
HAL Id: hal-00617073
https://hal.science/hal-00617073

Submitted on 26 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic approach to estimate the arterial pressure
Anissa Eddhahak-Ouni, Ingrid Masson, Eric Allaire, Mustapha Zidi

To cite this version:
Anissa Eddhahak-Ouni, Ingrid Masson, Eric Allaire, Mustapha Zidi. Stochastic approach to es-
timate the arterial pressure. European Journal of Mechanics - A/Solids, 2010, 28 (4), pp.712.
�10.1016/j.euromechsol.2009.02.009�. �hal-00617073�

https://hal.science/hal-00617073
https://hal.archives-ouvertes.fr


Accepted Manuscript

Stochastic approach to estimate the arterial pressure

Anissa Eddhahak-Ouni, Ingrid Masson, Eric Allaire, Mustapha Zidi

PII: S0997-7538(09)00031-X
DOI: 10.1016/j.euromechsol.2009.02.009
Reference: EJMSOL 2507

To appear in: European Journal of Mechanics A/Solids

Received date: 1 July 2008
Accepted date: 25 February 2009

Please cite this article as: A. Eddhahak-Ouni, I. Masson, E. Allaire, M. Zidi, Stochastic approach to
estimate the arterial pressure, European Journal of Mechanics A/Solids (2009), doi:
10.1016/j.euromechsol.2009.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.euromechsol.2009.02.009


AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

1 

 

Stochastic approach to estimate the arterial pressure 

 

Anissa EDDHAHAK-OUNI, Ingrid MASSON,  Eric ALLAIRE, Mustapha ZIDI* 

Université Paris 12 Val de Marne, 

UMR CNRS 7054 - Centre de Recherches Chirurgicales 

8, rue du Général Sarrail, Créteil, F-94010, FRANCE 

* Corresponding author 

Professor Mustapha ZIDI 

Université Paris 12 Val de Marne – UMR CNRS 7054 

8, rue du Général Sarrail, F-94010 Créteil, FRANCE 

Tel +33 (1) 49 81 35 57 

Fax +33 (1) 49 81 35 52 

E-mail: zidi@univ-paris12.fr 



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

2 

 

Abstract

The aim of this paper is to illustrate the application of a stochastic approach to 

estimate the human common carotid arterial pressure. The analysis took into account the 

possible random uncertainties of the problem inputs such as geometric information and 

mechanical model parameters so that it is called a probabilistic parametric approach. Based on 

the only available information reported in literature, entropy maximum principle was used to 

develop probabilistic density functions for every random variable. In addition, in vivo human 

experimental data were considered for the determination of the so-called mean or 

deterministic model. Furthermore, numerical simulations of Monte Carlo were carried out 

involving the dispersion of all the uncertain parameters. Results showed that uncertainty of 

5% led to error up to 20% in the arterial pressure estimation. Convergence was proved and a 

region with a confidence probability of 95% was constructed to allow the prediction of the 

random response of the arterial pressure. Eventually, we managed numerous calculations to 

analyze the influence of each random variable of the problem inputs over the arterial pressure 

evolution. 

Keywords: Stochastic, Arterial pressure, Hyperelastic material, Maximum entropy principle 
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1 Introduction 

It is well known that arteries are subjected to many diseases such as atherosclerosis, 

aneurysm or hypertension (Humphrey, 2002). The main purpose of current researches is to 

establish constitutive laws which describe the hyperelastic behavior of the arterial tissue. In 

this context, authors propose several mechanical models including a variable number of 

geometric and material parameters (Humphrey, 2002; Baek et al., 2007) which are often 

determined by performing in vitro tests on the arterial specimens (Humphrey, 2002). 

Accordingly, it is important that the obtained parameters (problem data) are well calibrated to 

ensure the accuracy of the problem solution in order to investigate the mechanical behavior of 

arteries. Note that a similar problem for the arterial geometric parameters in the reference 

configuration is reached (Alastrué et al., 2007). 

Several identification methods have been recently developed but few studies have reported 

parameters for human arteries, particularly in the in vivo case. (Stalhand et al., 2004) showed 

that in vivo measurable data can be used directly for parameter identification for a circular, 

hyperelastic, anisotropic and incompressible model that accounts for the residual stresses in 

the unloaded arterial wall. The model parameters are determined by stating a minimization 

problem for the model pressure. (Olsson et al., 2006) proposed a general method to compute 

the parameters of a residual stress field in the mechanical modelling of soft tissues. The 

authors also suggested a method to obtain this parameterization from in vivo measurements 

by a nonlinear parameter identification problem. More recently, (Masson et al., 2008) 

demonstrated the feasibility of material identification and wall stress computation for human 

common carotid arteries based on non-invasive in vivo clinical data. The reader also could 

consult (Humphrey, 2002) where the problem of the identification of the vascular tissue 

parameters is described. 

Hence, it would be desirable to develop methods that allow parameter estimation in 

mechanical arterial models. However, estimating parameters is not straightforward in the in 

vivo cases and their values can be assessed within a certain range. 

In this paper, we demonstrate the importance to include the stochastic uncertainties in the 

modeling of the arterial mechanical behavior through a parametric approach. For that, we 

used in vivo human data obtained from non-invasive measurements. The influence of the 

uncertain problem data on the arterial pressure response was investigated by considering a 

finite elastodynamical model. Thus, we focused on the probabilistic feature of the theoretical 

problem data to quantify the induced final error in the arterial pressure calculation. 
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2 Methods 

2.1 Arterial measurements 

In vivo experimental measurements have been performed to study the mechanical behavior of 

the human common carotid arteries (CCA). During 4 to 6 cardiac cycles, the CCA medial 

diameter (MD), considered as the outer diameter, and the intima-media thickness (IMT) were 

recorded using a high spatial resolution ultrasound echotracking system (Wall Track System, 

Pie Medical) (Hoeks et al., 1997; Boutouyrie et al., 1999) over a line perpendicular to the 

longitudinal and transversal axes of the artery, selected on the 2D B-mode image. In addition, 

the CCA intraluminal pressure was also measured non-invasively with a pencil-type probe 

that incorporated a high-fidelity Millar strain-gauge transducer coupled with tonometry by 

applanation (Boutouyrie et al., 1999). The intraluminal blood pressure increases up to the 

systolic peak which indicates the maximum arterial pressure, then the CCA pressure curve 

decreases during the diastolic phase of the cardiac cycle. The bend in the descending part 

corresponds to the dicrotic wave which matches with the closure of the aortic valves Data 

used in this study are from a 39-year old healthy male subject. 

2.2 Theoretical model 

Consider a sector of a circular and thick cylinder representing the CCA defined by the 

angleΘ
0

 (Figure 1). The dynamic deformation of the artery over the cardiac cycle may be 

described by two successive deformations. Starting from the stress free state (Ω
0
), the artery is 

closed inducing residual stresses. The obtained configuration is the unloaded state (Ω
1
). Then 

the CCA is subjected to dynamic radial expansion and axial stretch (Ω
2
). In the cylindrical 

coordinate system relative to the basis ( )
r z

, ,

θ

e e e

� � �

, the mapping is described by 

0

r = r(R,t),    θ = , z λ Z

π⎛ ⎞

Θ = Λ⎜ ⎟
Θ

⎝ ⎠

, (1) 

where (R,Θ,Z)  and (r,θ,z)  are respectively the reference and the deformed coordinates of a 

material particle, 
0

Θ  is the opening angle, Λ and λ  are axial stretches ratios respectively from 

(Ω
0
) to (Ω

1
) and from (Ω

1
) to (Ω

2
). Let 

i

R  and 
i

r (t)  denote respectively the inner radii of the 

artery in the reference state and in the deformed state (
e

R  and 
e

r (t)  are the outer radii). The 

inner radius 
i

r (t)  is derived from the experimental measurements by 
i

r (t) =MD(t) 2 IMT(t)− . 

Using (1), it follows that the physical components of the deformation gradient tensor F  are 

[ ]
r z

0

r r

diag , , diag , ,

R R
θ

⎡ ⎤∂ π

= λΛ = λ λ λ
⎢ ⎥
∂ Θ
⎣ ⎦

F , (2) 
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where 
r z

, ,

θ
λ λ λ  are respectively the radial, circumferential and axial stretch ratios. 

Consequently, the left and the right Cauchy-Green strain tensors, denoted B and C, have the 

same matrix representation 

2 2 2 2 2 2

r z

0

r r

diag ( ) , ( ) , ( ) diag , ,

R R
θ

⎡ ⎤∂ π
⎡ ⎤= = λΛ = λ λ λ

⎢ ⎥ ⎣ ⎦
∂ Θ

⎣ ⎦

B C . (3) 

Furthermore, the arterial material is considered as incompressible. The local volume ratio is 

given by 
r z

J det 1
θ

= = λ λ λ =F  and leads to 

2 2 2 20

i i

r(R, t) [r (t) (R R )]

Θ

= + −

πλΛ

. (4) 

Let us assume that the mechanical behavior of the artery is described by the following stored 

strain-energy density function (Tang et al., 2004) 

1 2 1

c d

W a(I 3) b(I 3) [exp( (I 3)) 1]

d 2

= − + − + − − , (5) 

where 
1

I Tr( )= B  and 
2
I Tr[det( ) ]=

-1

B B  are strain invariants and (a, b,c,d) the material 

parameters. 

The corresponding response equation for the Cauchy stress tensor σ  is 

1 2

p 2(W W )= − + +

-1

σ 1 B B , (6) 

where 1  denotes the identity tensor and 
k

k

W

W

I

∂

∂

=  ( 1,2)k = . 

From (6), the equations of motion in the absence of body forces are reduced to 

..

rrrr

r

r r

θθ
σ −σ∂σ

+ = ρ

∂

, (7) 

the dot denotes the time differentiation and ρ  denotes the current mass density of the arterial 

material. 

From (4), it easily follows that the second time differentiation of r(R, t)  is 

.. .

2
..

3

h(t) h (t)

r(R, t)

2r(R, t) 4r (R, t)

= − , (8) 

where 
2

i
h(t) r (t)= . 

Consequently, integrating (7) between the inner radius ( )
i

r t and the outer radius ( )
e

r t , and 

using (8) leads to the following relation (Humphrey et al., 2002) 

( ) ( )
( ) ( )

( )

( )
e

i

.

r t
2

..

rr e

i e 2 2

i e ir t

r, t r, t r (t) h (t) 1 1

P t P t dr [h(t) ln( ) ( )],

r 2 r (t) 4 r (t) r (t)

θθ
σ −σ ρ

= + + + −∫  (9) 
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where ( )
i

P t  and ( )
e

P t  are respectively the inner and the outer pressure applied to the CCA. 

Note that the outer pressure can be expressed as an exponential form [Masson et al., 2008; 

Humphrey et al., 2002) 

( )
( )

( )

e

e

e 0

r t

P t e.exp f ,

r t

⎛ ⎞

= ⎜ ⎟
⎜ ⎟

⎝ ⎠

 (10) 

where 
0
t is the diastolic time over the cardiac cycle and e  and f  are material parameters.  

3 Probabilistic approach 

In this section, we present the followed methodology to take into account the random 

uncertainties of geometric and mechanical parameters for the estimation of the arterial 

pressure
i

P (t) . The random variables considered here are the opening angle ΘΘ00
, the axial 

stretches λλ and ΛΛ, the inner radius of the artery RRii
 , the density ρρ, the six parameters 

(aa,bb,cc,dd,,ee,,ff) governing the strain-energy density function and the outer pressure ( )
e

P t . As a 

result, we have 11 random variables to examine. 

The construction of the probabilistic approach requires the description of random variables by 

probabilistic density functions (pdf for short). The pdf allows to carry out numerous and 

independent realizations of each random variable and consequently of the arterial pressure. 

The entropy maximum principle is used here to construct the pdf (Soize, 2001; Jaynes, 1957). 

Let X be a real random variable which represent the previous uncertain parameters, we 

assume that X is a stochastic modeling of the variable x. The uncertainty (or dispersion) 

measurement of X is given by the entropy of the probabilistic density function 
X

p  

 (11) 

The entropy maximum principle allows to determine the pdf by searching the maximum of 

S(p
X
) among the potential density functions under the only available (or used) information. 

This latter can be, for instance, the support of random variable, the mean, the standard 

deviation, higher moments, etc. Each type of information defines a constraint for the 

optimization problem given by 
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 (12) 

The first equation of the system (12) is the normalization condition which must be satisfied on 

the random variable support, whereas the second equation describes the available information. 

For example, if the given information is the mean of X, g
i
(x) = x. 

To solve the optimization problem, we introduce (1+n) Lagrange multipliers λ
i
 associated to 

each constraint. It was shown in (Kapur et al., 1992) that λ
i
 can be obtained by minimizing a 

strictly convex function H given by 

n n

0 1 n 0 i [a ',b '] 0 i i

i 1 i 1

H( , ,..., ) f (x)exp( g (x))dx

= =

λ λ λ = λ + + Π −λ − λ∑ ∑∫
R

, (13) 

where [a’, b’] is the support of the pdf of the random variable X and 
[a ',b ']

(x)Π  is the indicator 

function which is equal to 1 if x belongs to [a’, b’] and 0 if not. 

Eventually, maximizing the entropy S(p
X
) leads to minimizing the function H(λ

i
). The pdf is 

completely known once λ
i 
is known and it is written as 

 (14) 

The probabilistic approach leads to the construction of a confidence region whose bounds are 

defined by 

- +

c c

p (1 p ) ; p pζ ζ= − =  (15) 

where p
-

 and p
+

 are respectively the lower and upper limits and ζ is the fractile of order p
c
 

defined for a random variable X as 

{ }
c

(p) x; p(X< x) = pζ =  (16) 

The reader could consult (Kree et al., 1983) where the probabilistic approach is more detailed. 

4 Results and discussion 

To construct the probabilistic density functions of random variables, let us consider the 5 

random variables (ΘΘ00
, λλ, ΛΛ, ρρ, RRii

). As no statistic data is available to our knowledge, we have 

been based on the literature to construct the information that we have to use to determine the 

pdf. The different values found throughout different researches have permitted to define an 
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average and a support for each random variable. For instance, we have considered that the 

mean of the opening angle ΘΘ00  
is equal to 130° (Delfino et al., 1997) and that ΘΘ00  

belongs to 

[60°, 180°]. Therefore, the pdf associated to ΘΘ00  
is given by  

X [a ',b '] 0 X 1 X

p (x) (x)exp( (a ', b ',m ) x (a ', b ',m ))= Π −λ − λ , (17) 

where m
X
 is the mean of the random variable X. 

Concerning the six remaining random variables (aa,bb,cc,dd,ee,ff), we have only defined a support 

for each parameter, since there was not enough information about these values to also define 

an average for each one of them regarding the common carotid artery application. In this case, 

the obtained pdf is uniform on the considered support and given as follows for a random 

variable X 

X [a ',b ']

1

p (x) (x)

b ' a '

= Π

−

. (18) 

In Table (1), we summarize the available information of the eleven random variables used in 

the modeling. 

Considering the random variable of the opening angle and setting α = 180/ΘΘ0
, the 

minimization of H(λ
α0

, λ
 α1

) leads to: λ
α0

 = -3.4564 and λ
α1

 = 2.5216 where λ
αi

 (i = 0,1) are 

the Lagrange multipliers associated to α. 

Similarly, the minimization of H(λλ0
, λ

 λ1
) leads to: λλ0

 = -5.0982 and λλ1
 = 4.4664. Figure 2 

presents the pdf of each random variable of the series (ΘΘ00
,λλ,ρρ,RRii

) as well as their realizations 

according to the pdf. We can notice that all the obtained pdf have a similar form except the 

one associated with the random variable ρρ. This difference can be explained by the support of 

this variable which is smaller than the four other supports. The given support influences the 

minimization result. For this case, we obtain λρ0
= -3.9121 and λρ1

 = 0.0001. Consequently, 

the pdf given by (17) is constant.  

The eleven random variables are considered to manage numerous arterial pressure 

simulations, in total 2000 simulations were carried out. The first results given by the 

probabilistic approach showed a great dispersion in the estimation of the internal pressure 

which is essentially due to the large supports given by the available information. In fact, the 

interval bounds were chosen from different values reported in literature in order to construct a 

potential support for each random variable. Since the arterial pressure is sensitive to several 

random variables, the definition of the interval bounds should be more accurate to avoid great 

results deviation. Thus, we have made use of the first results in order to initialize the available 

information of random variables so that final results are more realistic and convincing. 
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The starting up of the stochastic approach is based on random variable values obtained from 

the best realization which here corresponds to the selection number 1881 and presents the 

minimum error with the experimental data. Figure 3 depicts the evolution of the arterial 

pressure obtained with this realization. Both stochastic and experimental curves are close 

except around t = 0.35 s where the error is nearly 7%. The global error, noted between the 

stochastic model and the data, is equal to 2.28%. The results are recapitulated in the table 2. 

These values are next considered as the averages of random variables whereas the support 

bounds are obtained by adding ± 5% to the average in order to take into account the 

uncertainty of parameters. The associated stochastic arterial pressure is the mean (or 

deterministic) model since it uses the averages of all the random variables as input data. Thus, 

if L
-

 and L
+

 are respectively the lower and upper bounds of the support of the random variable 

X, then L
-

 = 0.95m
X
 and L

+ 

= 1.05m
X
. The new averages and supports represent the updated 

available information to construct the pdf according (17) and (18). 

Next, we present the results of Monte Carlo simulations (Kalos et al., 1992) of the arterial 

pressure taking into consideration the updating available information of the random variables. 

Let recall that the mean model is known since experimental data are available and it was 

constructed in order to match them. Suppose that we have no data to suggest the good 

averages of the random variables, one may consider a percentage uncertainty for the 

description of the problem entries. In our case, we have considered a small uncertainty of 5% 

for each of the eleven random variables.  

1500 simulations of Monte Carlo were carried out by generating random values of the 

uncertain variables according to the pdf that is constructed after the starting up step. 

Convergence of the Monte Carlo simulations can be observed by the calculation of the mean 

and the standard deviation (SD) of the mean arterial pressure random response. The mean 

arterial pressure can be defined as MAP = (SAP+2 DAP)/3 where SAP and DAP are 

respectively the systolic and diastolic arterial pressure.  

The convergence of the stochastic method is reached in the 500th realization (Figure 4). The 

mean of MAP appears to be equal to 0.0102 MPa (76.5 mmHg) whereas the SD is equal to 

0.0024 MPa. On the other hand, the MAP corresponding to the experimental data is 0.0093 

MPa (69.8 mmHg). Note that, according to the strong law of large numbers theory (Andrews, 

1988) the obtained arterial pressure at convergence is the same as that found by the mean 

model, the obtained set of parameters is therefore equal to that previously given by the 

deterministic case. 
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The different independent trials enable us to define a predicted confidence region in which the 

probability to have a realization is equal to p
c
 = 95%. This can be done by ordering the MAP 

from the lower value p
-

 to the upper value p
+

. For example, in our case p
-

 = 0.0062 MPa and 

p
+ 

= 0.0176 MPa. It should be emphasized that a physiological constraint was taken into 

account in our modeling to ensure the limitation of the systolic and diastolic pressures to 

physiological values (McDonald, 1958). This non violation condition allows the final solution 

to be realistic and concluding.  

In Figure 5, we present the evolution of the maximal and minimal arterial pressures in the 

confidence region for a confidence probability equal to 95%. The line and dashed curves are 

respectively associated with the data and the mean model whereas the dotted curves represent 

the boundaries of the confidence region.  

Eventually, we can notice that an uncertainty of 5% in the problem input description can lead 

to an error estimated to 21.42%. This error is obviously higher when the uncertainty 

percentage is 10% or 15% for example. This remark justifies the use of stochastic approach 

for the modeling of arterial mechanical behavior.  

The different carried out realizations can be summarized graphically by a histogram to 

describe the MAP distribution. Here, we split the range of the pressure into 40 classes in 

abscissa, and in vertical axis, we note the frequency to have a value of the MAP. When the 

number of classes increases, the bars become less large and therefore the curve fitting of the 

pdf is more continuous. This enables us to have information about the pdf corresponding to 

the global random response. In Figure 6, we present the real pdf of the MAP in comparison 

with the Gaussian pdf constructed by using the mean and standard deviation obtained from 

Monte Carlo convergence. We can notice that the real pdf describing the MAP evolution is 

similar to Gaussian pdf. 

On the other hand, we present some results of the stochastic approach by considering the only 

uncertainty of each random variable in order to analyze the influence of every parameter 

independently of the other uncertain parameters. During simulations, the considered random 

variable is described by its associated pdf constructed as aforementioned, whereas the 10 

others parameters are maintained constant to their values obtained by the deterministic model. 

In Figure 7, we show the distribution of the arterial pressure for each random case. The bold 

curve represents the mean model whereas the other curves describe the stochastic simulations. 

We can notice that the arterial pressure random response is more influenced by some data 

than others. The vertical arrow in the first figure indicates the range width of the pressure 

variation. We can see that the arterial pressure is much more sensitive to the opening angle 
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and the inner radius variation than the axial stretches (λλ, ΛΛ). Concerning the mechanical 

parameters, the random variable ff has more influence on the solution than the others. 

Nevertheless, the effect of the parameters aa and bb is negligible in the considered support. This 

analysis illustrates the necessity to take into consideration the uncertainties of the parameters 

to have a good prediction of the region confidence of the random final result. 

5 Conclusion 

Through a simple case study, we have demonstrated that a parametric analysis should be 

considered to take into account the random uncertainties of the problem inputs. The 

probabilistic approach allows the evaluation of the arterial pressure dispersion and provides a 

95% confidence interval which covers the potential random responses. This approach is worth 

to be adapted for more accurate biomechanical constitutive relations such as anisotropic 

models by considering the contribution part of the collagen fibers in the artery to improve the 

description of the arterial mechanical behavior. To our knowledge, this is the first time that 

material and geometric parameters of artery have been estimated using in vivo human data 

based on stochastic model. 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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Figure 1. Kinematics of the arterial wall relative to a nearly stress-free reference state (
0

Ω ), 

the unloaded state (
1

Ω ) and the in vivo loaded state (
2

Ω ). 

 

Figure 2. Probabilistic density function of the random variable (left), 3000 realizations of the 

random variable following the pdf (right). 

 

 

Figure 3. Arterial pressure evolution 

 

 

Figure 4. Convergence of Monte Carlo simulations 

 

 

Figure 5. Arterial pressure bounds of the confidence region 

 

 

Figure 6. pdf representation from Monte Carlo simulations with 40 classes 

 

 

Figure 7. Influence of each random variable on the arterial pressure distribution 
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Table 1.  Available information for the random variables. 
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Table 2.  Mean model results. 

 

Θ
0

(degree)

λ Λ

ρ

[Kg.mm
-3

]

R
i

[mm] 

a

[MPa]

b

[MPa]

c

[MPa]

138.846° 0.985 0.826 1.002e

-6

 3.609 0.0014 1.103e

-12

 0.0114 

d

e

[MPa]

f      

16.438 1.45e

-4

 3.856      

 

 


