
HAL Id: hal-00617157
https://hal.science/hal-00617157v1

Submitted on 26 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Stylized Shading Primitives
David Vanderhaeghe, Romain Vergne, Pascal Barla, William Baxter

To cite this version:
David Vanderhaeghe, Romain Vergne, Pascal Barla, William Baxter. Dynamic Stylized Shading Prim-
itives. NPAR ’11:Proceedings of the 8th International Symposium on Non-Photorealistic Animation
and Rendering, Aug 2011, Vancouver, Canada. pp.99-104, �10.1145/2024676.2024693�. �hal-00617157�

https://hal.science/hal-00617157v1
https://hal.archives-ouvertes.fr

c©ACM, 2011. This is the authors’ version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The

definitive version was published in NPAR ’11:Proceedings of the 8th Inter-

national Symposium on Non-Photorealistic Animation and Rendering

Dynamic Stylized Shading Primitives

David Vanderhaeghe∗

IRIT - Université de Toulouse

Romain Vergne

University of Giessen

Pascal Barla

INRIA

William Baxter†

Google

Abstract

Shading appearance in illustrations, comics and graphic novels is
designed to convey illumination, material and surface shape char-
acteristics at once. Moreover, shading may vary depending on dif-
ferent configurations of surface distance, lighting, character expres-
sions, timing of the action, to articulate storytelling or draw atten-
tion to a part of an object. In this paper, we present a method that
imitates such expressive stylized shading techniques in dynamic 3D
scenes, and which offers a simple and flexible means for artists to
design and tweak the shading appearance and its dynamic behav-
ior. The key contribution of our approach is to seamlessly vary
appearance by using a combination of shading primitives that take
into account lighting direction, material characteristics and surface
features. We demonstrate their flexibility in a number of scenar-
ios: minimal shading, comics or cartoon rendering, glossy and
anisotropic material effects; including a variety of dynamic vari-
ations based on orientation, timing or depth. Our prototype im-
plementation combines shading primitives with a layered approach
and runs in real-time on the GPU.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;

Keywords: non-photorealistic rendering, stylized shading, shape
depiction, real-time rendering

1 Introduction

Shading in computer graphics is generally designed to simulate re-
ality by using a combination of complex materials and lighting en-
vironments. Although this approach has many applications in ar-
chitecture or special effects for movies, other applications rather
use shading in a stylized manner. Examples of stylized shading
choices abound in artistic illustrations and graphic novels [Hogarth
1991; McCloud 1994]. Even if such illustrations may make use of
very different media such as watercolor, oil paint, acrylic or pencil
for instance, they all tend to reproduce shading in similar respects.
Firstly, they are not constrained by physical accuracy: a few simple
shading gradients are enough to produce a convincing appearance,
and sharp color transitions are often used to create cartoon effects.
More importantly, they convey illumination, material and surface
shape characteristics all at once. Shading is thus often used to ar-
ticulate storytelling, by exaggerating facial expressions through the
enhancement of reflections and surface details, or by accentuating
character silhouettes via sharp rim lighting.

There is another advantage in relaxing physical constraints though,
as illustrated in the work of Hogarth [1991]: it allows artists to
create expressive compositions, whereby shading takes on differ-
ent appearances with different configurations of surface distance,

∗e-mail: vdh@irit.fr
†Work completed in part at OLM Digital, Inc.

M
in

im
a

l
C

o
m

ic
s

Figure 1: Shading styles. Various styles are created by combining
multiple shading primitives.

lighting, character expressions, timing of the action, etc. This is
especially noticeable in graphic novels where, from one frame to
another, shading appearance may change significantly.

Turning hand-made artworks that exhibit stylized shading appear-
ance into computer-based animations is not trivial. An important
requirement is to provide artists with a direct control over sur-
face shape depiction, material characteristics, lighting directions
and stylization effects through time. An obvious approach would
be to let users paint and animate shading directly onto 3D objects,
but it would require a tremendous amount of hand-tuning and key-
framing. The alternative solution that we investigate in this paper
is to automate common shading behaviors, while providing suffi-
cient access to artistic control. With this approach, dynamic scene
changes raise the additional challenge of seamlessly transforming a
shading appearance into another in real-time. As explained in Sec-
tion 2, existing shading techniques are often limited in the handling
of dynamic shading changes; moreover, they are usually restricted
to specific stylization effects.

In contrast, our goal is to provide a single approach to create var-
ious dynamic stylized shading effects. Our solution is to decom-
pose shading into a set of procedural primitives amenable to dy-
namic behaviors. Each primitive is controlled by a single light
source, and its appearance is determined by material characteris-
tics, stylization choices, and view-dependent surface features. We
make use of a single shading primitive model in order to permit
continuous changes of material, shape and stylization effects. The
design choices that have lead to our model are presented and dis-
cussed throughout Section 3. Primitives are evaluated and compos-
ited in real-time using the GPU, and a few primitives are sufficient
to mimic most common shading styles, as demonstrated in Sec-
tion 4. We discuss their benefits, limitations and future extensions
in Section 5.

2 Previous work

One of the earliest forms of stylized shading is Toon Shading,
which simply segments the result of a diffuse shading function into
a few color bands. The Technical Illustration Shader of Gooch
et al. [1998] uses a similar approach with an unclamped diffuse
term (also called Half-Lambertian), and cool-to-warm color gradi-
ents. Alternative color gradients stored in 1D textures have been
used in video games [Mitchell et al. 2007] to reproduce illustrative
shading styles.

More complex effects can be obtained with 2D color gradients. The
Lit Sphere of Sloan et al. [2001] consists of a single shaded sphere
stored in a 2D texture and looked up using screen-space normals.
Variations on this basic idea have been successfully used in differ-
ent contexts such as volumetric rendering [Bruckner and Gröller
2007] or digital sculpture software (e.g., ZBrush R© or MudBox R©).
Although the Lit Sphere provides a very natural approach to the
creation of stylized shading, it produces a relatively static shading
appearance, since the lighting direction is implicitly “baked” in the
2D texture. The X-Toon method of Barla et al. [2006] takes a differ-
ent approach where the 1D toon function is extended to a 2D func-
tion, stored in a texture. The additional dimension is used to create
effects that vary with depth or surface orientation for instance. Al-
though light direction may vary in this approach, it permits only
one effect that is baked in each 2D texture.

An alternative approach to stylized shading is to take advantage
of inverse rendering techniques that allow direct material and illu-
mination editing. The Illumination Brush of Okabe et al. [2007]
permit such control: starting from a known BRDF, they infer the
environment lighting by directly painting on the object the desired
result of either diffuse or specular reflections. Even if the paint
strokes may be moved around for stylization purpose, the adapta-
tion of the method to the creation of stylized shading is not straight-
forward, since it relies on BRDF models and realistic illumination.
We rather seek a method that is not bound by such physical con-
straints.

One reason for providing additional freedom is to give artists the
ability to control how shape is conveyed through shading. Previ-
ous techniques have proposed extensions to existing shading mod-
els that enhance surface characteristics. The Exaggerated shading
technique of Rusinkiewicz et al. [2006] locally aligns light direc-
tions with grazing surface angles so that details are revealed through
variations of a Half-Lambertian shader. Downsides of this approach
are that it tends to produce “flat” appearances where the main il-
lumination direction is lost, and visual artifacts may occur during
light motion. The Apparent Relief technique [Vergne et al. 2008]
rather exploits the additional dimension of the X-Toon shader to
convey shape features computed via a combination of object- and
image-space measurements. The method is able to depict shape
features at varying scales, but exhibits artifacts with distant objects
due to the combination of surface measurements. Both methods are
restricted to a single shading style though. This is not the case with
the Radiance Scaling technique [Vergne et al. 2010], which works
with arbitrary shading models: it consists in scaling incoming ra-
diance according to surface and material characteristics. However,
because incoming light directions are treated independently, styl-
ized shading gradients are likely to be disrupted.

Apart from the simplest stylized shading techniques, the meth-
ods presented so far do not permit any dynamic control over
stylized material characteristics. The cartoon highlights of An-
jyo et al. [2003; 2006] deal with the specific case of the Blinn-
Phong specular term. Highlight shape is tweaked via translation,
rotation, scaling, splitting, squaring, and Boolean operators applied
to the half vector. Artists can control highlight shape deformations

through keyframing. Pacanowski et al. [2008] propose a more di-
rect interface whereby artists draw the 2D profile of a highlight in
a plane perpendicular to the reflection direction. In their system,
highlight shape can be deformed based on a few light directions
to control shading appearance at grazing angles. The two methods
focus essentially on highlight shape, whereas other material char-
acteristics are left unchanged, and shape features are ignored.

In contrast to previous work, our approach provides a single solu-
tion to the stylized shading of 3D scenes where both surface fea-
tures and material characteristics are conveyed dynamically.

3 Shading model

In our approach, stylized shading is designed as a combination of a
few procedural shading primitives (Section 3.1) whose parameters
are dynamically modified when applied to 3D objects (Section 3.2).
Parameters of our shading model are summarized in Table 1.

Symbol Domain Name

K(·) [0, π] → [0, 1]3 color
α [0, 1] specularity
τ [−π, π] extent
f [0, π] intensity fall-off
c [f, π] intensity cut-off

λ (−1, 1) material anisotropy
µ R surface enhancement
χ R concave/convex transition

Table 1: List of shading parameters.

3.1 Shading primitives

Three principal requirements have led to the design of our shad-
ing primitives. First, a single primitive model should account for
different shading behaviors, from diffuse to specular. Second, con-
tinuous changes of primitive parameters should lead to continuous
(and ideally perceptually uniform) visual changes. Third, a primi-
tive should be easily manipulated directly on 3D models, and in par-
ticular it should not require the tweaking of too many parameters.
With these technical goals in mind, we define a shading primitive
as composed of three basic ingredients: an angular parametrization
u, and a pair of color and intensity profile functions, defined on this
parametrization and noted K and I respectively.

The parametrization u : S2 × S
2 × S

2 → [0, π] is defined by

u(nnn, lll, vvv) = ⌊acos(dddα · lll)− τ⌋, (1)

where nnn, lll and vvv correspond to the normal, light and view vectors,
dddα is a reference direction that controls how the parametrization
evolves when lll is rotated, and ⌊x⌋ is a function that clamps x to
[0, π]. The user-specified parameter τ ∈ [0, π] permits to control
the extent of the shading primitive independently of its color and
intensity profiles. The reference direction dddα is given by

dddα =
(1− α) nnn+ α rrr

||(1− α) nnn+ α rrr||
, (2)

where rrr = 2(vvv ·nnn)nnn−vvv is the view vector reflected around the sur-
face normal, and α is a user-controlled parameter that interpolates
between diffuse (α = 0) and specular (α = 1) shading behaviors.
Different choices of parametrization are illustrated in Figure 2: we
set up an orthographic view and render a sphere that represents the
entire set of normal directions for a particular light direction lll. The
angular parametrization, displayed with a color code and isolines,
evolves continuously when lll, τ or α are manipulated.

0

π

α = 0 α = 0.5 α = 1

Figure 2: Shading parametrization: Here we illustrate the
parametrization u for the light direction shown at top left. The left
most color bar presents the color code used. By varying α, different
shading behaviors are continuously produced from diffuse (α = 0)
to specular (α = 1). We have used an offset of τ = 0 in all cases.

Once a parametrization has been chosen, it becomes easier to spec-
ify color and intensity profiles. In our system, the color profile
K(u) is simply defined as a smooth 1D color gradient (commonly
called a color ramp), while intensity is controlled by a more com-
plex profile function. This choice is motivated by the observation
that sharp transitions due to either shininess or cartoon effects are
more easily controlled through a scalar function.

The intensity profile I : [0, π] → [0, 1] is defined by

I(u) = |β + (1− β) cosu)|γ
+
, (3)

where β ∈ [−1/2, 1/2] is a bias parameter that permits to extend
the primitive intensity toward the interval [π/2, π], γ ∈ R

+ is an
exponent parameter that determines the intensity fall-off rate, and
|x|+ is a function that clamps negative values of x to 0. Figure 3
shows how different values of β and γ allow users to control shad-
ing appearance for a fixed parametrization.

The bias and exponent parameters are inspired respectively by the
Half-Lambert and Phong specular terms, which have been fre-
quently used in previous work on stylized shading. In our system
though, bias and exponent are employed in all situations, not only
because we use a single primitive model for both diffuse and spec-
ular effects, but also because it provides additional creative free-
dom. This flexibility has one minor drawback though: specular
primitives produce exaggerated rim effects when the light direction
comes from the back of the object because our formulation does not
incorporate the geometric term (nnn·lll) in this case. We retain this rim
effect because it offers an interesting specular style, but the original
Phong-like behavior may optionally be re-introduced by multiply-
ing I(u) by (1− α) + α(nnn · lll) (see Supplemental material).

Uniformly changing bias and exponent values leads to sudden
changes in shading appearance as shown for γ at the top of Figure 4.
This is not only a matter of user interface; it also raises issues during
interpolation such as when applying the dynamic shading variations
presented in Section 4. A better choice of parameters are the fall-off
f ∈ [0, π] and cut-off c ∈ [f, π] angles at which the intensity pro-
file respectively exhibits an inflection and reaches 0. For instance,
uniformly changing f values leads to a more uniform interpolation
as shown at the bottom of Figure 4. We explain how to compute
bias and exponent based on these parameters in Equations 7 and 8
of the Appendix. Classic shading behaviors are then easily repro-
duced: Phong’s diffuse term corresponds to f = c = π/2, and the
Half-lambertian term is obtained by further setting c = π; Phong’s
specular term (with the geometric term re-introduced) is the same
as diffuse, but leaves f free to vary in the [0, π/2] range; cartoon
shading occurs when c = 0 and τ > 0, and ambient shading when
τ = π. In our system, τ , f and c are directly controllable on top of
3D objects via isolines.

β = 0, γ = 1 β = 0.5, γ = 1 β = 0.5, γ = 7

Figure 3: Shading intensity: by varying β and γ, different shad-
ing appearances are continuously obtained from sharp to smooth
profiles. Here we use a simple diffuse shading parametrization
(α = 0, τ = 0) and a smooth color ramp in the right image.

Figure 4: Profile interpolation: changing the exponent γ from 1
to 30 by uniform increments exhibits non-uniform shading appear-
ance interpolation (top row). In contrast, with uniform increments
of f , keeping c = π/2, we obtain an interpolation behavior that is
more uniform (bottom row).

3.2 Shading variations

When applied to a 3D object, a shading primitive is evaluated at
each surface point by computing local light and view vectors as in
traditional shading techniques. A single directional or point light
source is required for each primitive. Shading variations automat-
ically occur from one surface point to another when using a point
light source and/or a perspective camera. However, since primitives
are entirely procedural, their parameters may also be dynamically
modified across the object to create intentional shading variations.
We distinguish between two types of variations: those that only de-
pend on local object characteristics (such as shape or material fea-
tures), and those that depend on scene or shot characteristics (such
as depth, timing of action, etc). The former is presented in the
remainder of this Section while the latter is presented in Section 4
when we consider the combination of multiple of our shading prim-
itives.

The main source of real-world local material variation is caused by
anisotropic distributions of microfacets. They are typical of mate-
rials such as brushed metals or satin, and usually controlled by a
user-specified tangent field defined at each surface point. To mimic
such material effects, we adapt the solution of Anjyo et al. [2003;
2006] to work with our primitive model. We first compute the half
vector hhh between lll and vvv, then transform it based on the local tan-
gent ttt and bi-tangent bbb vectors as in the following:

h̃hh =
sλhhhttt +

1

sλ
hhhbbb + hhhnnn

||sλhhhttt +
1

sλ
hhhbbb + hhhnnn||

(4)

where hhhttt,bbb,nnn are the component vectors of hhh in tangent space (e.g.,
hhhttt = (hhh · ttt)ttt) and sλ is a scaling factor defined by

sλ =

{

1− η + η 1

1−λ
if λ ≥ 0

(

1− η + η 1

1+λ

)−1

if λ < 0
(5)

with λ ∈ (−1, 1) a user-controlled anisotropy parameter, and η =
(lll · vvv + 1)/2 a back-lighting term. Intuitively, Equation 4 consists

α = 0 α = 0.5 α = 1

Figure 5: Shading anisotropy: the λ parameter controls
anisotropy (here we use λ = −0.5) and is progressivelly intro-
duced when the shading behavior tends toward specular.

in rotating hhh toward or away from nnn, depending on its projection
in the tangent plane: when λ > 0, half vectors are compressed in
the ttt direction; when λ < 0, half vectors are stretched toward the
ttt direction; and when λ = 0, half-vectors are kept unchanged. We
systematically apply the inverse scaling, 1/sλ, in the direction of bbb
to roughly maintain highlight size regardless of anisotropy as seen
in Equation 4. The back-lighting term η in Equation 5 is needed to
revert to an isotropic behavior (sλ = 1) when the light direction is
opposite to the view direction, since in this case the half-vector is
ill-defined.

Our shading model does not produce specular behaviors based on
the half-vector hhh but rather makes use of the reflected view vector
rrr for interpolation purpose. We thus first reflect lll around h̃hh to com-

pute the transformed view vector ṽvv = 2(lll · h̃hh)h̃hh− lll, and then reflect
ṽvv around nnn to obtain r̃rr = 2(nnn · ṽvv)nnn − ṽvv. As illustrated in Figure 5
where the tangent field is aligned with sphere meridians, anisotropy
is ignored in the diffuse case (ddd0 = nnn), and appears progressively
when tending toward a specular behavior (ddd1 = r̃rr).

Another important set of local object characteristics are surface fea-
tures, and recent techniques have provided solutions for enhanc-
ing them through shading. We present a novel approach where
we manipulate directly the shape of shading primitives instead of
modifying independent shading values as in previous work. We
first measure surface curvature κ at each visible surface point. Al-
though our approach is independent of the choice of curvature mea-
sure, we have chosen the view-centered mean curvature of Vergne
et al. [2010] because it provides automatic levels-of-detail and is
computed dynamically from screen-space normals. We then offset
the parametrization function based on local surface curvature:

τ̃ = τ + µ tanh(κχ), (6)

where µ ∈ R controls the magnitude of enhancement and χ ∈ R

the slope of the transition between concave (κ < 0) and convex
(κ > 0) features. The reason why we have chosen to vary τ is
that it only modifies the extent of a primitive: for instance, shading
may be “attracted” in convexities and “repelled” from concavities.
In comparison, other alternatives such as Radiance Scaling mod-
ify shading appearance by disrupting existing shading gradients as
shown in Figure 6.

Original Proposed approach Radiance Scaling

Figure 6: Shape depiction: primitive extent is modified to better
depict surface features. Here, the shading over a blobby object
(left) is modified to convey concave features using µ = 0.3 and χ =
30 (middle). Compared to Radiance Scaling (right), our solution
better preserves shading gradients while still conveying shape.

We have also tried blending between a pair of color ramps inside a
single primitive, using a similar transition function for concave to
convex regions. This technique is inspired by the ZBrush R© Mat-
Caps, where two LitSpheres are blended with a concave-to-convex
transition function. An advantage of our approach is that shading
primitives may have different blending transitions, while in the case
of MatCaps, the entire LitSpheres are blended together. However,
this technique strongly modifies material appearance, and is thus
only used for specific effects (see supplemental material).

4 Results

Dynamic stylized shading primitives are currently implemented
in GLSL and we obtain real-time performance (> 60 fps on a
NVIDIA GTX480) in 1600 × 1200 for all the examples in this
paper. Primitive evaluation is performed in a pixel shader, and we
have chosen a layered interface for combining primitives in a way
similar to classic image-processing software such as Photoshop R©

or Gimp R©. As demonstrated in all our results and the supplemental
video, a few primitives combined with alpha or additive blending
permit to quickly imitate existing artwork or mimic complex mate-
rials. This is not only valuable in interactive applications, but also at
the compositing stage every time light-weight re-lighting is prefer-
able to a more heavy-weight solution at the 3D rendering stage. Our
shader is given in the Appendix.

The tutorial video illustrates the process of creating a stylized shad-
ing in our prototype system. It demonstrates various features: shad-
ing behaviors, isoline controls, shape-based primitive extent and
color variations, primitive blending, etc. Each primitive position is
controlled independently to create ambient, diffuse, highlights and
rim effects. We have also found it useful to bind all light sources
to a common illumination reference frame. This is the solution we
have used for most of the results shown in the gallery video.

Some of these shading styles are presented in Figures 1 and 7. A
few primitives are sufficient to obtain compelling minimal shading
results. In the first example, we use a single white specular primi-
tive deformed to convey convex shape features in a quite exagger-
ated way, which provides a compelling depiction of shape within a
single layer. In the second example, we use a pair of opposite spec-
ular primitives deformed so that all surface details of the face are
represented. The third example makes use of 3 anisotropic primi-
tives that convey a metallic appearance to the model. The comics
shading example shows a character rendered with 7 primitives and
lit from three different directions. Shape features are used to align
shading with anatomical details and to darken colors in concavities.
Simpler primitives are used for cartoon shading styles (we have
used 6 and 4 primitives for the left and right images respectively).
Embossing and contouring effects are created by attaching the light
source to the camera, while sharp transitions are obtained when set-
ting c = 0 and τ > 0. More complex glossy effects are obtained by
combining multiple primitives. We have used 6 primitives in both
images of the dog model; they differ only in color and light source
positions. The same shape-based variations have been applied to
demonstrate that we obtain similar surface depictions in both cases.
The Venus and Buddha images illustrate anisotropic shading styles,
where we have combined 4 primitives in both cases to mimic velvet
and gold.

Intentional and dynamic variations of primitive parameters prove to
be useful in many situations, as shown in Figure 8. For instance,
varying primitive profile and extent based on object orientation is
useful in scientific illustration scenarios. In the sanguine-like shad-
ing, the reddish and whitish shading primitives are modified when
seen from behind, while a third ambient primitive is kept constant.
In the beetle image (made of 7 primitives), the highlight profiles and
their blending are altered to draw attention to the material when on

Cartoon Glossy Anisotropic

Figure 7: Shading styles. Various styles are created by combining multiple shading primitives.

top of the insect, while the bottom surface is depicted with exag-
gerated shape-based deformations of a diffuse primitive. A more
direct shading artistic control is obtained through key-framing, as
in the elephant image which shows two frames of an animation
where shape-based primitive deformations are activated each time
the elephant hits the ground. Although we have applied the effect
everywhere on the elephant, it could be easily localized by means
of an alpha map. Finally, continuous variations are obtained by
mapping any scene parameter to one or more primitive parameters.
An example is given in the landscape image where an aerial per-
spective effect is produced by mapping depth to shading primitive
variations. Here, we alter the color of a diffuse primitive while
smoothly suppressing its shape-based deformations with increasing
depth; we also let another slightly specular primitive only appear
in the foreground to give more volume to nearby relief. Note that
using a simpler approach such as X-Toon [Barla et al. 2006] would
only permit one depth-based effect at a time.
With our prototype system, it takes a couple minutes to get a first
shading result, and up to half an hour for refining more complex
styles. Although we have shown quite simple dynamic controls
based on depth, orientation and keyframing, our shading primitives
may be controled in more complex ways, which ultimately depend
on the final application.

5 Discussion

We have presented an approach for dynamic stylized shading based
on the composition of a few procedural primitives. Our solution is
well adapted to both interactive applications such as video games,
scientific illustration, or digital sculpture; and offline applications
such as stylized rendering and compositing for animated films and
commercials. Our shading model is designed to be continuously
interpolated among a variety of stylized shading effects, such as
diffuse or specular behaviors, surface and anisotropy features, etc.

A limitation of our stylized shading model is that it only produces
opaque material effects, from diffuse to glossy, in direct illumina-
tion settings. We believe another approach is required for producing
stylized renderings of objects with highly refractive or reflective
materials. Indeed, citing Hogarth [1991] (p.120): “The only way
to draw [complex refractions] is to observe the seemingly random
patterns and record them faithfully.” More diffuse effects such as
translucency or soft inter-reflections (including color bleeding) may
be taken into account by extending the range of shading behaviors.
Shadows may also be used to control shading primitives, by map-
ping occlusion values to primitive parameters. However, we believe
that specific shadowing primitives will be necessary to provide an
accurate control over shadow appearance.

There are different ways in which our primitive model could be
extended in future work. For instance, as demonstrated in sup-

plemental material, we have reproduced highlight shapes of An-
jyo et al. [2003; 2006] and Pacanowski et al. [2008]. Although
these extensions produce interesting styles, we have preferred re-
taining simple primitive shapes in our model, mainly because com-
plex shapes do not transfer appropriately to different 3D objects
when these have detailed surface features. This is especially no-
ticeable with highlights that are disrupted in the presence of rapidly
changing surface curvature. A promising avenue of future work
would be to directly control primitive shape on top of 3D objects
without any indirection. In particular, such an approach should al-
low artists to draw highlights that somehow “ignore” small curva-
ture variations to retain their shape during camera, object or lighting
motion, while still conveying material properties.

Acknowledgments

This work has been sponsored by the Animare (ANR-08-JCJC-
0078-01), SeARCH (ANR-09-CORD-019) projects and the INRIA
postdoctoral program.

References

ANJYO, K.-I., AND HIRAMITSU, K. 2003. Stylized Highlights for
Cartoon Rendering and Animation. IEEE Computer Graphics
and Applications 23, 4, 54–61.

ANJYO, K.-I., WEMLER, S., AND BAXTER, W. 2006. Tweakable
light and shade for cartoon animation. In NPAR’2006, ACM,
133–139.

BARLA, P., THOLLOT, J., AND MARKOSIAN, L. 2006. X-Toon:
An extended toon shader. In NPAR’2006, ACM, 127–132.

BRUCKNER, S., AND GRÖLLER, M. E. 2007. Style transfer func-
tions for illustrative volume rendering. Computer Graphics Fo-
rum 26, 3 (Sept.), 715–724.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998. A
non-photorealistic lighting model for automatic technical illus-
tration. In SIGGRAPH 98, ACM, 447–452.

HOGARTH, B. 1991. Dynamic Light and Shade. Watson Guptill.

MCCLOUD, S. 1994. Understanding Comics: The Invisible Art.
Harper Paperbacks.

MITCHELL, J., FRANCKE, M., AND ENG, D. 2007. Illustrative
rendering in Team Fortress 2. In NPAR’2007, ACM, 71–76.

OKABE, M., MATSUSHITA, Y., SHEN, L., AND IGARASHI, T.
2007. Illumination Brush: Interactive Design of All-Frequency
Lighting. In Pacific Conference on Computer Graphics and Ap-
plications, IEEE Computer Society, 171–180.

Orientation-based

Keyframe-based Depth-based

Figure 8: Shading controls. Primitive parameters are dynamically modified based on various controls.

PACANOWSKI, R., GRANIER, X., SCHLICK, C., AND POULIN,
P. 2008. Sketch and Paint-based Interface for Highlight Model-
ing. In Eurographics Workshop on Sketch-Based Interfaces and
Modeling, 17–23.

RUSINKIEWICZ, S., BURNS, M., AND DECARLO, D. 2006. Ex-
aggerated Shading for Depicting Shape and Detail. ACM Trans.
Graph. 25 (July), 1199–1205.

SLOAN, P.-P. J., MARTIN, W., GOOCH, A., AND GOOCH, B.
2001. The lit sphere: A model for capturing NPR shading from
art. In Graphics interface 2001, Canadian Information Process-
ing Society, 143–150.

VERGNE, R., BARLA, P., GRANIER, X., AND SCHLICK, C. 2008.
Apparent relief: A shape descriptor for stylized shading. In
NPAR’2008, ACM, 23–29.

VERGNE, R., PACANOWSKI, R., BARLA, P., GRANIER, X., AND

SCHLICK, C. 2010. Radiance scaling for versatile surface en-
hancement. In I3D ’10: Proc. symposium on Interactive 3D
graphics and games, ACM, 143–150.

Appendix

0

1

f c
u

I(u)The cutoff parameter c corresponds to the
angle at which the profile intensity func-
tion reaches zero. The bias function β(c)
gives the bias value that satisfies this con-
dition: I(c) = 0. It is defined by

β(c) = −
cos(c)

1− cos(c)
. (7)

The falloff parameter f locates the angle at which the profile
function passes through an inflection point, which corresponds to
the zero-crossing of its second derivative. The exponent function
γ(f, c) gives the (strictly positive) exponent value that satisfies this
condition: I ′′(f) = 0. The profile’s second derivative is:

I ′′(x) = (β − 1)γ cosx(β + (1− β) cosx)γ−1+
(1− β)2(γ − 1)γ(β + (1− β) cosx)γ−2 sin2 x.

There is only one strictly positive zero-crossing for I ′′(f):

γ(f, c) =
β − β cos(f)− 1

(β − 1) sin2(f)
.

Replacing β by the formula for the bias function β(c) gives:

γ(f, c) =
1− cos(c) cos(f)

sin2(f)
. (8)

GLSL shader to compute a primitive contribution. We use a con-
stant color instead of color ramps for simplicity.

/ / i n p u t s from v a r y i n g , t e x t u r e s or p r e v i o u s pas s

vec3 l , n , v , t , b ; f l o a t kappa ;

/ / s h a d i n g p a r a m e t e r s :

f l o a t a lpha , t au , be t a , gamma , lambda , mu , c h i ;

/ / b e t a (c) and gamma (f , c) are computed on CPU

vec3 c o l o r ;

f l o a t u (vec3 n , vec3 l , vec3 v){
vec3 h = n o r m a l i z e (l +v) ;

f l o a t e t a = d o t (l , v) ∗ . 5 + . 5 ;

f l o a t S l = lambda >=0.?1 . / (1 . − lambda)∗ e t a +(1.− e t a) :

1 . / (1 . / (1 + lambda)∗ e t a +(1− e t a)) ;

vec3 h t = d o t (h , t)∗ t ;

vec3 hb = d o t (h , b)∗b ;

vec3 hn = d o t (h , n)∗n ;

h = n o r m a l i z e (S l∗h t + 1 / S l∗hb + hn) ;

v = r e f l e c t (− l , h) ;

vec3 r = r e f l e c t (−v , n) ;

vec3 d = n o r m a l i z e ((1. − a l p h a)∗n+ a l p h a∗ r) ;

t a u += mu∗ t a n h (kappa∗ c h i) ;

r e t u r n clamp (acos (d o t (d , l))−t au , 0 . , PI) ;

}

f l o a t I (f l o a t x){
r e t u r n pow (max (b e t a +(1− b e t a)∗cos (x) , 0 .) , gamma) ;

}

vo id main (vo id) {
g l F r a g C o l o r = vec4 (c o l o r , I (u (l , n , v))) ;

}

