d(1, x) ∈ [nL, (n + 1)L). Decomposing
paths from 1 to x according to their first points of entry into B0, then B1, and so on, we get

GR(1, x) ≤
∑

b0∈B0,...,bn−1∈Bn−1

GR(1, b0)GR(b0, b1) . . .GR(bn−2, bn−1)GR(bn−1, x)

≤ 2−n+1 sup
bn−1∈Bn−1

GR(bn−1, x).

Since GR tends to 0 at infinity, it is uniformly bounded, and so the exponential bound
follows. �

4. Ancona’s inequalities

In this section, we shall prove Ancona’s inequalities (5) and extend them to relative
Green’s functions (Theorem 4.1). We will then show how these inequalities are used to
identify the Martin boundary and to establish the Hölder continuity of the Martin kernel.
The proofs of the various Ancona inequalities will rely on the exponential decay of the
Green’s function, which was proved in section 3, and the hyperbolic character of the
Cayley graph. Recall that a finitely generated group Γ (or alternatively its Cayley graph)
is hyperbolic in the sense of Gromov [20] if it satisfies the thin triangle property, that is, there
exists a constant δ < ∞ such that for any geodesic triangle T in Γ, each point on a side of T
is within distance δ of at least one of the other two sides. We then say that is δ is a Gromov
constant for Γ. The minimal Gromov constant δwill in general depend on the choice of the
generating set; however, if Γ is hyperbolic with respect to one (finite) set of generators then
it is hyperbolic with respect to every finite set of generators.

4.1. Relative Ancona’s inequalities. For technical reasons, we will need an extension of
Ancona’s inequalities valid for relative Green’s functions (as defined in subsection 2.2).
These inequalities assert that, for any point z on a geodesic segment between two points x
and y, and for a suitable class of domains Ω, one has

(21) Gr(x, y;Ω) ≤ CGr(x, z;Ω)Gr(z, y;Ω).
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The constant C should be independent of x, y, z, of Ω, and of r ∈ [1,R]. The usual Ancona
inequalities (5) correspond to the case Ω = Γ. Clearly, inequality (21) cannot hold for all
domainsΩ, because in general there might not be positive-probability paths from x to z in
Ω. Therefore, some restrictions on the setΩ are necessary.

Relative versions of Ancona’s inequalities play an important role in [1] (see th. 1’ there),
[30, 22]. In the latter two papers, such inequalities are proved for any domain Ω that
contains a neighborhood of fixed size C of the geodesic segment [xy]. We are only able
to deal with a smaller class of domains, but these will nevertheless be sufficient for our
purposes.

Theorem 4.1. For any symmetric, irreducible, finite-range random walk on a co-compact Fuchsian
group Γ there exist positive constants C and C′ such that the following statement holds. For any
geodesic segment [xy] and any z ∈ [xy], and for any subset Ω ⊂ Γ with the property that for each
w ∈ [xy] the ball of radius C′ + d(w, z)/2 centered at w is contained in Ω,

(22) Gr(x, y;Ω) ≤ CGr(x, z;Ω)Gr(z, y;Ω) for all 1 ≤ r ≤ R.

There is another natural class of domainsΩ for which we can establish relative Ancona’s
inequalities (under additional assumptions on the random walk).

Definition 4.2. A set Ω ⊂ Γ is convex if for all pairs x, y ∈ Ω there is a geodesic segment
from x to y contained in Ω.

Theorem 4.3. Consider an irreducible, symmetric random walk on a co-compact Fuchsian group
Γ, and assume that its step distribution gives positive probability to any element of the generating
set used to define the word distance. There exists a constant C > 0 such that, for every convex set
Ω containing the geodesic segment [xy], and for every point z ∈ [xy], the Ancona inequality (22)
holds.

The converse inequality Gr(x, y;Ω) ≥ CGr(x, z;Ω)Gr(z, y;Ω) is trivial (see Lemma 2.2),
so the theorems really say that Gr(x, y;Ω) ≍ Gr(x, z;Ω)Gr(z, y;Ω) (meaning that the ratio
between the two sides of this equation remains bounded away from 0 and∞).

The proof of the two theorems will use the following lemma, which is an easy conse-
quence of the exponential decay of the Green’s function and the geometry of the hyperbolic
disk.

Lemma 4.4. There exist C > 0 and α > 0 such that, for any geodesic segment [xy], any z ∈ [xy]
and any k ≥ 0,

GR(x, y; Bk(z)c) ≤ C exp{−eαk}.
Here Bk(z)c is the complement of the ball Bk(z) of radius k centered at z. Since the distance

from x to y in the complement of Bk(z) grows exponentially with k, and the Green’s function
itself decays exponentially, the double exponential bound in the conclusion of the lemma
should not be surprising.

Proof. It suffices to prove the lemma for large k. Since the Green’s function is translation
invariant, we can assume without loss of generality that z = 1. (Recall that 1 ∈ Γ is identified
with the point O ∈ D.) Consider the hyperbolic circle C of radius k/C around O, where C is
sufficiently large that this circle is contained in the ball Bk(1) for the Cayley graph distance.
Since the hyperbolic length of C grows exponentially with k, one can set along this circle

an exponential number eαk of geodesic rays Di starting from O and going to infinity, such
that the minimum distance d between any successive rays Di and Di+1 along C is arbitrarily
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large (the exponential rate α > 0 will not depend depend on d, but the minimum radius
k/C will.). Let D̃i be a thickening of Di so that a path making jumps of length at most
C0 can not jump across D̃i. If d is large enough then

∑

ai∈D̃i,ai+1∈D̃i+1
GR(ai, ai+1) ≤ 1/2 (this

sum is dominated by a geometric series, thanks to the exponential decay of the Green’s
function, and it has arbitrarily small first term if d is large). A path from x to y that avoids
Bk(1) has to go around the circle in one direction or the other, and will therefore cross at
least half the domains D̃i. As in the conclusion of the proof of Theorem 3.10, this yields

GR(x, y; Bk(1)c) ≤ C2−eαk/2. �

Proof of Theorems 4.1–4.3. Let [xy] be a geodesic segment of some length m (relative to the
Cayley graph distance) with endpoints x, y ∈ Γ, let z ∈ Γ be a point on [xy], and let Ω be a
domain containing [xy] satisfying the assumptions of Theorem 4.1 or 4.3.

We first construct by induction points xn, yn on the geodesic segment [xy] in such a way
that for each n the points xn, z, yn occur in order on [xy]. Start by setting x0 = x and y0 = y.
At step n, if z is in the left half of [xn yn] then set xn+1 = xn and let yn+1 be a point in [xn yn]
such that |d(yn+1, yn)− d(xn, yn)/4| ≤ 1. Similarly, if z is in the right half of [xn yn] then define
yn+1 = yn and let xn+1 be a point on [xn yn] such that |d(xn, xn+1) − d(xn, yn)/4| ≤ 1. The
construction ends at the first step N such that d(xN , yN) ≤ A, for some large A > 0. By
construction, for all n ≤ N,

d(xn, yn) = (3/4)nm +O(1) and z ∈ [xnyn],

where the O(1) term is bounded by
∑∞

k=0(3/4)k = 4.
At each step of the construction, the discarded interval ([yn+1 yn] in the first case, [xnxn+1]

in the second) lies either to the right or to the left of z on the interval [xy]. In either case,
define Bn+1 to be the ball of radius d(xn, yn)/100 centered at the midpoint of the discarded
interval. Observe that these balls are pairwise disjoint. For each n, let an and bn be the
midpoints of the last discarded intervals to the left and right of z respectively (with the
convention that if no intervals to the left of z have been discarded by step n then an = x,
and similarly if no intervals to the right have been discarded then bn = y). By construction,

an ≤ xn ≤ z ≤ yn ≤ bn

in the natural ordering (left to right) on [xy], and so the center of the ball Bn+1 must lie on
the segment [anbn]. Furthermore, by hyperbolicity, if un, vn are any points in the balls Bl,Br

closest to z on the left and right, respectively, centered at points in intervals removed by
step n, then any geodesic segment [unvn] connecting un and vn must pass within distance
2δ of z, where δ is a Gromov constant for the Cayley graph (provided the constant A that
determines the termination point of the construction is sufficiently large). In fact, the entire
geodesic segment [xnyn] must lie within distance 2δ of [unvn].

We now decompose Gr(x, y;Ω) by splitting random walk trajectories at visits to the balls
Bi. Begin with u0 = x and v0 = y. If z is in the first half of [u0v0], split paths at the last visit
to B1; this yields

Gr(u0, v0;Ω) = Gr(u0, v0;Ω ∩ Bc
1) +

∑

v1∈B1∩Ω
Gr(u0, v1;Ω)Gr(v1, v0;Ω ∩ Bc

1).

If z is in the second half of [u0v0], split paths at the first visit to B1; this gives

Gr(u0, v0;Ω) = Gr(u0, v0;Ω ∩ Bc
1) +

∑

u1∈B1∩Ω
Gr(u0, u1;Ω ∩ Bc

1)Gr(u1, v0;Ω).
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To get manageable formulas, we will introduce a more symmetric notation. Let H(u, v; B) =
Gr(u, v;Ω ∩ B) if u , v, and 1 if u = v. In addition, write u1 = u0 in the first case (that is,
if z is in the first half of [u0v0]), and write v1 = v0 in the second case. The formulas above
become

Gr(u0, v0;Ω) = H(u0, v0; Bc
1) +

∑

u1,v1

H(u0, u1; Bc
1)Gr(u1, v1;Ω)H(v1, v0; Bc

1).

This procedure can be iterated. The factor Gr(u1, v1;Ω) can be decomposed by splitting
random walk trajectories at visits to B2; this leads to a second sum with an inner factor
Gr(u2, v2;Ω). This factor can again be decomposed, and so on, whence we obtain, by
induction, for any k ≤ N,

Gr(u0, v0;Ω) =

k−1
∑

j=0

∑

u1,...,u j
v1 ,...,v j

H(u j, v j; Bc
j+1)

j−1
∏

i=0

{

H(ui, ui+1; Bc
i+1)H(vi+1, vi; Bc

i+1)
}

+

∑

u1,...,uk
v1,...,vk

Gr(uk, vk;Ω)

k−1
∏

i=0

{

H(ui, ui+1; Bc
i+1)H(vi+1, vi; Bc

i+1)
}

.

(23)

For each index i in the products, either ui = ui+1 or vi = vi+1, and the corresponding H−factor
is 1. In the first case, vi+1 ∈ Bi+1 ∩Ω; in the second case, ui+1 ∈ Bi+1 ∩Ω. Thus, for each i the
points ui, vi must lie in the balls Bl,Br centered at the midpoints of the nearest discarded
(by step i) intervals to the left and right of z. As noted earlier, this implies that any geodesic
segment [uivi] must pass within distance 2δ of z. Moreover, since the center of the ball Bi+1

lies on [xiyi], the ball contains a ball with center on [uivi] of radius (m(3/4)i − 4)/100 − 2δ.
Therefore, by Lemma 4.4, for suitable constants C, β > 0,

H(ui, vi; Bc
i+1) ≤ C exp{−eβm(3/4)i }.

On the other hand, under the hypotheses of Theorem 4.1 (for sufficiently large C′), a fixed
size neighborhood of a geodesic segment [uivi] from ui to vi is contained inΩ, while under
the hypotheses of Theorem 4.3 the geodesic segment [uivi] is contained in Ω by convexity.
It follows that, in both situations (and assuming the random walk in nearest-neighbor

in the second situation), one has Gr(ui, vi;Ω) ≥ p
d(ui ,vi)
min

for all r ≥ 1, for some pmin > 0.
Consequently,

H(ui, vi; Bc
i+1) ≤ λiGr(ui, vi;Ω),

where λi is superexponentially small in terms of m(3/4)i. The jth term of the first sum in
(23) is therefore bounded by

λ j

∑

u1,...,u j
v1,...,v j

Gr(u j, v j;Ω)

j−1
∏

i=0

{

H(ui, ui+1; Bc
i+1)H(vi+1, vi; Bc

i+1)
}

.

This matches the last line of (23) (with j replacing k). Since every term in (23) is nonnegative,
it follows that the jth term of the first sum in (23) is bounded above by λ jGr(u0, v0;Ω).

Now take k = N (i.e., the last step of the construction), and consider the final sum
in (23). Since the points uN and vN are within distance A of z, we have Gr(uN, vN;Ω) ≤
CAGr(uN, z;Ω)Gr(z, vN;Ω), for a suitable constant CA < ∞. When this upper bound is
substituted for the factor Gr(uN, vN;Ω), the final sum factors (one factor involving only
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the uis, the other only the vis). Reversing the path decomposition (i.e., gluing trajectories
instead of splitting them) shows that the two resulting factors are bounded respectively by
Gr(u0, z;Ω) and Gr(z, v0;Ω). Thus, we have

Gr(u0, v0;Ω) ≤
















N−1
∑

j=0

λ j

















Gr(u0, v0;Ω) + CAGr(u0, z;Ω)Gr(z, v0;Ω).

If A is large enough, the sum
∑

λ j will be smaller than ≤ 1/2. Hence, for all large A,

Gr(u0, v0;Ω) ≤ 2CAGr(u0, z;Ω)Gr(z, v0;Ω). �

4.2. Hölder continuity of the Green’s function. In this paragraph, we explain how the
controls on the Martin boundary given by Theorem 1.2 follow from the relative Ancona’s
inequalities of the previous paragraph. The strategy of the proof is essentially the same as
that introduced by Anderson and Schoen [3] for a similar purpose in a slightly different
setting, and the details follow [22] closely.

Definition 4.5. Let [xy] and [x′y′] be geodesic segments in the Cayley graph of Γ, and let
ε > 0. We say that the segment [x′y′] shadows (more precisely, ε−shadows) the segment [xy]
if every point of [xy] lies within distance ε of [x′y′]. If both [x′′y′′] and [x′y′] (2δ)−shadow
[xy], where δ is a Gromov constant for the Cayley graph, then we say that they are fellow-
traveling along [xy].

Theorem 4.6. There exist constants C > 0 and ̺ < 1 such that for any geodesic segment [x0y0], if
[xy] and [x′y′] are fellow-traveling along [x0y0], then

∣

∣

∣

∣

∣

Gr(x, y)/Gr(x
′, y)

Gr(x, y′)/Gr(x′, y′)
− 1

∣

∣

∣

∣

∣

≤ C̺k,

for all r ∈ [1,R], where k is the length of [x0y0].

A direct application of Ancona’s inequalities imply that

(24)
Gr(x, y)

Gr(x′, y)
≍ Gr(x, x0)

Gr(x′, x0)
≍ Gr(x, y′)

Gr(x′, y′)
.

The theorem is a quantitative strengthening of this estimate, showing that the ratio between
those quantities not only stays bounded, but tends exponentially fast to 1 when k tends to
infinity.

In particular, take x′ = 1 and let yn, ym be points at distances n,m from x′ along a
geodesic ray converging towards a point ζ ∈ ∂Γ. For any fixed x ∈ Γ the geodesic segments
from x or x′ to yn or ym are fellow traveling along a geodesic segment of length at least
min(m, n) − 2d(x, x′). Therefore,

∣

∣

∣

∣

∣

Gr(x, yn)/Gr(1, yn)

Gr(x, ym)/Gr(1, ym)
− 1

∣

∣

∣

∣

∣

≤ Cx̺
min(m,n)

for a constant Cx < ∞ depending on x. This shows that the sequence Gr(x, yn)/Gr(1, yn)
is Cauchy, therefore convergent to a limit Kr(x, ζ). To prove Theorem 1.1, one should
additionally show that the functions Kr(x, ζ) are minimal, and that for ζ , ζ′ one has
Kr(x, ζ) , Kr(x, ζ′). Ancona proved this for r < R in [1], and his proofs also work for r = R
once the Ancona inequalities are established. Finally, letting m tend to infinity, one gets
|Gr(x, yn)/Gr(1, yn) − Kr(x, ζ)| ≤ Cx̺nKr(x, ζ), which proves Theorem 1.2.
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Proof of Theorem 4.6. Let L≫ 2δ be a large constant, and consider a geodesic segment [x0y0]
of length k ≫ L. For each 1 ≤ i ≤ ℓ := k/(3L), define Ωi to be the set of all z ∈ Γ such that
every geodesic segment from y0 to z passes through the ball of radius 2δ centered at the
point zi at distance 3Li from y0 along [x0y0]. The sequence of domainsΩi is decreasing in i
(by an easy application of the thin triangle property). Moreover, if the geodesic segments
[xy] and [x′y′] are fellow-traveling along [x0y0], then both x, x′ ∈ Ωℓ and y, y′ ∈ Ωc

1
.

Consider the function u(z) = Gr(z, y)/Gr(x0, y), which is r-harmonic on Ω1 and normal-
ized by u(x0) = 1. Starting with u1 = u, we will inductively construct a sequence of
r−harmonic functions ui on Ωi, with ui−1 = ui + ϕi, in such a way that ϕi does not depend
on the initial normalized harmonic function u, and so that ui−1 ≥ ϕi ≥ εui−1 onΩi, for some
ε > 0. Let us first show how this gives the conclusion of the theorem.

As ϕi ≥ εui−1, we have ui ≤ (1 − ε)ui−1, hence uℓ ≤ (1 − ε)ℓ−1u1. Applying the same
construction to v(z) = Gr(z, y′)/Gr(x0, y′), we obtain v =

∑

ϕi + vℓ (for the same functions
ϕi), which gives on Ωℓ the estimate |u − v| = |uℓ − vℓ | ≤ C(1 − ε)ℓ(u + v). Since u ≍ v by (24),
we get |u/v − 1| ≤ C(1 − ε)ℓ onΩℓ, which is the desired inequality.

We now describe the construction of ϕi. Assume that u1, . . . , ui have been defined. By
harmonicity, for any z ∈ Ωi+1,

ui(z) =
∑

w∈Ωc
i

Gr(z,w;Ωi)ui(w).

Define Λi to be the set of all z ∈ Ωi such that (x0|z)y0 ∈ [3Li + L − 2, 3Li + L + 2], where
(x|y)z = (d(x, z) + d(y, z) − d(x, y))/2 is the Gromov product, which measures the distance
along which two geodesic segments from z to x and from z to y are fellow traveling. This
set is contained in Ωi, but is bounded away from Ωi+1, and any trajectory from Ωi+1 to the
complement of Ωi has to cross Λi. Splitting a trajectory from z ∈ Ωi+1 to w ∈ Ωc

i
according

to its last visit to Λi, we get Gr(z,w;Ωi) =
∑

w′∈Λi
Gr(z,w′;Ωi)Gr(w

′,w;Ωi ∩Λc
i
).

We are now in a position to estimate Gr(z,w′;Ωi) using Ancona’s inequalities. Indeed,
the geodesic segment from z to w′ passes within 2δ of the point z∗

i
at distance 3Li + 2L

from y0 on [x0y0], by hyperbolicity. Moreover, the domain Ωi satisfies the assumptions
of Theorem 4.1 (this readily follows from a tree approximation). Hence, Gr(z,w′;Ωi) ≤
CGr(z, z∗i ;Ωi)Gr(z

∗
i
,w′;Ωi), and so

ui(z) =
∑

w∈Ωc
i

∑

w′∈Λi

Gr(z,w
′;Ωi)Gr(w

′,w;Ωi ∩Λc
i )ui(w)

≤ CGr(z, z
∗
i ;Ωi)

∑

w∈Ωc
i

∑

w′∈Λi

Gr(z
∗
i ,w

′;Ωi)Gr(w
′,w;Ωi ∩Λc

i )ui(w)

= CGr(z, z
∗
i ;Ωi)ui(z

∗
i ).

Replacing Ancona’s inequality by the trivial bound Gr(z,w′;Ωi) ≥ C′Gr(z, z∗i ;Ωi)Gr(z
∗
i
,w′;Ωi),

we also get a lower bound in the last equation. Hence, ui(z) ≍ Gr(z, z∗i ;Ωi)ui(
∗zi) on Ωi+1.

Using this estimate for z = x0, we obtain ui(z)/ui(x0) ≍ Gr(z, z∗i ;Ωi)/Gr(x0, z∗i ;Ωi). In par-
ticular, if c is small enough, the function ϕi+1(z) = cui(x0)Gr(z, z∗i ;Ωi)/Gr(x0, z∗i ;Ωi) satisfies
εui ≤ ϕi+1 ≤ ui on Ωi+1. Moreover, this function only depends on ui through the value of
ui(x0). By induction, it only depends on u(x0). Since we have normalized u so that u(x0) = 1,
this shows that ϕi+1 is independent of the initial function u. �
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5. Automatic structure

5.1. Strongly Markov groups and hyperbolicity. A finitely generated group Γ is said to
be strongly Markov (fortement Markov – see [19]) if for each finite, symmetric generating
set A there exists a finite directed graphA = (V,E, s∗) with distinguished vertex s∗ (“start”)
and a labeling α : E → A of edges by generators that meets the following specifications.
A path in the graph is a sequence of edges e0, . . . , em−1 such that the endpoint of ei is the
starting point of ei+1. Let

P := {finite paths inA starting at s∗},
and for each path γ = e0e1 · · · em−1, denote by

α(γ) = path in GΓ through 1, α(e0), α(e0)α(e1), . . . , and

α∗(γ) = α(e0)α(e1) · · ·α(em−1), the right endpoint of α(γ).

Definition 5.1. The labeled automaton (A, α) is a strongly Markov automatic structure for
Γ if:

(A) No edge e ∈ E ends at s∗.
(B) Every vertex v ∈ V is accessible from the start state s∗.
(C) For every path γ, the path α(γ) is a geodesic path in GΓ.
(D) The endpoint mapping α∗ : P → Γ induced by α is a bijection of P onto Γ.

Theorem 5.2. Every word hyperbolic group is strongly Markov.

See [19], Ch. 9, Th. 13. The result is essentially due to Cannon (at least in a more restricted
form) — see [14], [13] — and in important special cases (co-compact Fuchsian groups) to
Series [34]. Henceforth, we will call the directed graphA = (V,E, s∗) the Cannon automaton
(despite the fact that it is not quite the same automaton as constructed in [14]).

Properties (C)-(D) of Definition 5.1 imply that for each x ∈ Γ there is a unique geodesic
segment in the Cayley graph from the group identity 1 to x that is the image of a path in
the automaton. We shall denote this distinguished geodesic segment by L(1, x).

5.2. Automatic structures for the surface groups. The existence of an automatic structure
will be used to connect the behavior of the Green’s function at infinity to the theory of Gibbs
states and Ruelle operators (see [11], ch. 1). For these arguments, the detailed structure of
the automaton will not be important (except for those aspects discussed in sec. 5.3 below).
Nevertheless, we note here that an automatic structureA for the surface group Γg is easily
constructed. Let A = Ag = {a±i , b±i } be the standard generating set, with the generators
satisfying the basic relation

(25)

g
∏

i=1

aibia
−1
i b−1

i = 1.

Define the set V of vertices for the automaton to be the set of all reduced words in the
generators of length ≤ 2g, with s∗ = the empty word. Directed edges are set according to
the following rules:

(A) If a (reduced) word w′ is obtained by adding a single letter x to the end of word w,
then draw an edge e(w,w′) from w to w′, and label it with the letter x.

(B) If a word w′ of maximal length 2g is obtained from another word w of length 2g
by deleting the first letter and adding a new letter x to the end, then draw an edge
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e(w,w′) from w to w′with label x unless the word wx constitutes the first 2g+1 letters
of a cyclic permutation of the basic relation (25).

That properties (C)–(D) of Definition 5.1 are satisfied follows from Dehn’s algorithm. The
words of maximal length 2g are the recurrent vertices of this automaton, while the words
of length < 2g are the transient vertices (see sec. 5.3 below for the definitions). It is easily
verified that for any vertex w and any recurrent vertex w′, there is a path in the automaton
from w to w′.

5.3. Recurrent and transient vertices. LetA be a Cannon automaton for the group Γwith
vertex set V and (directed) edge set E. Call an edge e ∈ E recurrent if there is a path in A
of length ≥ 2 that begins and ends with e; otherwise, call it transient. Denote by AR the
restriction of the digraphA to the set R of recurrent edges. For certain hyperbolic groups
— among them the co-compact Fuchsian groups — the automatic structure can be chosen
so that the digraphAR is strongly connected (see [34]), i.e., for any two recurrent edges e and
e′ there is a path from e to e′. Henceforth we restrict attention to word-hyperbolic groups
with this property:

Assumption 5.3. The automatic structure can be chosen so that the digraph AR is strongly
connected.

Assumption 5.4. The incidence matrix of the digraph AR is aperiodic.

Both assumptions hold for any co-compact Fuchsian group. Assumption 5.4 is for ease
of exposition only — the results and arguments below can be modified to account for any
periodicities that might arise if the assumption were to fail. Assumption 5.3, however, is
essentially important.

5.4. Symbolic dynamics. We shall assume for the remainder of the paper that the automa-
tonA has been chosen so as to satisfy Assumptions 5.3 and 5.4.

Set

Σ = {semi-infinite paths in A},
Σ

n
= {paths of length n in A},

Σ
∗
= ∪∞n=0Σ

n,

Σ = Σ ∪ Σ∗.
By convention, there is a single path of length 0, the empty path, that we denote by ∅.
In some circumstances, it is useful to identify finite paths with semi-infinite paths in an
automaton with an additional “cemetery” state, or with doubly-infinite paths in an au-
tomaton with two additional states (“embryo” and “cemetery”). This point of view makes
it possible to apply directly in our setting results that are formulated in the literature only
for semi-infinite paths. However, we stick to the notation with finite paths since it makes
the correspondence with geodesic segments in the group (see below) more transparent.

We will also need bilateral versions of these sets, that we will denote with a subscript

Z. For instance, ΣZ is the set of (finite or infinite) bilateral paths in A. Equivalently, it is
the set of sequences (ωn)n∈Z where ωn is an edge of A for n in some interval of Z (with
admissible transition from ωn to ωn+1), and ωn is empty for n outside of this interval. Let σ

be the forward shift operator on Σ and ΣZ. The spaces Σ and ΣZ are given metrics in the
usual way, that is,

d(ω,ω′) = 2−n(ω,ω′)
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where n(ω,ω′) is the maximum integer n such that ωi = ω
′
i

for all |i| < n. With the topology

induced by d the spaceΣ is a Cantor set,Σ is the set of accumulation points ofΣ∗, andΣ and

ΣZ are compact. Observe that, relative to the metrics d, Hölder-continuous, real-valued

functions on Σ∗ extend by continuity to Hölder-continuous functions on Σ, and then pull

back to Hölder-continuous functions on ΣZ.
Each ω ∈ Σ projects via the edge-labeling map α to a geodesic ray in GΓ starting at the

vertex 1 (more precisely, the sequence of finite prefixes of ω project to the vertices along a
geodesic ray). Each geodesic ray in GΓ must converge in the Gromov topology to a point
of ∂Γ, so α induces on Σ a mapping α∗ to ∂Γ. By construction, this mapping is Hölder
continuous relative to any visual metric on ∂Γ. Moreover, because each ζ ∈ ∂Γ is the limit
of a geodesic ray starting at the vertex 1, the induced mapping α∗ is surjective.

In a somewhat different way, the edge-labeling map α determines a map from the space

ΣZ to the set of two-sided (finite or infinite) geodesics in GΓ that pass through the vertex

1. This map is defined as follows: if ω ∈ ΣZ then the image of ω is the two-sided geodesic
that passes through

(26) . . . , α(ω−1
−1)α(ω−1

−2), α(ω−1
−1), 1, α(ω0), α(ω0)α(ω1), . . . ,

equivalently, it is the concatenation of the geodesic rays starting at 1 that are obtained by
reading successive steps from the sequences

ω0ω1ω2 · · · and ω−1
−1ω

−1
−2ω

−1
−3 · · · ,

respectively. Whenω is bi-infinite, each of these geodesic rays converges to a point of ∂Γ, so
α induces a mapping from ΣZ into ∂Γ×∂Γ. This mapping is neither injective nor surjective,
but it is Hölder-continuous.

Let E∗ be the set of edges originating from s∗, and let Σm(E∗) be the set of sequences of
length m in Σm with ω0 ∈ E∗. By definition of the Cannon automaton, the mapping α∗
induces a bijection between Σm(E∗) and the sphere Sm of radius m in GΓ.

Corollary 5.5. Let ζ be the spectral radius of the incidence matrix of the digraph A. If Assump-
tions 5.3 and 5.4 hold, then ζ > 1, and there exists C > 0 such that

|Sm| ∼ Cζm as m→∞.

Proof. This follows directly from the Perron-Frobenius theorem, with the exception of the
assertion that the spectral radius ζ > 1. That ζ > 1 follows from the fact that the group Γ is
nonelementary. Since Γ is nonelementary, it is nonamenable, and so its Cayley graph has
positive Cheeger constant; this implies that |Sm| grows exponentially with m. �

Corollary 5.6. The shift (Σ, σ) has positive topological entropy.

Proof. This follows from the exponential growth of the group, cf. Corollary 5.5. �

6. Thermodynamic formalism

Assume throughout this section and sections 7–8 that the group Γ is co-compact Fuchsian, and
that the random walk is symmetric and finite-range.
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6.1. The potential functions ϕr. The machinery of thermodynamic formalism and Gibbs

states developed in [11] applies to Hölder continuous functions on Σ (or on Σ). To make

use of this machinery, we will lift the Green’s function and the Martin kernel from Γ to the

sequence space Σ. For this the results of Theorem 1.2 and Theorem 4.6 are crucial, as they
ensure that those lifts are Hölder-continuous. The lift is defined as follows. For ω ∈ Σ∗, set

(27) ϕr(ω) := log
Gr(1, α∗(ω))

Gr(1, α∗(σω))
.

If ω is not the empty path, one can also write

ϕr(ω) = log
Gr(1, α∗(ω))

Gr(α∗(ω0), α∗(ω))
.

Therefore, Theorem 4.6 shows that, if two paths ω and ω′ coincide up to time n, then
|ϕr(ω) − ϕr(ω′)| ≤ C̺n, for some ̺ < 1. By definition of the distance on Σ∗, this means that
ϕr is Hölder-continuous. In particular, it extends to a Hölder-continuous function (that we

still denote by ϕr) on Σ. On Σ, it is given by

(28) ϕr(ω) = log
Kr(1, α∗(ω))

Kr(α∗(ω0), α∗(ω))
= − log Kr(α∗(ω0), α∗(ω)).

The mapping r 7→ ϕr is clearly continuous at every point of Σ∗, and all the functions
ϕr are uniformly Hölder-continuous for some fixed exponent. Therefore, r 7→ ϕr is also
continuous for the sup norm, and it follows that it is continuous for the Hölder topology
respective to any Hölder exponent strictly less than the initial one.

By construction, if ω is of length n,

(29) Gr(1, α∗(ω)) = Gr(1, 1) exp(Snϕr(ω))

where (in Bowen’s notation [11])

Snϕ :=

n−1
∑

j=0

ϕ ◦ σ j.

(Unfortunately, the notation Snϕ conflicts with the notation Sm for the sphere of radius m in
Γ; however, both notations are standard, and the meaning should be clear in the following
by context.)

6.2. Gibbs states: background. According to a fundamental theorem of ergodic theory (cf.
[11], Th. 1.2 and sec. 1.4), for each Hölder continuous function on a topologically mixing
subshift of finite type, there is a unique Gibbs state for this potential. Unfortunately, the
subshift of finite type induced by a Cannon automaton is not topologically mixing, since
the edges originating from s∗ are always transient (and for hyperbolic groups in general,
there can also be terminal edges, i.e., edges where a path can not be continued). However,
under Assumptions 5.3 and 5.4, the recurrent part of the graph is topologically mixing.
Therefore, the existence of Gibbs states and the corresponding Ruelle operator theory will
generalize to our setting.

Consider a finite directed graph whose recurrent part is connected and aperiodic, let Σ

be the set of finite or infinite paths in this graph, and let σ : Σ → Σ be the left shift. The
assumption that the recurrent part of the graph is connected and aperiodic implies that the
restriction of σ to the set of infinite paths in the recurrent set is topologically mixing. Let
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H be the space of real-valued Hölder-continuous functions on Σ (for some fixed Hölder
exponent). Let R be the set of recurrent edges in the graph, R+ the set of edges that can be
reached from a recurrent edge, and R− the set of edges from which a recurrent edge can be
reached.

Theorem 6.1. For any potential ϕ ∈ H , define an operator Lϕ acting on continuous functions

f : Σ→ R by

Lϕ f (ω) =
∑

σ(ω′)=ω

eϕ(ω′) f (ω′),

where ifω is the empty path the sum is restricted to the preimages ω′ of positive length. There exist a

real number Pr(ϕ) (the pressure ofϕ), a number ε > 0, a Hölder-continuous function hϕ : Σ→ R+
and a probability measure νϕ on Σ such that, for any f ∈ H , the following asymptotics hold inH :

(30) Ln
ϕ f = en Pr(ϕ)

(∫

f dνϕ

)

hϕ +O(e−εnen Pr(ϕ)).

The support of the function hϕ is the set of sequences whose elements all belong to R+, and hϕ is
bounded away from zero there. The support of the measure νϕ is the set of infinite sequences whose
elements all belong to R−.

The measure µϕ = hϕνϕ is the Gibbs measure associated to the potential ϕ: it is a σ-invariant

probability measure supported by the recurrent part ΣR of Σ, and it satisfies, for anyω = (ωn) ∈ ΣR,

(31) C1 ≤
µϕ[ω0, . . . , ωn−1]

eSnϕ(ω)−n Pr(ϕ)
≤ C2,

where C1,C2 > 0 are two constants and the cylinder [ω0, . . . , ωn−1] is the set of sequences ω′ =
(ω′

0
, ω′

1
, . . . ) with ω′

i
= ωi for 0 ≤ i ≤ n − 1.

Finally, all the quantities in the statement of the theorem (i.e., Pr(ϕ), ε, hϕ, νϕ, C1, C2, µϕ and
the implicit constant in the O–term in (30)) vary continuously with ϕ ∈ H .

When the subshift of finite type is topologically mixing, this theorem is proved in [11].
Since the arguments there are easily adapted to obtain the above version, we will only
sketch a proof, emphasizing the arguments that differ from those of [11].

Proof. Standard arguments using Lasota-Yorke estimates (see for instance [32] or [5]) show

that Lϕ has a spectral gap onH : denoting by ePr(ϕ) the spectral radius of Lϕ, this operator

has finitely many eigenvalues of modulus ePr(ϕ), and the rest of its spectrum is contained
in a disk of strictly smaller radius. Using the positivity of eϕ and the fact that the recurrent
part of Σ is topologically mixing, one can then prove that there is a unique eigenvalue of
maximal modulus, and that it is simple. The asymptotics (30) follows. The eigenfunction

and eigenmeasure hϕ and νϕ satisfy respectivelyLϕhϕ = ePr(ϕ)hϕ and L∗ϕνϕ = ePr(ϕ)νϕ.

Consider next the support of hϕ. The results in [11] imply that hϕ is positive, and

bounded from below, on the recurrent part ΣR of Σ. Since hϕ is Hölder continuous, this

implies that, if n is large enough, then hϕ is also positive on elements of Σ of length at least
n whose first n symbols are in R. Consider now a sequence ωwhose symbols all belong to
R+. There exists a sequence α beginning by n symbols in R such that αω is a possible path
in the automaton. Therefore,

hϕ(ω) = e−n Pr(ϕ)
∑

σn(η)=ω

eSnϕ(η)hϕ(η) ≥ e−n Pr(ϕ)eSnϕ(αω)hϕ(αω) > 0.
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On the other hand, if ω contains a symbol not belonging to R+, then ω has no preimage
under σn if there is no path of length n in the transient part of the automaton. It follows that
Ln
ϕhϕ(ω) = 0, hence hϕ(ω) = 0. This shows that the support of hϕ is exactly those sequences

with all symbols in R+. Since this set is compact, hϕ is bounded from below there.
If f is a continuous function, then

νϕ( f ) = e−n Pr(ϕ)νϕ(Ln
ϕ f ).

Since Ln
ϕ f only depends on the values of f on paths of length at least n, this shows that νϕ

has no atom on paths of finite length. Let us now take f = 1[C] the characteristic function

of a cylinder [C] of length n. Since Ln
ϕ1[C](ω) = eSnφ(Cω) if the concatenation Cω is an

admissible sequence, and 0 otherwise, we deduce that νϕ[C] = 0 if C can not be extended.
If a cylinder contains a symbol not in R−, it is a union of cylinders that can not be extended,
and has therefore 0 measure. On the other hand, if C only contains symbols in R−, then [C]
contains a cylinder [C′] of some length m that can be followed by a symbol ω0 in R. Since
Lm1[C′] is bounded from below on [ω0], we get νϕ[C] ≥ cνϕ[ω0], which is nonzero since ν
has full support in the recurrent part of Σ, by [11]. This shows that the support of νϕ is
exactly the set of infinite paths whose symbols all belong to R−.

The claims on the supports of hϕ and νϕ show that the probability measure µϕ = hϕνϕ is
supported on the recurrent part ofΣ. It coincides there with the Gibbs measure constructed
in [11]. Hence, (31) follows.

Finally, all the quantities in the statement of the theorem are constructed from the spectral
theory of the operator Lϕ. It then follows by standard arguments in regular perturbation
theory that they all vary continuously with ϕ in the Hölder topology. �

6.3. Gibbs states and Green’s function on spheres. Henceforth we denotes by µr the

Gibbs measure on Σ corresponding to the potential ϕr defined by equations (27) and (28).
Let λr,m be the probability measure on the sphere Sm ⊂ Γ with density proportional to
Gr(1, x)2, that is, such that

(32) λr,m(x) =
Gr(1, x)2

∑

y∈Sm
Gr(1, y)2

for all x ∈ Sm.

Recall that Sm is in one-to-one correspondence with the paths of length m in the automaton
A that begin at s∗; in particular, each x ∈ Sm corresponds uniquely to a path ω of length m
whose first step ω0 belongs to the set E∗ of edges originating from s∗. Thus, for each m ≥ 1,

the probability measure λr,m on Sm pulls back to a probability measure on Σm(E∗) ⊂ Σ,
which we also denote by λr,m. This measure has density proportional to

Gr(1, α∗(ω))2
= Gr(1, 1)2 exp{2Smϕr(ω)},

where ω ∈ Σm(E∗).

Proposition 6.2. For each r ∈ [1,R], the measures λr,m on Σ converge weakly as m → ∞ to a

probability measure λr on Σ, and this convergence holds uniformly in r, in the following sense: if

f : Σ→ R is continuous, then

(33) lim
m→∞

∫

f dλr,m =

∫

f dλr,
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uniformly for r ∈ [1,R]. Furthermore, there exist constants 0 < C = C(r; 2) < ∞ (depending
continuously on r) such that the normalizing constants in (32) satisfy

(34)
∑

x∈Sm

Gr(1, x)2 ∼ C exp
{

m Pr(2ϕr)
}

as m→∞.

Proof. We first prove (34). Let Lr be the Ruelle operator associated to the potential 2ϕr.

Denoting by ∅ the path of length 0 in Σ, and by 1E∗ : Σ→ R the function equal to 1 on paths
originating from s∗ and 0 otherwise, we have

Lm
r 1E∗(∅) =

∑

e2Smϕr(ω)
=

∑

Gr(1, α∗(ω))2/Gr(1, 1)2,

where the sum is over all paths ω of length m originating from s∗. Since α∗ induces a
bijection between such words and Sm, we get

∑

x∈Sm

Gr(1, x)2
= Gr(1, 1)2Lm

r 1E∗(∅).

By the Ruelle–Perron–Frobenius Theorem 6.1, this is asymptotic to

Gr(1, 1)2em Pr(2ϕr)

(∫

1E∗ dνr

)

hr(∅),

where νr and hr are the eigenmeasure and eigenfunction of Lr. Since (
∫

1E∗ dνr)hr(∅) > 0 by
Theorem 6.1, we obtain (34).

We now turn to λr,m. This quantity can also be expressed in terms of the transfer operator,
as follows:

(35)

∫

f dλr,m = Lm
r (1E∗ f )(∅)/Lm

r (1E∗)(∅).

It follows again from Theorem 6.1 that, if f is Hölder-continuous, then
∫

f dλr,m converges

to
∫

1E∗ f dνr/
∫

1E∗ dνr. Moreover, the convergence is uniform for r ∈ [1,R]. If f is merely
continuous, it can be uniformly approximated by a Hölder-continuous function, and the
same result follows. The limiting measure λr is the normalized restriction of νr to the paths
starting from s∗. �

Note 6.3. Virtually the same argument shows that for any θ ∈ R, as m→∞,
∑

x∈Sm

Gr(1, x)θ ∼ C exp
{

m Pr(θϕr)
}

.

The result (34) implies that Pr(2ϕr) < 0 for all r < R (see Lemma 7.2 below), and Note 1.7
implies that Pr(ϕr) > 0 for all r ∈ (1,R]. Since Pr(θϕr) varies continuously with θ, it follows
that for each r ∈ (1,R] there exists θ ∈ (1, 2] such that Pr(θϕr) = 0. It can also be shown that
the convergence of the sums is uniform in r for r ∈ [1,R].

Proposition 6.4. Let g : Σ→ R be any Hölder-continuous function. Then for each δ > 0

(36) lim
m→∞

λr,m



















ω ∈ Σm(E∗) :
∣

∣

∣

∣

1

m

m−1
∑

j=0

g ◦ σ j(ω) −
∫

g dµr

∣

∣

∣

∣

> δ



















= 0,

and the convergence is uniform in r ∈ [1,R].
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Proof. To prove the convergence (36) for any particular r ∈ [1,R] it suffices, by Chebychev’s
inequality, to prove that the variance of the average converges to zero as m→∞. Replacing

g by g −
∫

g dµr and ϕr by ϕr − Pr(ϕr), we may assume that
∫

g dµr = 0 and Pr(ϕr) = 0. We
then have

∫

















m−1
∑

j=0

g ◦ σ j

















2

dλr,m =

m−1
∑

j=0

∫

(g ◦ σ j)2 dλr,m + 2
∑

j<k

∫

g ◦ σ j · g ◦ σk dλr,m.

The first sum is bounded by m‖g‖2∞. In the second sum, for each j < k, we have, by (35),
∫

g ◦ σ j · g ◦ σk dλr,m = Lm
r (1E∗g ◦ σ j · g ◦ σk)(∅)/Lm

r 1E∗(∅)

= Lm−k
r (gLk− j

r (gL j
r1E∗))(∅)/Lm

r 1E∗(∅).
(The second equation follows from the identityL(u · v ◦ σ) = L(u) · v.) Theorem 6.1 implies
that Ln

r 1E∗ = νr[E∗]hr + O(e−εn), so the denominator Lm
r 1E∗(∅) converges as m → ∞ to a

positive constant νr[E∗]hr(∅), and

Lk− j
r (gL j

r1E∗)) = νr[E∗]Lk− j
r (ghr) +O(e−ε j) = νr[E∗]

(∫

ghr dνr

)

hr +O(e−ε(k− j)) +O(e−ε j).

Since
∫

ghr dνr =

∫

g dµr = 0, this is O(e−ε(k− j)) + O(e−ε j). Summing over j < k < m, we
obtain the bound

C
∑

j<k<m

(e−ε j
+ e−(k− j)) ≤ Cm.

This shows that the variance of the sum Smg is O(m) as m→∞, and so (36) follows.
Finally, all of the estimates obtained in the argument are uniform in r, since all spectral

data coming from Theorem 6.1 are already uniform. �

The ergodic average in (36) is expressed as an average over the orbit of a path in the
Cannon automaton, but it readily translates to an equivalent statement for ergodic averages
along the geodesic segment L = L(1, x), as we now explain. Consider a function f , defined
on the set of geodesic segments through 1 in the Cayley graph GΓ. We say that it is Hölder
continuous if | f (L) − f (L′)| ≤ C̺n for some ̺ < 1 whenever two geodesics L and L′ coincide
on the ball of radius n around 1. We put f (L) = 0 if L is a geodesic segment not containing
1. We have defined in (26) a map α associating to a (finite) bilateral path in Σ∗

Z
a geodesic

segment in GΓ. Therefore, f ◦ α is a function on Σ∗
Z

. It is Hölder continuous, and extends

to a Hölder continuous function on ΣZ.
There is a natural reference measure on the bilateral shift ΣZ: since the Gibbs measure

µr constructed on Σ in Theorem 6.1 is shift–invariant, it extends to a measure (denoted µZr )
on ΣZ.

Corollary 6.5. Let f be a Hölder continuous function on the space of geodesic segments through 1
in GΓ. Then for each δ > 0,

(37) lim
m→∞

λr,m



















x ∈ Sm :
∣

∣

∣

∣

m−1
∑

z∈L(1,x)

f (z−1L(1, x)) −
∫

f ◦ α dµZr

∣

∣

∣

∣

> δ



















= 0,

and the convergence is uniform in r ∈ [1,R].
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Proof. Let f̃ = f ◦α. If the function f̃ only depends on the positive coordinates of a symbolic
sequence, this statement directly reduces to Corollary 6.4 since Sm is in bijection with the
set of paths of length m starting from s∗. By a theorem of Livsits ([11], Lemma 1.6 — one
may either check that the proof still applies in our setting allowing finite paths, or add
cemeteries to reduce our situation to the classical setting) any Hölder continuous function

f̃ onΣZ is cohomologous to a Hölder continuous function g that depends only on the forward

coordinates, i.e., there exists a Hölder continuous function u such that g = f̃ + u − u ◦ σ.
Since it is equivalent to have (37) for f̃ or f̃ + u − u ◦ σ, the general case follows. �

7. Evaluation of the pressure at r = R

Proposition 6.2 implies that the sums
∑

y∈Sm
GR(1, y)2 grow or decay sharply exponentially

at exponential rate Pr(2ϕR). Consequently, to prove the relation (7) of Theorem 1.6 it suffices
to prove that this rate is 0.

Proposition 7.1. Pr(2ϕR) = 0.

The second assertion (8) of Theorem 1.6 also follows from Proposition 7.1, by the main
result of [26]. (If it could be shown that the cocycle ϕR defined by (28) above is nonlattice in
the sense of [26], then the result (8) could be strengthened from ≍ to ∼.)

The remainder of this section is devoted to the proof of Proposition 7.1. The first step, that
Pr(2ϕR) ≤ 0, is a consequence of the differential equations (9). These imply the following.

Lemma 7.2. For every r < R,

Pr(2ϕr) < 0, and so

Pr(2ϕR) ≤ 0.(38)

Proof. For r < R the Green’s function Gr(1, 1) is analytic in r, so its derivative must be
finite. Thus, by Proposition 1.9, the sum

∑

x∈Γ Gr(1, x)2 is finite. (The last term r−1Gr(1, 1) in
equation (9) remains bounded as r→ R− because GR(1, 1, ) < ∞.) Proposition 6.2 therefore
implies that Pr(2ϕr) must be negative. Since Pr(ϕ) varies continuously in ϕ, relative to the
Hölder norm, (38) follows. �

Proof of Proposition 7.1. To complete the proof it suffices, by the preceding lemma, to show
that Pr(2ϕR) cannot be negative. In view of Proposition 6.2, this is equivalent to showing
that

∑

x∈Sm
GR(1, x)2 cannot decay exponentially in m. This will be accomplished by proving

that exponential decay of
∑

x∈Sm
GR(1, x)2 would force

(39) Gr(1, 1) < ∞ for some r > R,

which is impossible since R is the radius of convergence of the Green’s function.
To prove (39), we will use the branching random walk interpretation of the Green’s

function discussed in sec. 2.4.2 Recall that a branching random walk on the Cayley graph
GΓ is specified by an offspring distribution Q; assume for definiteness that this is the
Poisson distribution with mean r > 0. At each step, particles first produce offspring
particles according to this distribution, independently, and then each of these particles
jumps to a randomly chosen neighboring vertex. If the mean of the offspring distribution
is r > 0, and if the branching random walk is initiated by a single particle at the root 1,

2Logically this is unnecessary — the argument has an equivalent formulation in terms of weighted paths,
using (13) — but the branching random walk interpretation seems more natural.
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then the mean number of particles located at vertex x at time n ≥ 1 is rnP1{Xn = x}. Thus,
in particular, Gr(1, 1) equals the expected total number of particle visits to the root vertex
1. The strategy is to show that if

∑

x∈Sm
GR(1, x)2 decays exponentially in m, then for some

r > R the branching random walk remains subcritical, that is, the expected total number of
particle visits to 1 is finite.

Recall that the Poisson distribution with mean r > R is the convolution of Poisson
distributions with means R and ε := r−R, that is, the result of adding independent random
variables U,V with distributions Poisson-R and Poisson-ε is a random variable U +V with
distribution Poisson-r. Thus, each reproduction step in the branching random walk can be
done by making independent draws U,V from the Poisson-R and Poisson-ε distributions.
Use these independent draws to assign colors k = 0, 1, 2, . . . to the particles according to the
following rules:

(a) The ancestral particle at vertex 1 has color k = 0.
(b) Any offspring resulting from a U−draw has the same color as its parent.
(c) Any offspring resulting from a V−draw has color equal to 1+the color of its parent.

Lemma 7.3. For each k = 0, 1, 2, . . . , the expected number of visits to the vertex y by particles of
color k is

(40) vk(y) = εk
∑

x1,x2,...xk∈Γ
GR(1, x1)















k−1
∏

i=1

GR(xi, xi+1)















GR(xk, y).

Proof. By induction on k. First, particles of color k = 0 reproduce and move according to the
rules of a branching random walk with offspring distribution Poisson-R, so the expected
number of visits to vertex y by particles of color k = 0 is GR(1, y), by Proposition 2.5. This
proves (40) in the case k = 0. Second, assume that the assertion is true for color k ≥ 0, and
consider the production of particles of color k + 1. Such particles are produced only by
particles of color k or color k + 1. Call a particle a pioneer if its color is different from that
of its parent, that is, if it results from a V−draw. Each pioneer of color k + 1 engenders its
own branching random walk of descendants with color k+ 1; the offspring distribution for
this branching random walk is the Poisson-R distribution. Thus, for a pioneer born at site
z ∈ Γ, the expected number of visits to y by its color–(k + 1) descendants is GR(z, y). Every
particle of color k + 1 belongs to the progeny of one and only one pioneer; consequently,
the expected number of visits to y by particles of color k + 1 is

∑

z∈Γ
uk+1(z)GR(z, y),

where uk+1(z) is the expected number of pioneers of color k + 1 born at site z during the
evolution of the branching process. But since pioneers of color k + 1 must be children of
parents of color k, and since for any particle the expected number of children of different
color is ε, it follows that

uk+1(z) = εvk(z).

Hence, formula (40) for k + 1 follows by the induction hypothesis. �

Recall that our objective is to show that if
∑

x∈Sm
GR(1, x)2 decays exponentially in m then

Gr(1, 1) < ∞ for some r = R + ε > R. The branching random walk construction exhibits
Gr(1, 1) as the expected total number of particle visits to the root vertex 1, and this is the
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sum over k ≥ 0 of the expected number vk(1) of visits by particles of color k. Thus, to
complete the proof of Proposition 7.1 it suffices, by Lemma 7.3, to show that for some ε > 0,

∞
∑

k=0

εk
∑

x1,x2,...xk∈Γ
GR(1, x1)















k−1
∏

i=1

GR(xi, xi+1)















GR(xk, 1) < ∞.

This follows directly from the next lemma. �

Lemma 7.4. Assume that Ancona’s inequalities (5) hold at the spectral radius R with a constant
CR < ∞. If the sum

∑

x∈Sm
GR(1, x)2 decays exponentially in m, then there exist constants δ > 0

and C, ̺ < ∞ such that for every k ≥ 1,

(41)
∑

x1 ,x2,...xk∈Γ
GR(1, x1)















k−1
∏

i=1

GR(xi, xi+1)















(1 + δ)|xk |GR(xk, 1) ≤ C̺k.

Here |y| = d(1, y) denotes the distance of y from the root 1 in the word metric.

Proof. Denote by Hk(δ) the left side of (41); the strategy will be to prove by induction on
k that for sufficiently small δ > 0 the ratios Hk+1(δ)/Hk(δ) remain bounded as k → ∞.
Consider first the sum H1(δ): by the hypothesis that

∑

x∈Sm
GR(1, x)2 decays exponentially

in m and the symmetry Gr(x, y) = Gr(y, x) of the Green’s function, for all sufficiently small
δ > 0

H1(δ) :=
∑

x∈Γ
GR(1, x)2(1 + δ)|x| < ∞.

Now consider the ratio Hk+1(δ)/Hk(δ) . Fix vertices x1, x2, . . . , xk, and for an arbitrary
vertex y = xk+1 ∈ Γ, consider its position vis a vis the geodesic segment L = L(1, xk) from the
root vertex 1 to the vertex xk. Let z ∈ L be the vertex on L nearest y (if there is more than
one, choose arbitrarily). By the triangle inequality,

|y| ≤ |z| + d(z, y).

Because the group Γ is word-hyperbolic, all geodesic triangles — in particular, any triangle
whose sides consist of geodesic segments from y to z, from z to xk, and from xk to y, or
any triangle whose sides consist of geodesic segments from y to z, from z to 1, and from 1
to y— are ∆-thin, for some ∆ < ∞ (cf. [20] or [23]). Hence, any geodesic segment from xk

to y must pass within distance 8∆ of the vertex z. Therefore, by the Harnack and Ancona
inequalities (15) and (5), for some constant C∗ = CRC32∆

Harnack
< ∞ independent of y, xk,

GR(y, 1) ≤ C∗GR(y, z)GR(z, 1) and

GR(y, xk) ≤ C∗GR(y, z)GR(z, xk).

On the other hand, by the log-subadditivity of the Green’s function,

GR(1, z)GR(z, xk) ≤ C′GR(xk, 1).

It now follows that

(1 + δ)|y|GR(xk, y)GR(y, 1) ≤ C2
∗C
′(1 + δ)|z|+d(z,y)GR(z, xk)GR(z, y)GR(y, z)GR(z, 1)

≤ C2
∗C
′(1 + δ)|z|+d(z,y)GR(xk, 1)GR(z, y)2.
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Denote by Γ(z) the set of all vertices y ∈ Γ such that z is a closest vertex to y in the geodesic
segment L. Then for each z ∈ L,

∑

y∈Γ(z)

(1 + δ)d(z,y)GR(z, y)2 ≤
∑

y∈Γ
(1 + δ)|y|GR(1, y)2

= H1(δ).

Finally, because L is a geodesic segment from 1 to xk there is precisely one vertex z ∈ L

at distance n from xk for every integer 0 ≤ n ≤ |xk|, so
∑

z∈L(1 + δ)|z| ≤ Cδ(1 + δ)
|xk | where

Cδ = (1 + δ)/(2 + δ). Therefore,

Hk+1(δ) ≤ C2
∗C
′CδH1(δ)Hk(δ). �

8. Critical Exponent of the Green’s function at the Spectral Radius

In this section we prove Theorem 1.10, using the thermodynamic formalism established
in the preceding sections and the Ancona inequality (5).

8.1. Reduction to a simple case. Consider first the case x = y = 1 of Theorem 1.10. The
system of differential equations (9) implies that the growth of the derivative dGr(1, 1)/dr as
r→ R− is controlled by the growth of the quadratic sums

∑

x∈Γ Gr(1, x)2. To show that the
Green’s function has a square root singularity at r = R, as asserted in (10), it will suffice to
show that the (approximate) derivative behaves as follows as r→ R−:

Proposition 8.1. For some 0 < C < ∞,

(42) η(r) :=
∑

x∈Γ
Gr(1, x)2 ∼ C/

√
R − r as r→ R − .

This will follow from Corollary 8.4 below. The key to the argument is that the growth of
η(r) as r→ R− is related by Proposition 6.2 to that of Pr(2ϕr): in particular, Proposition 7.1
implies that η(r)→∞ as r→ R−, so the dominant contribution to the sum (42) comes from
vertices x at large distances from the root vertex 1. Consequently, by equation (34),

η(r) =

∞
∑

m=0

∑

x∈Sm

Gr(1, x)2 ∼ C(R, 2)/(1 − exp{Pr(2ϕr)}) as r→ R − .

Before beginning the analysis of η(r) near the singularity r = R we will show that the
relation (42) implies similar asymptotic behavior for the derivatives of all of the Green’s
functions Gr(x, y).

Corollary 8.2. There exist constants 0 < C1,y < ∞ such that

(43)
∑

x∈Γ
Gr(1, x)Gr(x, y) ∼ C1,y/

√
R − r as r→ R − .

Proof. Recall the probability measures λr,m on the spheres Sm with densities proportional
to Gr(1, x)2 (see (32)), and recall that these probability transfer to probability measures,
also denoted by λr,m, on Σm(E∗), using the correspondence Sm ↔ Σm(E∗). By Proposition
6.2, as m → ∞ the measures λr,m converge weakly to a probability measure λr, and this
convergence is uniform for r ∈ [1,R], in the sense specified by (33). These measures are
related to the sum in (43) as follows:

∑

x∈Sm

Gr(1, x)Gr(x, y) =
∑

x∈Sm

Gr(1, x)2 Gr(x, y)

Gr(1, x)
=















∑

x∈Sm

Gr(1, x)2















∫

Gr(x, y)

Gr(1, x)
dλr,m(x).
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As x → ξ ∈ ∂Γ the ratios Gr(x, y)/Gr(1, x) converge to the Martin kernel Kr(y, ξ), and the
convergence is uniform, by Theorem 1.2. Hence, the weak convergence λr,m ⇒ λr implies
that

lim
m→∞

∫

Gr(x, y)

Gr(1, x)
dλr,m(x) := C1,y(r)

exists, and the convergence is uniform for r ∈ [1,R]. Therefore, the corollary follows from
Proposition 8.1. �

8.2. Analysis of the function η(r) near the singularity r = R. To analyze the behavior of
η(r) (or equivalently that of Pr(2ϕr)) as r → R−, we use the differential equations (9) to
express the derivative of η(r) as

(44)
dη

dr
=

∑

x∈Γ



















∑

y∈Γ
2r−1Gr(1, x)Gr(1, y)Gr(y, x)



















− 2r−1Gr(1, x)2.

(Note: The implicit interchange of d/dr with an infinite sum is justified here because the
Green’s functions Gr(u, v) are defined by power series with nonnegative coefficients.) For
r ≈ R, the sum

∑

x∈Γ is dominated by the terms corresponding to vertices x at large distances
from the root 1. Because the second term 2r−1Gr(1, x)2 in (44) remains bounded as r→ R−,
it is asymptotically negligible compared to the first term

∑

y and so we can ignore it in
proving (42).

The strategy for dealing with the inner sum
∑

y∈Γ in (44) will be similar to that used in
the proof of Lemma 7.4 above. For each x, let L = L(1, x) be the unique geodesic segment
from the root to x that corresponds to a path in the Cannon automaton, and partition the
sum

∑

y∈Γ according to the nearest vertex z ∈ L:

(45)
∑

y∈Γ
=

∑

z∈L

∑

y∈Γ(z)

where Γ(z) is the set of all vertices y ∈ Γ such that z is a closest vertex to y in the geodesic
segment L. (If for some y there are several vertices z1, z2, . . . on L all closest to y, put y ∈ Γ(zi)
only for the vertex zi nearest to the root 1.) By the log-subadditivity of the Green’s function
and Theorem 1.3 (the Ancona inequalities) there exists a constant C < ∞ independent of
1 ≤ r ≤ R such that for all choices of x ∈ Γ, z ∈ L(1, x), and y ∈ Γ(z),

Gr(1, x)Gr(1, y)Gr(y, x) ≤ CGr(1, z)2Gr(z, x)2Gr(z, y)2

≤ CGr(1, x)2Gr(z, y)2;
(46)

consequently, for each x ∈ Γ,
∑

y∈Γ
Gr(1, x)Gr(1, y)Gr(y, x) ≤

∑

z∈L(1,x)

∑

y∈Γ(z)

CGr(1, x)2Gr(z, y)2(47)

≤
∑

z∈L(1,x)

∑

y∈Γ
CGr(1, x)2Gr(z, y)2

= CGr(1, x)2(|x| + 1)η(r).

Proposition 8.3 below asserts that there is a positive constant ξ(r) such that when C is
replaced by ξ(r) this inequality is in fact an approximate equality for “most” x ∈ Sm,
provided m is large and r is near R. This implies that for large m the contribution to the
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double sum in (44) with |x| = m is dominated by those x that are “generic” for the probability
measure λr,m on Sm with density proportional to Gr(1, x)2 (cf. sec. 6.3).

Proposition 8.3. For each r ≤ R and each m = 1, 2, . . . let λr,m be the probability measure on the
sphere Sm with density proportional to Gr(1, x)2. There is a continuous, positive function ξ(r) of
r ∈ [1,R] such that for each ε > 0, and uniformly for 1 ≤ r < R,

(48) lim
m→∞

λr,m



















x ∈ Sm :
∣

∣

∣

∣

1

m

∑

y∈Γ
Gr(1, y)Gr(y, x)/Gr(1, x) − ξ(r)η(r)

∣

∣

∣

∣

> εη(r)



















= 0.

This will be deduced from Corollary 6.5 — see section 8.3 below. Given Proposition 8.3,
Proposition 8.1 and Theorem 1.10 follow easily, as we now show.

Corollary 8.4. There exists a positive, finite constant C such that as r→ R−,

(49)
dη

dr
∼ Cη(r)3.

Consequently,

(50) η(r)−2 ∼ C(R − r)/2.

Proof. We have already observed that as r near R, the dominant contribution to the sum
(44) comes from vertices x far from the root. Proposition 8.3 and the uniform upper bound
(47) on ergodic averages imply that as r→ R−,

dη

dr
∼

∑

x∈Γ

∑

y∈Γ
2r−1Gr(1, x)Gr(1, y)Gr(y, x) ∼ 2R−1ξ(R)η(r)

∞
∑

m=1

m
∑

x∈Sm

Gr(1, x)2

∼ C′η(r)/(1 − exp{Pr(2ϕr)})2

∼ Cη(r)3

for suitable positive constants C,C′. This proves (49). The relation (50) follows directly
from (49). �

8.3. Proof of Proposition 8.3. This will be accomplished by showing that the average in
(48) can be expressed approximately as an ergodic average of the form (37), to which the
result of Corollary 6.5 applies. The starting point is a version of the decomposition (45),
but using a continuous partition of unity instead of the characteristic functions of the sets
Γ(z), since we will need a continuous extension to the boundary of the group.

Lemma 8.5. For K large enough, we can associate to any geodesic segment L in the Cayley graph
of length 2K + 1 centered at 1 a function γL : Γ→ [0, 1] with the following properties:

(1) The function γL extends continuously to Γ = Γ ∪ S1.
(2) For any y ∈ Γ, if πL(y) is the set of points on L closest to y, then γL(y) = 0 unless πL(y) is

contained in the ball of radius K/4 centered at 1.
(3) For any bi-infinite geodesic L′ the sum of the functions γL over all subsegments L of L′ of

length 2K + 1 is identically equal to 1. More formally, for all y ∈ Γ,

(51)
∑

i∈Z
γL′(i)−1L′[i−K,i+K](L

′(i)−1y) = 1.
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If γL were defined to be the function satisfying γL(y) = 1 if the closest point to y on L
is 1, and 0 otherwise (with ties resolved as explained in Paragraph 8.2) then the last two
last properties would be satisfied, but γL would not in general extend continuously to the
boundary.

Proof. Let K be even. For any geodesic segment L0 of length K + 1 centered around 1,
consider the set A of points y such that πL0 (y) contains a point at distance at most K/10 of
1, and the set B of points y such that πL0 (y) contains a point at distance at least K/5 of 1.
By the hyperbolicity of the group Γ, if K is large enough, the two sets A,B are disjoint, and

their closures in Γ are still disjoint. Therefore, there exists a continuous function 0 ≤ gL0 ≤ 1

on Γ equal to 1 on A and to 0 on B.
If L is a geodesic segment of length 2K + 1, let γL be equal to gL[−K/2,K/2] divided by the

sum of the functions gL̃ along every subsegment L̃ of L of length K + 1. Formally,

γL(y) = gL[−K/2,K/2](y)/
∑

gL(i)−1L[−K/2+i,K/2+i](L(i)−1y).

The sum in the denominator is ≥ 1 on a neighborhood of the support of gL[−K/2,K/2] by
construction, so the function γL is well defined and continuous. All the properties of the
lemma follow easily. �

Let us now define for r ∈ [1,R) a function fr on geodesic segments L through 1, as follows.
Let a and b be the endpoints of L. If d(1, a) ≤ K or d(1, b) ≤ K, let fr(L) = 0. Otherwise, let

fr(L) = η(r)−1
∑

y∈Γ
γL[−K,K](y)Gr(a, y)Gr(y, b)/Gr(a, b).

By (51), for all x ∈ Γ,

η(r)
∑

z∈L(1,x)

fr(z
−1L(1, x)) =

∑

y∈Γ
cx(y)Gr(1, y)Gr(y, x)/Gr(1, x),

where the coefficient cx(y) ∈ [0, 1] is equal to 1 for all points y but those whose projections
on L(1, x) are close to 1 or x. By (46), the contribution of these points is bounded by Cη(r).
Hence,

∑

y∈Γ
Gr(1, y)Gr(y, x)/Gr(1, x) = η(r)

∑

z∈L(1,x)

fr(z
−1L(1, x)) +O(η(r)).

This quantity will be estimated thanks to Corollary 6.5 once the following lemma is estab-
lished.

Lemma 8.6. The functions fr are uniformly bounded and Hölder-continuous for r ∈ [1,R), and
they converge in the Hölder topology to a function fR as r→ R−.

The notion of Hölder continuity for functions of geodesic segments was defined in the
discussion before Corollary 6.5.

Proof. By definition of γL, any geodesic segment from a point y with γL(y) > 0 to the
endpoints of the geodesic segment L (or a geodesic extension of it) passes within bounded
distance of 1. Arguing as in (46), one deduces that fr is uniformly bounded by a constant
C.
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Consider now two geodesics L1 and L2 around 1, and assume that they coincide on a
neighborhood of 1 of size n > K. In particular, their restriction L to the ball B(1,K) coincide.
Let a1 and b1 (resp. a2 and b2) be the endpoints of L1 (resp. L2). For each y ∈ Γwith γL(y) > 0,

Gr(a1, y)Gr(y, b1)/Gr(a1, b1)

Gr(a2, y)Gr(y, b2)/Gr(a2, b2)
=

Gr(a1, y)/Gr(a1, b1)

Gr(a2, y)/Gr(a2, b1)
· Gr(y, b1)/Gr(a2, b1)

Gr(y, b2)/Gr(a2, b2)
.

Since the geodesics from a1 or a2 to b1 or y are fellow traveling during a time at least n − C
by definition (see Section 4.2), Theorem 4.6 shows that the first factor is bounded by 1+C̺n

for some ̺ < 1. The second factor is bounded in the same way. Multiplying by η(r)−1γL(y)
and summing over y, we obtain fr(L) ≤ (1 + C̺n) fr(L

′). Since fr is bounded, this yields
fr(L)− fr(L

′) ≤ C̺n. Exchanging the role of L and L′, we get | fr(L)− fr(L
′)| ≤ C̺n. This shows

that the functions fr are uniformly Hölder-continuous.
Next we show that the functions fr converge in the Hölder topology when r → R−. It

suffices to show that they converge pointwise, because the uniform convergence follows
from the uniform Hölder bounds, and this implies convergence in the Hölder topology
for any exponent strictly less than the initial exponent. Fix a geodesic segment L with
endpoints a and b: we will show that fr(L) converges when r→ R−. We have

fr(L) =
1

Gr(a, b)
η(r)−1

∑

m

∑

y∈Sm

Gr(1, y)2γL[−K,K](y)
Gr(a, y)

Gr(1, y)

Gr(b, y)

Gr(1, y)

=
1

Gr(a, b)
η(r)−1

∑

m

















∑

y∈Sm

Gr(1, y)2

















∫

Fr(y) dλr,m(y),

where

Fr(y) = γL[−K,K](y)
Gr(a, y)

Gr(1, y)

Gr(b, y)

Gr(1, y)

is a continuous function on Γ which extends continuously to Γ. Moreover, Fr converges
uniformly when r→ R− to a limit FR.

By Proposition 6.2, the measures λr,m converge as m→∞ to a measure λr supported on
∂Γ, uniformly in r ∈ [1,R]. On the other hand, the influence of bounded m in the above

sum tends to 0 when r→ R− since η(r) =
∑

m

(

∑

y∈Sm
Gr(1, y)2

)

tends to infinity. Therefore,

lim
r→R−

fr(L) =
1

Gr(a, b)

∫

∂Γ
FR dλR. �

Lemma 8.6 and Corollary 6.4 imply that the convergence (48) holds with

ξ(r) =

∫

( fr ◦ α) dµZr .

That ξ(r) varies continuously with r for r ≤ R follows from the continuous dependence of
the Gibbs state µZr with r (Theorem 6.1). Thus, to complete the proof of Proposition 8.3, it
remains only to show that ξ(R) > 0. For this it suffices to prove that there exists C > 0 such
that for all r near R and for x with |x| = m, then

(52)
∑

y∈Γ
Gr(1, y)Gr(y, x)/Gr(1, x) ≥ Cmη(r).

This sum can be partitioned by decomposing Γ as
⋃

Γ(z j) for z j ∈ L(1, x). Hence, to prove
(52) it is enough to show that each sufficiently long block of consecutive points z j on the
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geodesic segment L = L(1, x) contributes at least an amount Cη(r) to the sum. This follows
from the next lemma.

Lemma 8.7. There exist K < ∞ and C > 0 independent of 1 ≤ r < R so that the following is true.
For any geodesic segment L of length ≥ K and any K consecutive vertices z1, z2, . . . , zK on L,

(53)

K
∑

j=1

∑

y∈Γ(z j)

Gr(z j, y)2 ≥ Cη(r).

We will deduce this from the following statement.

Lemma 8.8. Assume that the Cayley graph GΓ is embedded in the hyperbolic plane in such a way
that the group identity 1 ∈ Γ is identified with the center O of the Poincaré disk. Then there exists
C > 0 such that for any halfplane H whose boundary is a hyperbolic geodesic through O, and any
1 ≤ r ≤ R,

(54)
∑

x∈Γ : xO∈H
Gr(1, x)2 ≥ Cη(r).

Proof. Because Γ is co-compact, it has no parabolic elements and at least one (and therefore
infinitely many) hyperbolic element. Furthermore, Γ acts ergodically on ∂D × ∂D, so the
set consisting of all pairs ξ±(x) of fixed points of hyperbolic elements x is dense in ∂D×∂D.
In particular, for any two antipodal points ζ+, ζ− on ∂D there are hyperbolic elements xn

such that x±n O→ ζ± (in the Euclidean metric onD ∪ ∂D) as j→∞.
Let H be a halfplane whose boundary is a hyperbolic geodesic γH through O, and let

ζ± be antipodal points on ∂D distinct from the endpoints of γH. Precisely one of these
antipodal points – say ζ+ – will lie in the closure of H. Let xn be a sequence of hyperbolic
elements such that x±n O→ ζ±. If y ∈ Γ is such that xn yO < H, for some large n, then by the
thin triangle property the geodesic segment from xnO to xn yO must ε−shadow the geodesic
segment from xnO to O, for some constant ε < ∞ independent of xn and y. Hence, by the
translation invariance of the metric, the geodesic segment from O to yO must ε−shadow
the geodesic segment from O to x−1

n O. Now suppose that ζ± and ξ± are distinct antipodal
pairs, neither coinciding with the endpoints of γH, and let xn, yn be sequences of hyperbolic
elements of Γ such that x±n O → ξ± and y±n O → ζ±. Then for all n sufficiently large and all
y ∈ Γ either xnyO ∈ H or ynyO ∈ H, because d(x−1

n , y
−1
n )→∞.

By placing three pairs of antipodal points so that the six points are equally spaced along
the circle ∂D, we can arrange that every halfplane H bounded by a hyperbolic geodesic
γH through O will have at least two of the six points in the interior of the boundary arc
∂H ⊂ ∂D. Consequently, there exist three hyperbolic elements hi ∈ Γ such that for every
halfplane H and every y ∈ Γ, at least one of the six points h±

i
yO lies in H. It now follows by

the trivial inequality Gr(1, uv) ≥ Gr(1, u)Gr(1, v) that
∑

x∈Γ : xO∈H
Gr(1, x)2 ≥ (1 ∧min

i≤3
Gr(1, hi)

2)
∑

x∈Γ
Gr(1, x)2. �

Proof of Lemma 8.7. Let L be a geodesic segment in the Cayley graph (relative to the graph
distance) of length ≥ K, and let z1, . . . , zK be any K consecutive vertices along L. By the
hyperbolicity of GΓ, together with the equivalence of the word and hyperbolic metrics, there
is a constant K < ∞ such that for any choice of the geodesic segment L and K consecutive
vertices zi along L, the region ∪K

i=1
Γ(zi) will contain a hyperbolic halfplane H (actually, its

intersection with ΓO) whose boundary is a hyperbolic geodesic that passes through exactly
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one vertex gO located at a (graph) distance ≤ K from z1. The inequality (53) now follows
routinely from Lemma 8.8, by the Harnack inequality (15) and the translation invariance
of the Green’s function. �

9. Asymptotics of transition probabilities

Theorem 1.11, which gives the asymptotics of transition probabilities in a co-compact
Fuchsian group, is a direct consequence of the asymptotics of the Green’s function given
by Theorem 1.10 and of the following general statement.

Theorem 9.1. Consider a symmetric irreducible aperiodic random walk in a countable group Γ. Let
R denote the radius of convergence of the Green’s function Gz(x, y) =

∑

znpn(x, y). Assume that
there exists β > 0 such that for all x, y ∈ Γ,
(55) G′r(x, y) ∼ Cx,y/(R − r)β as r ↑ R,

for some Cx,y > 0. Then there exist constants C′x,y > 0 such that

(56) pn(x, y) ∼ C′x,yR−nnβ−2 as n→∞.
For the proof, we will rely on the following tauberian theorem of Karamata (see e.g. [6],

Corollary 1.7.3 or [17], Theorem XII.5.5).

Theorem 9.2. Let A(z) =
∑

anzn be a power series with nonnegative coefficients an and radius of
convergence 1. Assume that, when s tends to 1 along the real axis,

∑

ansn ∼ c/(1 − s)β with β > 0.
Then

∑n
k=1 ak ∼ cnβ/Γ(1 + β).

Under the assumptions of Theorem 9.1, this implies asymptotics for
∑n

k=1 kRkpk(x, y).
Asymptotics of Rnpn(x, y) would readily follow if this sequence were non-increasing (see
Lemma 9.5 below). This is not the case in general. However, we will show that for
a symmetric, aperiodic random walk the coefficients can be decomposed as Rnpn(x, y) =
qn(x, y) + O(e−δn) with qn(x, y) non-increasing and δ > 0; this will allow us to deduce the
local limit theorem (56).

9.1. Spectral analysis of the transition probability operator. The hypothesis that the
random walk is symmetric implies that the Markov operatorP of the random walk, acting
on the space ℓ2(Γ) by Pu(x) =

∑

p(x, y)u(y), is self-adjoint and bounded.

Theorem 9.3. Assume that the random walk is symmetric, irreducible, and aperiodic. Then there
exists ε > 0 such that the spectrum of the Markov operator P is contained in the interval [−R−1(1+
ε)−1,R−1]. Consequently, for all x, y ∈ Γ the Green’s function Gz(x, y) extends holomorphically to
the doubly slit plane C \ ((−∞,−R(1 + ε)] ∪ [R,∞)).

Proof. It is well known (see, for instance, [39]) that the spectrum of P is contained in the
interval [−R−1,R−1], where R is the common radius of convergence of the Green’s functions.
Hence, by the spectral theorem, for any function u ∈ ℓ2(Γ) there exists a nonnegative
measure ν = νu on [−R−1,R−1], with total mass ‖ν‖ = ‖u‖2

2
, such that for any n ∈N

(57) 〈u,Pnu〉 =
∫

tn dν(t),

and for any complex number z of modulus |z| > R−1,

(58) Ru(z) := 〈u, (z − P)−1u〉 =
∫

1

z − t
dν(t).



38 SÉBASTIEN GOUËZEL AND STEVEN P. LALLEY

To prove the theorem it suffices to show that for some ε > 0 the spectral measures νu, where
u ∈ ℓ2(Γ), all have support contained in [−R−1(1 + ε)−1,R−1].

Formula (58) exhibits the resolvent function Ru(z) as the Stieltjes transform of the measure
ν = νu. Since ν is nonnegative and has finite total mass, its Stieltjes transform Ru(z) extends

holomorphically to C \ [−R−1,R−1], and it satisfies the reflection identity Ru(z) = Ru(z).
According to the Stieltjes inversion theorem (see, e.g., [36]), for any two real numbers x1 < x2,
neither of which is an atom of ν,

(59) ν[x1, x2] = − lim
y→0
ℑ 1

π

∫ x2

x1

Ru(x + iy) dx

whereℑdenotes imaginary part. Suppose that Ru(z) is analytic in a neighborhood of [x1, x2].
Since the function Ru satisfies the reflection identity, it must be real-valued on [x1, x2], and
so it follows from the inversion formula (59) that ν[x1, x2] = 0. Thus, to complete the proof
of the theorem it suffices to show that there is some δ > 0 such that for every u ∈ ℓ2(Γ), the
resolvent function Ru(z) has an analytic continuation to [−R−1,−R−1 + δ].

Observe that in the special case where u = I{1} is the indicator function of the group

identity, z−1Ru(z−1) = Gz(x, x) is the Green’s function, and in the case where u = I{x,y} is the

indicator of a two-point set, z−1Ru(z−1) = 2Gz(x, x)+ 2Gz(x, y). Hence, the Green’s functions
extend holomorphically to C \ ((−∞,−R] ∪ [R,∞)). According to a theorem of Cartwright
[15], for any aperiodic, symmetric random walk on a countable group the only singularity
of the Green’s functions Gz(x, y) on the circle |z| = R is z = R. In fact, his proof shows that
there is an open neighborhood U of {z : |z| = R} \ {R} to which all of the functions Gz(x, y)
extend holomorphically. It follows that for δ > 0 sufficiently small, the resolvent function
Ru(z) extends holomorphically to [−R−1,−R−1 + δ] for all functions u that are indicators of
either one-point or two-point sets, and so the corresponding spectral measures attach zero
mass to this interval. Since the spectral measure νu of any function u with finite support
can be written as a linear combination of one-point or two-point indicators, it follows that
they likewise attach zero mass to the interval [−R−1,−R−1 + δ]. Finally, for any u ∈ ℓ2 there
is a sequence of finitely supported functions un that converge to u in ℓ2, and for any such
sequence the corresponding spectral measures νun converge weakly to νu. (This follows,
for instance, from (57), which implies convergence of moments.) Therefore, for any u ∈ ℓ2
the spectral measure has support contained in [−R−1 + δ,R−1]. �

Corollary 9.4. Consider a symmetric, irreducible, aperiodic random walk on a countable group, and
let R be the radius of convergence of the Green’s function. Then Rnpn(1, 1) = qn+O(e−δn), where qn is
nonincreasing and δ > 0. Furthermore, for every x , 1, Rnpn(1, 1)+Rnpn(1, x) = qn(1, x)+O(e−δn),
where qn(1, x) is nonincreasing.

Proof. Let u be the indicator function of the singleton {1}, and let ν = νu be the corresponding
spectral measure. Then by (57),

pn(1, 1) = 〈u,Pnu〉 =
∫

tn dν(t) =

∫

tn dν+(t) +

∫

tn dν−(t),

where ν+ and ν− are the restrictions of ν to the positive and nonpositive reals, respectively.

The sequence qn = Rn
∫

tn dν+(t) is clearly nonincreasing in n, since ν+ is supported by the

interval (0,R−1]. By Theorem 9.3, the support of ν− is contained in [−R−1(1 + ε)−1, 0] for
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some ε > 0. Hence,
∫

tn dν−(t) = O(R−n(1 + ε)−n).

This proves the first assertion. A similar argument proves the second assertion, since

2pn(1, 1) + 2pn(1, x) =

∫

tn dν1,x(t)

where ν1,x is the spectral measure of the indicator function of the two-point set {1, x}. �

9.2. Proof of Theorem 9.1. Consider first the case x = y = 1. By Corollary 9.4, we may

write Rkpk(1, 1) = qk + rk where rk is exponentially small and qk is non-increasing. Thus, to
prove the asymptotic formula (56) for x = y = 1, it suffices to prove that

qn ∼ Cnβ−2 as n→∞.
For s ∈ [0, 1), let r = Rs and

A(s) = rGr(1, 1)′ =
∑

nrnpn(1, 1) =
∑

sn · nRnpn(1, 1).

By hypothesis, A(s) ∼ C/(1 − s)β when s ↑ 1. Since Rkpk(1, 1) = qk + rk with rk exponentially

decaying in k, it follows that
∑

k kqksk ∼ C/(1 − s)β as s ↑ 1. Therefore, Karamata’s theorem
gives

(60)

n
∑

k=1

kqk ∼ Cnβ.

The desired result now follows from the next lemma.

Lemma 9.5. Let qn be a nonnegative sequence that satisfies (60) for some β > 0. If qn is non-
increasing, then as n→∞,

qn ∼ Cβnβ−2.

Proof. Fix ε > 0. Writing Sn =
∑n−1

k=0 kqk, we have

εn(1 − ε)nqn ≤
n−1
∑

k=(1−ε)n
kqn ≤

n−1
∑

k=(1−ε)n
kqk = Sn − S(1−ε)n = C(nβ − (1 − ε)βnβ + o(nβ)).

Therefore,

qn ≤ Cnβ−2 1 − (1 − ε)β + o(1)

(1 − ε)ε .

Letting ε tend to 0, we obtain lim sup qn/nβ−2 ≤ Cβ. Using the interval k ∈ [n, (1 + ε)n], we
control the inferior limit in the same way, and so we obtain qn ∼ Cβnβ−2. �

Finally, consider the general case x, y ∈ Γ. Since we have already proved the formula
(56) in the special case x = y, we may assume that x , y, and by homogeneity, x = 1. By
Corollary 9.4, there is a non-increasing sequence qk(1, y) and an exponentially decaying

sequence rk(1, y) such that Rkpk(1, 1) + Rkpk(1, y) = qk(1, y) + rk(1, y). Since the formula (56)
holds for x = y = 1, to prove it for x = 1 , y it will suffice to show that

(61) qk(1, y) ∼ (C′1,y + C′1,1)kβ−2

for some constant C′
1,y

. (Note: By the Harnack inequality, the sequences pk(1, 1) and pk(1, y)

are comparable, so if this holds then C′
1,y

must be positive.)
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By hypothesis (55),

∑

k

skkRk−1(pk(1, 1) + pk(1, y)) ∼
C1,1 + C1,y

(1 − s)β

as s ↑ 1, and so, as in the special case considered earlier, the generating function
∑

k kqk(1, y)sk

satisfies the hypotheses of Karamata’s theorem. Thus,

n
∑

k=1

kqk(1, y) ∼ Cnβ,

and so the relation (61) follows from Lemma 9.5. �
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