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The almost sure invariance principle for unbounded functions of

expanding maps

J. Dedecker? S. Gouézell and F. Merlevedet

Abstract

We consider two classes of piecewise expanding maps T of [0,1]: a class of uniformly
expanding maps for which the Perron-Frobenius operator has a spectral gap in the space
of bounded variation functions, and a class of expanding maps with a neutral fixed point
at zero. In both cases, we give a large class of unbounded functions f for which the
partial sums of f o 7" satisfy an almost sure invariance principle. This class contains

piecewise monotonic functions (with a finite number of branches) such that:
e For uniformly expanding maps, they are square integrable with respect to the

absolutely continuous invariant probability measure.

e For maps having a neutral fixed point at zero, they satisfy an (optimal) tail condi-

tion with respect to the absolutely continuous invariant probability measure.

Mathematics Subject Classifications (2000): 37E05, 37C30, 60F15.

Key words: Expanding maps, intermittency, strong invariance principle.

1 Introduction and main results

Our goal in this article is to prove the almost sure invariance principle for several classes of
one-dimensional dynamical systems, under very weak integrability or regularity assumptions.
We will consider uniformly expanding maps, and maps with an indifferent fixed point, as
defined below.

Definition 1.1. A map T : [0,1] — [0,1] is uniformly expanding if it belongs to the class C
defined in Broise (1996), Section 2.1 page 11, and if
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1. There is a unique absolutely continuous invariant probability measure v, whose density

h s such that %1h>0 has bounded variation.
2. The system (T, v) is mizing in the ergodic theoretic sense.

Definition 1.2. A map T :[0,1] — [0, 1] is a generalized Pomeau-Manneville map (or GPM
map) of parameter v € (0,1) if there exist 0 = yo < y1 < -+ < yq = 1 such that, writing
Iy, = (Yr, Yrs1),

1. The restriction of T to I, admits a C' extension Ty to 1.
2. Fork > 1, Ty is C? on I, and T > 1.

8. Tigy is C* on (0,y1], with Tiy(x) > 1 for x € (0,1], T(;)(0) = 1 and Ty (z) ~ cx !

when x — 0, for some ¢ > 0.
4. T 1s topologically transitive.

For such maps, almost sure invariance principles with good remainder estimates have been
established by Melbourne and Nicol (2005) for Holder observables, and by Merlevede and Rio
(2011) under rather mild integrability assumptions. For instance, for uniformly expanding
maps, Merlevede and Rio (2011) obtain such a result for a class of observables f in LP(v) for p >
2. This leaves open the question of the boundary case f € L?(v). The corresponding boundary
case for GPM maps has been studied in Dedecker, Gouézel and Merlevede (2010): we proved a
bounded law of the iterated logarithm (i.e., almost surely, lim sup Z;:Ol foT!/\/nloglogn <
A < 4+00), but we were not able to obtain the almost sure invariance principle.

Our goal in the present article is to solve this issue by combining the arguments of the
two above papers: we will approximate a function in the boundary case by a function with
better integrability properties, use the almost sure invariance principle of Merlevede and Rio
(2011) for this better function, and show that the bounded law of the iterated logarithm makes
it possible to pass the results from the better function to the original function. This is an
illustration of a general method in mathematics: to prove results for a wide class of systems,
it is often sufficient to prove results for a smaller (but dense) class of systems, and to prove
uniform (maximal) inequalities. This strategy gives the almost sure invariance principle in the
boundary case for GPM maps (see Theorem below). In the case of uniformly expanding
maps the almost sure invariance principle for a dense set of functions has been proved by
Hofbauer and Keller (1982) for a smaller class than that given in Definition [[I] and follows
from Merlevede and Rio (2011) for the class of uniformly expanding maps considered in the
present paper. However, the bounded law of the iterated logarithm for the boundary case is

not available in the literature: we will prove it in Proposition [5.3]

We now turn to the functions for which we can prove the almost sure invariance principle.

The main feature of our arguments is that they work with the weakest possible integrability



condition (merely L?(v) for uniformly expanding maps), and without any condition on the
modulus of continuity: we only need the functions to be piecewise monotonic. More precisely,
the results are mainly proved for functions which are monotonic on a single interval, and they
are then extended by linearity to convex combinations of such functions. Such classes are

described in the following definition.

Definition 1.3. If i is a probability measure on R and p € [2,00), M € (0,00), let Mon, (M, 1)
denote the set of functions f : R — R which are monotonic on some interval and null elsewhere
and such that (| f|P) < MP. Let Monj (M, ju) be the closure in L' () of the set of functions
which can be written as S, agfe, where S0 ag| <1 and f, € Mon, (M, ).

The above definition deals with ILP-like spaces, with an additional monotonicity condition.
In some cases, it is also important to deal with spaces similar to weak P, where one only
requires a uniform bound on the tails of the functions. Such spaces are described in the

following definition.

Definition 1.4. A function H from R, to [0,1] is a tail function if it is non-increasing, right
continuous, converges to zero at infinity, and x — xH(x) is integrable. If u is a probability
measure on R and H is a tail function, let Mon(H, i) denote the set of functions f: R — R
which are monotonic on some interval and null elsewhere and such that p(|f| > t) < H(t). Let
Mon®(H, 11) be the closure in L' () of the set of functions which can be written as Ele ag fo,
where 3¢, lag| <1 and f; € Mon(H, ).

Our main theorems follow. For uniformly expanding maps, it involves an L2-integrability

condition, while for GPM maps the boundary case is formulated in terms of tails.

Theorem 1.5. Let T be a uniformly expanding map with absolutely continuous invariant
measure v. Then, for any M > 0 and any f € Mon3(M,v), the series

o* = (f) = v((f —v()?) +2)_v((f —v(f)foTh) (1.1)

k>0
converges absolutely to some nonnegative number. Moreover,
1. On the probability space ([0,1],v), the process
o1 A
{77 X wer—up), telon}

1=0

converges in distribution in the Skorokhod topology to o*W, where W is a standard

Wiener process.



2. There exists a nonnegative constant A such that

00
1
E —V|{ max
n 1<k<n
n=1

N
—

(foT" = v(f)| = Av/nloglogn) ) < oo

I
o

(2

3. Enlarging ([0, 1], v) if necessary, there exists a sequence (Z;);>o of i.i.d. Gaussian random

variables with mean zero and variance o® defined by (LI), such that

—

n—

Y (eT - u(h) - 2)

i

= o(y/nloglogn) , almost surely. (1.2)

I
=)

Theorem 1.6. Let T' be a GPM map with parameter v € (0,1/2) and invariant measure v.
Let H be a tail function with

/ x(H(az))%d:c < 00. (1.3)
0

Then, for any f € Mon(H,v), the series o* defined in (LT converges absolutely to some
nonnegative number, and the asymptotic results 1., 2. and 3. of Theorem [1.3 hold.

In particular, it follows from Theorem that, if T'is a GPM map with parameter v €
(0,1/2), then the almost sure invariance principle (I.2]) holds for any positive and nonincreasing
function f on (0,1) such that

c
@) < S e P

near 0, for some b > 1/2.

Note that (Z) cannot be true if f is exactly of the form f(x) = 2=(1=27)/2_ Indeed, in that case,
Gouézel (2004) proved that the central limit theorem holds with the normalization /n In(n),

and the corresponding almost sure result is

n—1
(foT"—v(f)) =0 almost everywhere, for any b > 1/2.

=0

) 1
A a(n(n))
We refer to the paper by Dedecker, Gouézel and Merlevede (2010) for a deeper discussion on
the optimality of the conditions.

The plan of the paper is as follows. In Section 2 we explain how functions in Mon(, (M, p)
or Mon®(H, i) can be approximated by bounded variation functions (to which the results of
Merlevede and Rio (2011) regarding the almost sure invariance principle apply). In Section 3]
we show how an almost sure invariance principle for a sequence of approximating processes
implies an almost sure invariance principle for a given process, if one also has uniform estimates
(for instance, a bounded law of the iterated logarithm). Those two results together with the
bounded law of the iterated logarithm of Dedecker, Gouézel and Merlevede (2010) readily give

the almost sure invariance principle in the boundary case for GPM maps, as we explain in



Section [l In Section Bl we prove a bounded law of the iterated logarithm under a polynomial
assumption on mixing coefficients, and we use this estimate in Section [l to obtain the almost
sure invariance principle in the boundary case for uniformly expanding maps, following the

same strategy as above.

2 Approximation by bounded variation functions

Let us define the variation || f||, of a function f : R — R as the supremum of the quantities
| f(ao)| + 3020 | f(aies — fai)| + | f(ax)| over all finite sequences ag < - - - < ai. A function f
has bounded variation if || f||, < oc.

In this section, we want to approximate a function in Mong(M, 1) or Mon®(H, i) in a

suitable way. For Mon“(H, u), we shall use the following classical compactness lemma.

Lemma 2.1. Let p be a probability measure on R. Let f, be a sequence of functions on R
with || f,||, < C. Then there exists f : R — R with || f||, < C such that a subsequence fy )
tends to f in L' (u).

Proof. We will first prove that f,, admits a convergent subsequence in L'(u). By a classical
diagonal argument, it suffices to show that, for any ¢ > 0, one can find a subsequence with
lim sup,, o, SUP,,>y Hf«’(") — foo(m) H]Ll(u) < De, for some D > 0 not dependending on e.

We consider a finite number of points ag < --- < a; such that (letting a_; = —oo and
an+1 = +00), the measure of every interval (a;, a;11) is at most €. One can find a subsequence
of f, such that each f,,(a;) converges, we claim that it satisfies the desired property. It
suffices to show that a function g with |g(a;)| < € for all ¢ and ||g||, < 2C satisfies

19[l11,) < De. (2.1)

Consider in each interval (a;, a;1) a point b; such that sup(,, ...,y [9| < 2[g(b;)|. We have

gl < mlaiai) sup gl + > p{aitlglas)

(as,ait1)

< QZM(ai,ai+1)(|g(bi) — g(ai)| + [g(ai)]) + Zﬂ{az‘}|g(ai)|-

Since |g(a;)| < € and u is a probability measure, the contribution of the terms |g(a;)| to this
expression is at most 2e. Moreover, > p(a;, aiy1)|g(b;) — g(a;)| < € 1g(bi) — g(ai)| < €ellgll, -
This proves (2.1).

We have proved that f,, admits a subsequence (that we still denote f,,) that converges in
L!(u) to a function f. Extracting further if necessary, we may also assume that it converges
to f on a set  with full measure. On Q — Q, we define f(z) to be limsup f(y) where y
tends to  in Q. Finally, on the open set R — Q (which may be nonempty if u does not have
full support), we define f(x) to be max(f(a), f(b)) where a and b are the endpoints of the



connected component of z in R — § (if one of those endpoints is —oo or 400, we only use the
other endpoint). Then f, converges to f in L!(u), and we claim that f has variation at most
C.

Indeed, consider a sequence ag < -+ < aj, we want to estimate |f(ag)| + > |f(air1) —
fla;)| + |f(ag)|. Let b; = a; if a; € Q. By construction of f, for all a; € Q, one may find
a point b; in € such that |f(a;) — f(b;)] is small, say < €¢/(k + 1), and we may ensure that
by < --- < bg. Then

F(@0)] + 3 1 Flaer) = Fa)] + F ()] < de+ [ F(bo)| + 3 1F bees) — £+ (b
= de-+tim (| fu(bo)l + D [falbisr) = Falb)] + ()] ).

Since the variation of f, is at most C, this is bounded by 4e¢ + C'. Letting € tend to 0, we get
171, < €. D

Lemma 2.2. Let H be a tail function, and consider f € Mon®(H,u). For any m > 0,

one can write f = fon + gm where fn, has bounded variation and g,, € Mon®(H,,, 1) where
H,,(z) = min(H(m), H(z)).

Proof. Consider f € Mon®(H, u). By definition, there exists a sequence of functions f; =
Zle ag r.ge.r, with g1, belonging to Mon(H, ) and Zle lag 1| <1, such that fi, converges in

L(u) to f. Define then
L

fom = E ar,1.9e,.1)g, |<m -
/=1

Note that fr,,, is such that || fL .|, < 3m. Applying Lemma 2] there exists a subsequence
fo(z)m converging in L'(x) to a limit f,, such that || f,,|l, < 3m. Hence f — f,, is the limit in

L' () of
w(L)

oy = Fowym = D Go(n)Geo(t) Ligg ony>m -
/=1

Now gr.o(L)Llg,.,1)|>m Pelongs to Mon(min(H (m), H), p). It follows that f — fim belongs to the
class Mon®(H,,, ). O

A similar result holds for the space Mong (M, u):

Lemma 2.3. Consider f € Mon$(M, ). For any m > 0, one can write f = fo, + gm, where
fim has bounded variation and g,, € Mon5(1/m, ).

The above proof does not work to obtain this result (the problem is that the function
9eljg,>m usually does not satisfy better L? bounds than the function gy, at least not uniformly
in g¢). To prove this lemma, we will therefore need to understand more precisely the structure

of elements of Mon§ (M, p). We will show that they are extended convex combinations of



elements of Mony(M, p1), i.e., they can be written as [ gdf(g) for some probability measure 3
on Mony(M, p) (the case > asg, corresponds to the case where [ is an atomic measure).

To justify this assertion, the first step is to be able to speak of measures on Mong (M, p).
We need to specify a topology on Mony(M, ). We use the weak topology (inherited from
the space L2(u), that contains Mony (M, p1)): a sequence f, € Mony(M, 1) converges to f if,

for any continuous compactly supported function u : R — R (or, equivalently, for any 1L?(u)
function u), [ fu(x)u(z)du(z) = [ f(z)u(z)dp(z).
Lemma 2.4. The space Mony(M, 1), with the topology of weak convergence, is a compact

metrizable space.

Proof. Consider a countable sequence of continuous compactly supported functions u; : R —

R, which is dense in this space for the topology of uniform convergence. We define a distance

on L?() by
d(fi, f2) =) 2" min (17 /(fl - f2)ukd/~LD :

Convergence for this distance is clearly equivalent to weak convergence.

Let us now prove that Mong (M, i) is compact. Consider a sequence f,, in this space. In
particular, it is bounded in L?(u). By weak compactness of the unit ball of a Hilbert space, we
can find a subsequence (still denoted by f,,) which converges weakly in I.?(u), to a function f.
In particular, | f,udp converges to [ fudp for any continuous compactly supported function
u. Moreover, f is bounded by M in L?(u). To conclude, it remains to show that f has a
version which is monotonic on an interval, and vanishes elsewhere.

A function in Mony(M, 1) can be either nonincreasing or nondecreasing, on an interval
which is half-open or half-closed to the left and to the right, there are therefore eight possible
combinatorial types. Extracting a further subsequence if necessary, we may assume that all
the functions f,, have the same combinatorial type. For simplicity, we will describe what
happens for one of those types, the other ones are handled similarly. We will assume that all
the functions f,, are nondecreasing on an interval (a,, b,]. We may also assume that a,, and b,
are either constant, or increasing, or decreasing (since any sequence in R=RU {£o0} admits
a subsequence with this property). In particular, those sequences converge in R to limits a
and b. Let I be the interval with endpoints a and b, where we include a in [ if a,, is increasing
and exclude it otherwise, and where we include b if b, is decreasing or constant and exclude
it otherwise. The Banach-Saks theorem shows that (extracting further if necessary) we may
ensure that the sequence of functions gy = % ZnN:1 fn converges to f in L?(u) and on a set A
of full measure. It readily follows that f is nondecreasing on ANI and vanishes on AN(R—1T).

Modifying f on the zero measure set R — A, we get a function in Mong (M, ) as claimed. O

The Borel structure coming from the weak topology on L?(u) coincides with the Borel
structure coming from the norm topology (since an open ball for the norm topology can be
written as a countable intersection of open sets for the weak topology, by the Hahn-Banach

theorem). Therefore, all the usual functions on Mony (M, 1) are measurable.



If g is a probability measure on Mony (M, 1), we can define a function f € L%*(u) by
= [g(x . We claim that the elements of Mon$(M, 1) are exactly such functions:

Proposition 2.5. We have

Mon§ (M, p) = {/ ( )gdﬁ(g) . B probability measure on Mony (M, u)}
Mona (M, p

Proof. We have two inclusions to prove.

Consider first f € Mon§(M, 1), we will show that it can be written as [ gdS(g) for some
measure . By definition of Mon§(M, i), there exists a sequence of atomic probability mea-
sures 3, on Mony(M, u) such that f, = [ gdf,(g) converges in L'(u) to f. Since the space
Mony (M, 1) is compact, the sequence of measures (3, admits a convergent subsequence (that
we still denote by f,), to a measure 3. By definition of vague convergence, for any con-
tinuous function ¥ on Mony(M, 1), [¥(g)dB.(g) tends to [W(g)dS(g). Fix a continuous
compactly supported function v on R. By deﬁnltlon of the topology on Mony (M, 1), the map
U, :9— f (z)dp(z) is continuous. Therefore, [V, (g)dB3,(g) tends to [ W,(g)dB(g),
Le., [u(x)fu( ( ) tends to [wu(z)fs(x)dpu(zx), where fz = [ gdpB(g). This shows that f,
converges Weakly to fs. However, by assumption, f, converges in L!(1) to f. We deduce that
f = fs, as desired.

Conversely, consider a function fz for some probability measure § on Mony(M, 1), let
us show that it belongs to Mon§(M, ). Let us consider a sequence of atomic probability
measures 3, converging vaguely to 5. The arguments in the previous paragraph show that the
functions fz, converge weakly to fg. By Banach-Saks theorem, extracting a subsequence if
necessary, we can ensure that fy = N7! 25:1 5, converges almost everywhere and in L?(u)
to fs. In particular, it converges to fs in L'(u). Since fy can be written as Y ayn fon for
some functions f,ny € Mony(M, p) and some coefficients a, x with sum bounded by 1, this
shows that fz belongs to Mong(M, p). O

Proof of Lemma[2.3. Consider f € MonS(M, i), and € > 0. By Proposition [Z5] there exists
a measure (3 on Mony(M, p) such that f = [ gdB(g). For each g € Mons(M, 1), let K(g) be
the smallest number such that f921\g\21<(g) < €2. Fix some K > 0. We have

f(z) :/K(g)<Kg(x)d5(g)+/K(g)ZKg(g;)d5(g)
[ s+ [ s+ [ st

The first term has variation bounded by 3K. In the second term, each function g1,k is
monotonic on an interval and null elsewhere, with L?(1) norm bounded by €. Therefore, the
second term belongs to Mong (e, p). Writing A(K) ={g : K(g) > K} and a(K) = B(A(K)),
the third term is the average over A(K) of the functions a(K)g € Mong(a(K)M, ) with re-
spect to the probability measure 1 4xyd3(g)/a(K). Therefore, it belongs to Mon(a(K)M, p).



Taking K large enough so that a(K)M < €, we infer that f is the sum of a function of bounded
variation and a function in Mong(2e, ). O

3 Strong invariance principle by approximation

Let (X;);>1 be a sequence of random variables. Assume that

1. For each m € N there exists a sequence (X;,);>1 such that

. anl Xz - Xz m
lim sup | == ’
n—oo vnloglogn

where ¢(m) tends to 0 as m tends to infinity.

< €(m), almost surely.

2. For each m € N, the sequence (X;,,);>1 satisfies a strong invariance principle: there
exists a sequence (Z; ,);>1 of i.i.d. Gaussian random variables with mean 0 and variance

o2 such that

li Z?:l Xi,m - Z@',m
im
n—oo  y/nloglogn

We also assume that o2, converges as m — oo to a limit 2.

=0 almost surely.

3. There exists an infinite subset A of N such that, for any A € A, the o-algebras

0(Zim)ica men and 0(Z; m)i>a, men are independent.

Proposition 3.1. Under the assumptions 1, 2 and 3, there exists a sequence (Z;);>1 of i.i.d.

Gaussian random variables with mean zero and variance o2 such that

i iz X = Zi
im = e
n—oo y/nloglogn

Proof. The idea of the proof is to use a diagonal argument: we will use the Z; , for some time,

=0 almost surely. (3.1)

then the Z;; for a longer time, and so on, to construct the Z;.
Let A,, be a sequence of elements of A tending to infinity fast enough. More precisely, we
choose A,, in such a way that there exists a set {2, with probability greater than 1 — 27 on

which, for any n > A,,,

Z:‘L:1 Xi,m - Zi,m Z?:l XZ - Xi,m
vnloglogn vnloglogn

The assumptions 1 and 2 ensure that these two properties are satisfied provided A,, is large

< 2¢(m).

<e¢(m) and ’

enough. We also choose A,, in a such a way that, for j <m — 1,

e(j)v/Aji1loglog A; ) < 27 De(m)\/ A, loglog A,,. (3.2)




Indeed, if the A,’s have been defined for j < m, it suffices to take A,, large enough for (3.2))
to hold.
With this choice of A,,, we infer that for any w € €2, and any n > A,,,

i X@ - Zi,m
=1

Hence, for any w € €, and any n > A,,,

i X@ - Z@',m

i=Am

< 3e(m)y/nloglogn.

< 6e(m)+/nloglogn. (3.3)

For i € [Ap, Apy1 — 1], let m(i) = m. Let (dx)x>1 be a sequence of i.i.d. Gaussian random
variables with mean zero and variance o2, independent of the array (Zim)i>1.m>1- We now
construct the sequence Z; as follows: if 0,,,(;y = 0, then Z; = §;, else Z; = (0/0mi)) Zim(i)- By
construction, thanks to the assumption 3, the Z;’s are i.i.d. Gaussian random variables with
mean zero and variance o2. Let us show that they satisfy (B.).

Let D; = Z; — Zj ;) and note that (D;)i>1 is a sequence of independent Gaussian random
variables with mean zero and variances Var(D;) = (0 — oyn))%. Since o,y converges to o as

1 tends to infinity, it follows that

1 n
letting v, = ~ Vi ( Di>, then lim v, = 0.
e lng U n ar Z €n 11m v

n—oo
i=1
From the basic inequality

2

i >x>§2€xp(—2x ),
nuy,

IP’( max

1<k<n

it follows that "
lim Zizl Zi,m(i) —Zi
n—oo  y/nloglogn

To conclude the proof, it remains to prove that

o 2mizt Xi = ZinG)
n—co  y/nloglogn

Let B = {w : w € liminf Q,,}. By Borel-Cantelli, P(B) = 1. For w € B, there exists mg(w)
such that w belongs to all the €2, for m > mg(w). For n > A, (), we have (denoting by M

=0 almost surely.

=0 almost surely. (3.4)

the greater integer such that Ay <n)

mo(w)_l M—1 Amt1—1 n
ZX Zimi)| < Y NXi=Zimpl+ D> | Y Xi—Zim|+ | > Xi—Zin].
i=1 m=mo(w) | i=Am i=Am

10



Taking into account (3.2)) and (B.3), we obtain

Z Xi = Zim()
i=1

M—1
< Clw) + Z 6€(m)/ Apmy1 loglog Ayt + 66(M)y/nloglogn
m=1

M—2
< Clw) + Z 6e(M)+/ Ay loglog Ay 2~ M=m)
m=1

+ 66(M — 1)/ Ay loglog Ay + 66(M)+/nloglogn
< C(w)+9(e(M — 1) + €(M))+/nloglogn.

Since €(M — 1) +€(M) tends to zero as n tends to infinity, this proves ([3.4]) and completes the
proof of Proposition Bl O]

4 Proof of Theorem on GPM maps

We first note that the convergence of the series (LT as well as the asymptotic results 1. and
2. described in Theorem have been proved in Dedecker, Gouézel and Merlevede (2010).

It remains to prove the almost sure invariance principle. To do this, we apply Proposi-
tion B to the sequences X; = fo T — v(f) and X, ,, = fm o T® — v(f), where the function
f,n has been constructed in Lemma 22 To apply Proposition B.I] we have to check the
assumptions 1., 2. and 3. of Section [3l

The function g¢,, = f — f, belongs to Mon(H,,,v) where H,, = min(H(m), H), by
Lemma 221 It follows from Theorem 1.5 in Dedecker, Gouézel and Merlevede (2010) (and

Section 4.5 there to compute the constant M (m)) that, almost surely,

1

n—1
= S RT

=0

lim sup < M(m),

where M(m) =C [}° x(Hm(x))%d:c, C' being some positive constant. Since M (m) tends to
zero as m tends to infinity, the assumption 1. of Section [3 follows by choosing e(m) = 2M (m).

Since the function f,, has bounded variation we can apply Item 2 of Theorem 3.1 of
Merlevede and Rio (2010) to the sequence (X;,,) (see their Remark 3.1 for the case of GPM
maps). Hence there exists a sequence (Z; ,);>1 of i.i.d. Gaussian random variables with mean

0 and variance 02, = o2(f,,) such that

li Z?:l Xi,m - Z@',m
im
n—co  y/nloglogn

More precisely, it follows from their construction (see the definition of the variables Vi, in

Section 4.2 of Merlevede and Rio (2010)) that the assumption 3. of Section 3]s satisfied with
A={2F L e N*}.

=0 almost surely.
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To check the assumption 2. of Section 3] it remains only to prove that o2, converges to o?

as m tends to infinity. We have f = f,, + gm, therefore

Suf —nv(f) _ Snfm - ny(fm) + Sngm — 1V (gm)
7 7 VI

The term on the left converges in distribution to a Gaussian with variance o2, and the terms on

the right converge to (non-independent) Gaussians with respective variances o2, and o%(g,,).
To conclude, it suffices to show that o%(g,,) converges to 0 when m tends to infinity.

The function g, belongs to the class Mon“(H,,, v) where H,, = min(H (m), H). It follows
from Sections 2.2 and 4.1 of Dedecker, Gouézel and Merlevede (2010) that there exists a

positive constant C' such that

1—2~

*(gm) < C / " e(H () P de,

and the second term on right hand tends to zero as m tends to infinity by using (L3) and the
dominated convergence theorem. The result follows.
Hence, we have checked that the assumptions 1., 2. and 3. of Section [3 are satisfied. This

completes the proof of the almost sure invariance principle. O

5 A bounded LIL for ¢-dependent sequences

Let (©2,.A,P) be a probability space, and let 6 : Q2 — 2 be a bijective bimeasurable transfor-
mation preserving the probability P. Let Fy be a sub-o-algebra of A satisfying Fy C 67(F).

Definition 5.1. For any integrable random variable X, let us write X© = X — E(X). For

any random variable Y = (Y1,---,Y}) with values in R* and any o-algebra F, let

i

For a sequence Y = (Y;)icz, where Y; = Yy o 0! and Yy is an Fy-measurable and real-valued

¢(F,Y)=  sup

k
(:Bl,...,l'k)ERk —

(0)
(Iy,<0,) 0| F)

1

J o

random variable, let

= Fo, Yiy, ... Y5)).

b,y (n) max s O(Fo, (Yiys - -+, Y3))
The interest of those mixing coefficients is that they are not too restrictive, so they can
be used to study several classes of dynamical systems, and that on the other hand they
are strong enough to yield correlation bounds for piecewise monotonic functions (or, more

generally, functions in Mon, (M, 1)). In particular, we have the following:

12



Lemma 5.2. Let Y = (Y})iez, where Y; = Y00 and Yy is an Fy-measurable random variable.
Let f and g be two functions from R to R which are monotonic on some interval and null
elsewhere. Let p € [1,00]. If || f(Yo)|l, < 00, then, for any positive integer k,

IECS (Vi) | Fo) = ECFYiDllp < 2201y (k) P2 £ (Yo)ll,

If moreover p > 2 and ||g(Yo)||, < 0o, then for any positive integers i > j > k,

IECF (YD) D g(Y) @1 Fo) = E(F YDV g(¥7) ) oz < 8(4dx (k) =272 F(Yo) [pllg(Yo) -

To prove these inequalities, note first that, for any positive integers 1 > j > k,

O(Fo, (Vi) < 20(Fo, Yi) < 201 v (k)
o(Fo, (f(Y),9(Y2))) < 4p(Fo, (Y}, Y1) < 4dgav (k).

This follows from definition (5.1I), by noting that {f < ¢} (and also {g < s}) is either an
interval or the complement of an interval. The first inequality of Lemma follows from
Proposition 2.1 of Dedecker (2004) by using that

B (Vo) Fo) —E(f Vi), = sup — Cov(Z, f(Y)),

Z€By/(p—1)(Fo)

where B,(Fy) is the set of Fy-measurable random variables Z such that || Z||, < 1. In the same
way, the second inequality of Lemma follows from Proposition 6.1 of Dedecker, Merlevede
and Rio (2009), by noting that

IE(f (V) g(Y) O F) —E(F(VD) VgV Dlp2 = sup  Cov(Z, f(Ys)Vg(¥))?).
Z€By/(p—2)(Fo)

The main result of this section is the following proposition, showing that a suitable poly-
nomial assumption on mixing coefficients implies a bounded law of the iterated logarithm for

piecewise monotonic L2 functions.

Proposition 5.3. Let X; = f(Y;) — E(f(Y;)), where Y; = Yy 0 0' and Yy is an Fo-measurable

random variable. Let

S =Su(f) =D Xi,
k=1
and let Py, be the distribution of Yy. Assume that

> EMVE2G 0 (k) < 00 (5.1)

k>1

13



If f belongs to Mong (M, Py,) for some M > 0, then

1
Z —P(lrgix |Sk| > 3CM\/nloglogn) < 00, (5.2)
n <k<n

n>0
1/2
where C' =16, 61y (k).

Proof. Let f € Mon$(M, Py,). By definition of Mon§(M, Py, ), there exists fr, = v, arrge.L
with g, 1, belonging to Mony (M, Py,) and Zle lasz| <1, and such that f;, converges in L' (Py,)
to f. It follows that X;; = fr(V;) — E(fL(Y;)) converges in L' to X; as L tends to infinity.
Extracting a subsequence if necessary, one may also assume that the convergence holds almost
surely.

Hence, for any fixed n, S,(fr) = > p_, Xk, converges almost surely and in L' to S,(f).

Assume that one can prove that, for any positive integer L,

1
Z EIP’<11£1]?<X |Sk(fL)] > 3CM\/nloglogn> < K, (5.3)
n> =h=n

for some positive constant K not depending on L. Let us explain why (5.3]) implies (5.2)). Let

Z, = maxi<g<n |Sk(f)|// M?nloglogn. By Beppo-Levi,
1 1
E —IP’( max |Sk(f)| > 3CM\/nloglogn> = klim E( E _1Zn>3C+k—1>- (5.4)
n —00 n
n>0

1<k<n
n>0

Let hy be a continuous function from R to [0,1], such that hy(x) = 1 if x > 3C + k=1 and
hi(z) = 0if 2 < 3C. Let Z,, 1, = maxj<p<n |Sk.|// M?nloglogn. By Fatou’s lemma,

1 1
E( > E]-Zn>3C+k—1) < E( > Ehk(Zn))
n>0 n>0

1 1
< lim mﬂ@( 3 ghk(ZmL)) < liﬁﬁfE< S E1ZM>3C) . (5.5)

L—oo
n>0 n>0

From (5.3), (54) and (5.3]), we infer that

1 o 1
g ﬂ(ggggﬂ 1Sk(f)] > 3C/M(f)nloglog n) < ergg.ng(g 51zn,L>3c) <K,

and (5.2) follows.
Hence, it remains to prove (B.3]), or more generally that: if f = Zle ap fo with f, belonging
to Mong (M, Py,) and 25:1 lag| < 1, then

S ((uax 15:(7)] > 3CMy/nloglogn) < K (5.6)

1<k<n
n>0
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for some positive constant K not depending on f.

We now prove (5.6). We will need to truncate the functions. It turns out that the optimal
truncation level is at /n/y/loglogn: the large part can then be controlled by a simple L!
estimate, while the truncated part can be estimated thanks to a maximal inequality of Pinelis
(1994) (after a reduction to a martingale). Let g,(z) = 21 ;1< pm1/2//oglogn- For any @ > 0, we
first define

a/E(g, o fo(Y;)) and Xl”n =X, — X;n

Mh

Zazgnofz

/=1
Let
k
=Y E(X],|F) - E(X],|Fim1) and M, =Y din.
=1

j>i

The following decomposition holds

XO - dO,n + ZE(XIQ,nLF—l) - ZE(XI/chl,n|‘FO) + X(g/,n .

k>0 k>0

Let hy, =3 ;o0 E(X [ F-1). One can write
Xi=dono 8 +hy ot —hyo0™ + X7, 00,

and consequently
Sk :Mk,n—i_hnoe_hnoekJrl_'_Slg,nu

with Sy, = S X{,, 06" Hence, for any x > 0,

[P(lrg?g( |Sk| > 3:[) < IP)( max |Mkn| > l‘)

+1P>(113ax |hp 060 — hy 0 08T > 2) +IP( max |S,m| >x). (5.7)
Let us first control the coboundary term. We have
L
IE(XG [ Fo)lloe < Y lacllE(gn o fo(Yi)|Fo) = Egn © fo(Ye)) oo -

/=1

Applying Lemma B2, |[E(gn o fo(Yz)|Fo) — E(gn © fe(Yi))lloo < 4Mo1 v (k)y/n/v/loglogn. It

follows that
o0 \/ﬁ
B oo < 4M< k >7 .
ol < 401 (3 600(8) ol
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Hence, there exists a positive constant K7 such that

Z%P( max |h, 0§ — h, o ¥ > CM\/nloglogn) < K. (5.8)

1<k<n
n>0

Let us now control the large part X”. We will prove the existence of a positive constant

K5 such that .
Z— <1r£1]?<x |Sknl > CM\/nloglogn) < K. (5.9)
n
n>0

We shall use the following lemma, whose proof is straightforward:

Lemma 5.4.

L

2n
P( max |5}, 2 o) < = D oY L0002 )

Applying Lemma (.4l with z = CM+/nloglogn, we obtain that

< max \S o > CM\/nloglogn)

2n L

< E Yol 1/2 .
i nloglogn;W' ([fe(Yo) 11}, 0v0) > /2 o5 Togm)

Now, via Fubini, there exists a positive constant A; such that

2
Z n nloglogn E (| fe(Yo) 1, 0v0)15am172 yvisgrogn) < Al fe(Yo)llz < AM7,

and (5.9) follows with Ky = (24,M)/C.
Next, we turn to the main term, that is the martingale term. We will prove that there

exists a positive constant K3 such that

Z% ( sup |M;j,| > C’Manoglogn) < Kj. (5.10)

n>0 1<5<n

The main contribution will be controlled through the following maximal inequality.

Lemma 5.5. Let Iy
8
o = SMVR = gz g
Vvloglogn =0

The following upper bound holds: for any positive reals x and y,

( sup |M;y,| = =, ZE wlFiz1 <2y) <2€Xp< 2yh<xcn))

1<j<n 2y

16



where h(u) = (1+w)In(14+u) —u > uwln(l + u)/2.

Proof. Note first that

L
ldonlloe <2 IB(XGulFo)loo 2D > lael |E(gn © fe(Yi)lFo) = E(gn 0 folYi)) oo -

k>0 k>0 (=1
Now, applying Lemma [5.2]

AM+/n

1E(gu o fe(YolFo) =~ Elgn o SVl < =g

o1y (k)

so that

HdO,nHoo = 8M\/_ <Z¢1Y ) S Cp .

Vloglogn

Since (d;n, Fj);>1 is a sequence of martingale differences such that |d;,| < ¢,, Lemma
follows from Proposition A.1 in Dedecker, Gouézel and Merlevede (2010). O

Notice that

STE(®,) = nE(d2,,) <4nHZE ' 1Fo) H
j=1

7>0

Now,
L

IE(XEalFo)ll2 < Y lael [E(gn © fo(Ye)|Fo) = Elgn o fo(Yi)llz-

(=1

Applying Lemma B3, [E(g o fo(Yi) 7o) — E(ga o flVi))l < 2v30Y2 ()] fel¥o) |- Tt follows
that

IE(X] .| Fo)ll2 < 2v2¢yy (k)M

and consequently

k>0

iE(dj ) <32n( o5k )
j=1

We apply Lemma with

_ _32n<2¢1/2 ) (5.11)

k>0

Letting x,, = CM+/nloglogn, we have

Z% (sup| n|>xn,ZE il i <2yn)

1<5<n

Z — exp ( - 7 In(1+ :L’ncn/(2yn))> :

0 n

17



Now, the choice of C' imply that z,, = 4y, /c, and 2y, = c2(loglogn). It follows that

1 T 1
- ~ o nnzn): - — (loglogn) log3) < co.
;neXp< 2o (L4 2ncn/ (240)) ;nexp( (loglogn) log 3) < oo

To prove (B.I0), it remains to prove that there exists a positive constant K, such that
> R(SEIR ) 2 ) < Ko
n>1
Since Y7 E(d3,,) < yn, it suffices to prove that
(’ Z d3 | Fi-1 (din))) > yn) < K. (5.12)
n>1

To prove (5.12)), we shall use the following lemma:
Lemma 5.6. If (&) holds, there exists a positive constant Cy(¢p) such that for any y > 0,

()Z (&1 Fy-) - <d§,n>>]zy)g”C;§¢)XL)|az|E<fg<Yo>41WOHSMHI/Q).

/=1

Before proving Lemma [5.6] let us complete the proof of (5.12]), (5.10) and (5.2)). Since y,
is given by (5.11]), we infer from Lemma [5.6 that there exists a positive constant Cs(¢) such
that

n

> (| SR 1F ) - B = u)

n>0 J=1

~

fz Yo 1\f4(YO)|<Mn1/2)'
/=1 n>0

By Fubini, the last sum in this equation is bounded by 4 M?|| f(Yy)||3 < 4M*. Therefore, (5.12)

follows with Ky = 4C3(¢). This completes the proof of (5.10). Now, the proof of (5.6]) follows

from (5.1), (5.8), (5.9) and (5.10). The inequality (5.2) of Proposition [5.3]is proved. O

It remains to prove Lemma [5.6]

Proof of Lemmal2.4. In a sense, the contribution coming from Lemma is less essential
than the contribution we estimated thanks to the maximal inequality. However, it is rather
technical to estimate. To handle this term, we will argue in the other direction, and go from

the martingale to the partial sums of the original random variables.
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We apply Theorem 3 in Wu and Zhao (2008): for any ¢ € (1,2] there exists a positive
constant C, such that

Q Z nlZi1) = Bl ))’q> < CynE(|dy,[*) 4+ CynA;,

where

. u 1 q
Ay = (30 s IEOE, 7o) — B I
k=1

Hence, by Markov’s inequality with ¢ = 2, one has

()Z 2 | Fim) — E(d2, ))‘ y) < %( (|d1,n|4)+A;72),

Note first that

E(ldrof*) < 16( 3 IECE I L)

j=0
Now

IE(XG, o[ Fo)lla < D laellB(gn o fe(Yi)| Fo) = E(gn o fo(Yi))la-

Applying Lemma 5.2} [[E(g, o fe(Yi)|Fo) — E(gn o fe(Yi))lla < 2(201,x(k)**||gn 0 fe(Yo)lla- Tt

follows that .
4 4
E(ldral) <2 (3 érx ()7) (D laclllgn o ful¥o)lls) -

/=1

k>0

Applying Jensen’s inequality,
E(ldrl!) < 2" (Y buv(0)*) Zmu& (Fo(Y0)" 1, g vapi<ami2) (5.13)
k>0 =1

Now, letting S, = S X!/ one has My, = Skem — Bin, With

zn’

= Y E(X]F0) = D E(X] [T

i>1 i>k+1

Hence

8o <3( D lESRF) ~ES2I) +3( 2 gl Bal)
k=1 k=1

"1 2
+12( 3 53 S Bl F) — E(Sp Rz
k=1
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Arguing as for the proof of (B.13), we obtain that

180 < 4| S ECKIR)|

i>1

<32v2( Y orv (b)) 3 B0 Y g cami))

k>0 (=1

From the proof of Corollary 2.1 in Dedecker, Doukhan and Merlevede (2011), for any
v € (0,1] (to be chosen later), there exists a positive constant B such that

"1 2
(3 alB(S2.IF0) ~E(SZ)le)” < BIE + B3 (5.14)
k=1
where

mY
h=3 —5 sup |[E(X],XG, | Fo) — E(X],XG,)

m>0 izjzm
k1/(27) 2
I = (Z WHE(XATJ}—(J)M) :

k>0

Arguing as for the proof of (B.I3]), we obtain that

k1/(27) 2, L 1/2
IQSS\@( qul,y(k)?)/‘l) (Z|ag|E(fg(yb)41|fz(yo)|SMnl/2)) . (5.15)

k>0 /=1

To bound up Iy, note that
IE(X, Xl Fo) — E(XE, X502

< 33 JanlladllE((ga o £ (YD) (gn © fo(¥)O1F0) = E((gn 0 (Y (ga 0 ful¥;)O)]l2.

k=1 (=1

Applying Lemma B.2] for ¢ > 57 > m,

IE((gn © (Vi) (gn o fo(Y;) D1 Fo) = E((gn © fu(Y2) O (gn © fo(¥;)))]]2
< 16¢2,yv(m)"?(|gn © fu(Yo)|lallgn © fo(Y0)]|s -

It follows that

L 1/2
-[1 S (]_6 Z 1/2¢2Y 1/2> (Z |(],£|E fg }/0 1|f[(YO)‘<M7L1/2)> . (516)

m>0
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Let v = 1/4/3. If the condition (5.I)) holds, then

LV3/2 1/V3
T oy () <o and > g dax(m)? < oo.

k> m>0

To see that the convergence of the second series implies the convergence of the first series, it

suffices to note that ¢;y(n) < ¢oy(n) and that, since ¢y (n) is nonincreasing, ¢ov(n) =
o(n_(2+‘/§)/‘/§).

We infer from (5.14)), (515) and (5.16]) that, if (5.1]) holds, there exists a positive constant
C4(¢) such that

L

(3 SRl ESENF) —E(S2)l2) < Ci(d) Y ladBUfelYo) L ppenmn) - (5:17)
k=1

(=1

Let us consider now the term

(D 5 ISk Rl Fo) = E(Sp, B2
k=1
As for the proof of (5.13)), one has

(s, S ECA)[ < (S IECF)’

i>1 i>1

<8f<z¢3/4 ) (iWIE (fe(Yo) 1|f£(Y0)<Mn1/2)>1/2'

i>1 (=1

Next, we need to bound up
- 1
(Z P
k=

First, we see that

E(St, > E(X],|F)|Fo) —E(Sk, > E(Xé,n|fk>>H2)2-

i>k+1 i>k+1

Y E(X[F) = E(Shy — SialFi) + ) E(X],|F).

i>k+1 §>2k—+1

Since S, ,, is Fp-measurable, we get that
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Next using the identity 2ab = (a + b)* — a® — b* and the stationarity, we obtain that

which combined with (5.17) implies that
- ]' ! / / / ! / 2
(D 273 IESh B S = Stnl )1 Fo) — E(S) B = ShalFi)2)
k=1

L
< 6C4(¢) Z | E(fe(Yo) 14, vy <on1/2) -
—1

It remains to bound up

(X al(s = wocimm)])

k=1 j>2k+1

2

By stationarity,

D NESLEXIFNFo)ls < k> 11X B Fo)l-

§>2k+1 j>k+1

Now, as for the proof of (5.13),

D 1X0 BP0l < 1XGalls D X1 F0) s

Jj>k+1 j>k+1
\\3/4 - 4 1/2
<2(2 3 oy ()Y (X 1 EGe0) L ipimis))
JjZk+1 =1
and consequently, there exists a positive constant D such that
"1 , , 2
(X B (sin 3 ECGI7|7)])
k=1 §>2k+1
, L
< D(Zj1/2¢1,Y(j)3/4> D ladB(fo(Yo) 1 g, vy <hmr2) -
§>2 =1

The lemma is proved.
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6 Proof of Theorem on uniformly expanding maps

Let (Y;)i>0 be the stationary Markov chain with transition kernel K corresponding to the
iteration of the inverse branches of 7', and let X,, = f(Y,) — v(f). According to the proof
of Theorem 2.1 in Dedecker and Merlevede (2009), Item 1 is equivalent to the corresponding

result for the Markov chain, that is: the process

[nt]

{\/_ZXZ, tefo.1)}

converges in distribution in the Skorokhod topology to o?W, where W is a standard Wiener
process. Now, as shown by Heyde (1975), this property as well as the absolute convergence of
the series (ILI)) will be true provided that Gordin’s condition (1969) holds, that is

Z IK™(f) = v(f)||L2) < 00 (6.1)

By definition of Mon§(M, v), there exists a sequence of functions f; = EZLZI ag.r.ge.r, with
ge1, belonging to Mony (M, v) and 25:1 lag.r| < 1, such that f; converges in L'(v) to f. Tt
follows that, for any nonnegative integer n, K"(fr) — v(fr) converges to K"(f) — v(f) in
L'(v). Hence, there exists a subsequence K"(fy1)) — v(fur)) converging to K™(f) — v(f)
almost surely and in L}(v). Applying Fatou’s lemma, we infer that

1K) = v(Pllaey < liminf [K"(for) = v(few)llize) - (6.2)

Applying Lemma 52 for any g in Mony(M, v), | K™(g) — v(g) 2wy < 2v/2¢)'y(n) M. Hence

L
1K™ (foy) = v(Fow)lizew < 3 lansll K™ (9epm) = v(gepw) 2w < 2V26)5 ()M
=1

From (6.2)), it follows that || K"(f) —v(f)|lL2e) < 2\/_<;51/2( )M, and (6.1]) holds provided that
Y om0 }/é(n) < 00. Now, if T" is uniformly expanding, it follows from Section 6.3 in Dedecker
and Prieur (2007) that ¢y (n) = O(p") for some p € (0,1), and Item 1 is proved.

According to the inequality (4.1) in Dedecker, Gouézel and Merlevede (2010), we have

ZfoT’—l/ ‘ :E)§1/<2max i>x).
’ 1<k<n | £

Therefore, Item 2 follows from Proposition applied to the sequences (X;);>1 as soon as
(50 holds, which is clearly true.
For Item 3, we proceed exactly as in the case of GPM maps, relying on the approximation

( max
1<k<n

23



f = fm + gm given by Lemma to apply Proposition Bl Since g,, € Mong(1/m,v),
Proposition [5.3] shows that almost surely

n—1

Z gm(Tix> - V(gm)

1=0

1
vnloglogn

lim sup <C/m,

for some constant C'. Moreover, the proof of Theorem 3.1 in Merlevede and Rio (2010) shows
that the sequence f,, o T% — v(f,,) satisfies an almost sure principle, towards a Gaussian with

2

variance o2,. It only remains to show that o2 converges to o?. We start from the basic

inequality

0*(gm) < 20gmllize) Y 1K (9m) = v(9m)lli20) -

n=0

Arguing as in (6.2)), we infer that
0*(gm) < 16m > 61/5(k)
k=0

and the series on the right hand side is finite since ¢;y(n) = O(p") for some p € (0,1).

Therefore, 0(g,,) converges to 0. O
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