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ABSTRACT 

The paper considers the application of the Linear Matching method to the limit analysis 

of perfectly plastic portal frames. This allows the display of the characteristic features of 

this method to a class of structural problems that have been studied by several other 

methods. The convergence of both upper and lower bounds is proven and a simple 

geometric interpretation displays the nature of the programming method. Through a 

sequence of examples the convergence properties of the method are displayed, showing 

that complete convergence can sometimes be delayed by the proximity of mechanisms 

with near equal limit loads. 

 

Keywords: Limit analysis; Linear Matching Method; Convergence; Collapse mechanism. 

_____________________________________________________________________________________ 

 

 

1. INTRODUCTION

The development of numerical methods for the evaluation of limits in classical 

plasticity theory has a long history with a number of significant strands.   The upper and 

lower bound theorems of limit and shakedown analysis naturally lend themselves to 

programming methods, both linear and non-linear, producing, today, efficient solution 

procedures (Weichert and Maier, 2001). Recently, the application of mathematical 

programming methods to the limit analysis of portal frames has been consolidated and 

summarised by Cocchetti and Maier (2003). These methods have also been extended to 

the behaviour of elastic-softening plastic portal frames, emphasing the importance of 

Mathematical Programming with Equilibrium Constraints (MPEC) methods by Ferris 

and Tin-Loi (2001) and Tangaramvong and Tin-Loi (2007, 2008). MPEC methods 

correspond to a class of methods that may be applied to structural mechanics problems 

and problems in business and finance. There has always existed a strong cross 

fertilization between mathematical programming methods in applied mechanics and in 

other applications. It is, therefore, beneficial to display new methods in applied 

mechanics in a form that allows a direct comparison with existing mathematical 

programming methods and the problem of the portal frame provides a useful vehicle in 

this respect, as well as being a significant problem in structural design.  

 

In recent times, an alternative approach to classical plasticity problems has been 

developed, motivated by a desire to calculate classical plasticity limits using 

conventional finite element methods as the basis for iterative procedures. Marriot (1985) 
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has discussed the Modulus Variation Procedures (MVP) that generates lower bounds 

within some kinematic contexts by representing an elastic-plastic stress field as the 

solution of a linear problem with spatially varying moduli. Related design orientated 

methods have been discussed by Seshadri and Fernando (1993) and Mackenzie and 

Boyle (1993). These methods have been devised with structural design in mind. 

Whereas programming methods have a well defined theoretical structure where 

convergence can be meaningfully discussed, generally MVP and related methods have 

been treated in a more ad-hoc manner and have proved to give a rather variable 

performance. Recently, Marin-Artieda and Dargush (2007) describe the application of 

these methods to portal frames and demonstrate both the strength (simplicity) and 

weakness (uncertainty over convergence) of this class of methods when applied to the 

simplest of the plasticity problems, limit analysis. They conclude that the original 

method of Marriot (1985) provides the most satisfactory lower bound solutions but 

rarely the exact limit state solution. 

 

A further branch of these developments, the Linear Matching Methods (LMM) (Ponter 

et al, 2000 and Ponter and Engelhardt, 2000), arises from the same general approach of 

MVP methods, the use of standard linear finite element analysis with spatially varying 

moduli, but with the objective of defining programming methods with very well defined 

convergence properties. By this means, methods are derived with the sound theoretical 

foundation of programming methods and the simplicity of MVP. The primary 

motivation has been the development of methods that may be used as a computational 

tool for the UK Life Assessment Method R5 (Ainsworth, 1997) where thermo-

mechanical loading for complex continuum structures is the primary concern. For this 

range of problems, methods have been derived for limit, shakedown and ratchet limits 

and a number of extensions allow for high temperature creep behaviour (Chen. et al, 

2006 a,b). In all this work, the upper bound, kinematic, aspect of the method has been 

emphasised and, indeed, there is evidence that it may not be possible to derive a 

convergent method of this type that relies only on the lower bound theorems of 

plasticity (Ponter, 2007). However, amongst the published work on these methods, there 

is the lack of a straightforward description of the Linear Matching Method and its 

convergence properties within an easily understood structural context. The work of        

Marin-Artieda and Dargush (2007) provides an opportunity to fill this gap by displaying 

the essential elements of LMM within the simplest of contexts, where a comparison 

with other MVP methods already exists. Hence the purpose of this paper is two fold, to 

introduce the LMM into the context of structural design methods and, at the same time, 

demonstrate the methods strong convergence properties. 

 

The outline of the paper is as follow. In section 2 some basic concepts of limit analysis 

are briefly summarized and the basic formulae for the evaluation of the upper and lower 

bound collapse multipliers are set up. Moreover, the fundamental assumptions of the 

LMM to rigid-plastic structures are given. In section 3 the Linear Matching Method is 

described and convergence is proven in Section 4. The iterative process results in a 

monotonically reducing upper bound which converges to the exact solution if the linear 

solutions are evaluated exactly; for finite element solutions the upper bound functional 

reduces to the least upper bound associated with the class of displacement fields 

allowed by the FE formulation. In section 5 the method is used to evaluate upper and 

lower bounds of collapse loads and collapse mechanisms in a single story portal frame 

structure and the method is given a graphical interpretation. This is followed by an 

extension of the procedure to multi-story portal frames. These solutions display a 
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number of interesting convergence properties of the method. At convergence, upper and 

lower bounds become identical, verifying that the solution is exact. Convergence of the 

upper bound is generally geometric, the error reducing at each iteration by a constant 

factor. During the convergence process the upper bound monotonically reduces. The 

lower bound is observed to generally monotonically increase but, on occasions, can 

demonstrate a reduction. This is entirely consistent with theory. Final convergence of 

the upper and lower bounds to a common value can be delayed in cases where two 

distinctly differing mechanisms exist which give rise to near identical upper bounds. In 

this case the method can initially converge towards the mechanism with the non-optimal 

upper bound before then changing to the optimal mechanism. In such cases, lack of full 

convergence is clearly displayed through the difference between the upper and lower 

bound. 

 

2. LIMIT ANALYSIS: PROBLEM STATEMENT 

In common with all structural systems, portal frames can be analysed within a kinematic 

framework defined by a set of displacements, in this case the deflections 
c

i

Δ  at the 

intersection of beams at 
i

x  that are compatible with a set of plastic hinge rotations 
c

j
Φ  

at positions 
j

h  . Hence the deformation of the structure is subjected to a severe subclass 

of all the possible modes of behaviour, those defined by 
c

i

Δ  and 
c

j
Φ . The equilibrium of 

bending moments 
∗

j
M  with loads 

*

i

F is then defined by the Galerkin criterion that 

equilibrium is satisfied if the following virtual work relationships holds for all possible 

sets of 
c

i

Δ  and 
c

j
Φ ; 

 

    
c

j

j

j

c

i

i

i
MF Φ=Δ ∑∑

∗∗

 

Let us consider structures composed of a rigid-plastic material which, therefore, has 

zero displacement up to the collapse load. Mechanism deformations are assumed to be 

infinitely small so that deflections have no effect on the equations of equilibrium. 

Reference, moreover, is made to a structure subjected to proportional loading, the 

intensity of loads being defined by the load factor λ, which is restricted to positive 

values. 

Let the actual plastic collapse load factor of a structure under load be 
p

λ , and let the 

collapse mechanism under loads 
ipi

FF λ=

∗

 have small hinge rotations 
p

j
Φ at hinge 

positions 
j

h with corresponding plastic moments 
p j

M . The displacements 

corresponding to the loads 
p i

Fλ  in the collapse mechanism are denoted as 
p

i
Δ . 

  

                                    ∑ ∑ Φ=Δ

p

jpj

p

iip
MFλ                                             (2.1) 

 

where since 
p

λ and 
pj j

M Φ∑ are positive, ∑ Δ

p

ii
F is positive. 

 If the bending moment at position 
j

h  is denoted by
j

M , then,  

 

                                       
pjjpj

MMM ≤≤−                                   (2.2) 
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In the following we quote the limit theorems, without proof (see, for example Horne, 

1979). 

 

Lower Bound 

 

If, at any load factor 
LB

λ , it is possible to find an equilibrium bending moment 

distribution 
∗

j
M  in equilibrium with the applied loads

LB i

Fλ  and everywhere satisfying 

the yield condition (2.2), then 
LB

λ is either equal to or less than the load factor at 

failure. 

 

    
LB p

λ λ≤ .      (2.3) 

 

Upper Bound 

If, for any assumed plastic mechanism, defined by a set
c

i

Δ  and 
c

j
Φ , the external work 

done by the loads at a positive load factor 
UB

λ is equal to the internal work at the plastic 

hinges, then 
UB

λ is either equal to or greater than the load factor at failure. 

 

  ∑∑ Φ=Δ

j

c

jpj

c

i

i

iUB
MFλ      ,     

pUB
λλ ≥                                 (2.4) 

   

It is well known that the limit load is uniquely defined although there may well be more 

than one corresponding mechanism. As the kinematics are defined by a limited class of 

deformation modes, the limit load so calculated is, strictly, an upper bound and the 

lower bound defines a lower bound to this upper bound 

 

3.   LINEAR MATCHING METHOD FOR LIMIT ANALYSIS 

The simple rigid perfectly plastic moment-rotation relation is shown in Figure 1. 

Perfectly plastic deformation up to indefinitely high rotations is assumed to be possible 

at the yield moment 
pj

M .  

The Linear Matching Method attempts to construct, as the limit of an iterative 

procedure, linear solutions, 
j

Φ

~

 and 
j

M

~

, for the load 
i

Fλ  by varying the set of linear 

moduli 
j

R : 

                                              
j

j

j
M

R

~1~

=Φ                                                               (3.1) 

by a particular scaling factor, discussed below. Equation (3.1) describes an arbitrary 

sign consistent description of the relationship between the moments, in equilibrium, and 

compatible rotations which is capable of describing any type of holonomic constitutive 

assumption. Hence, for any limit state solution there exists a set of 
j

R , for which the 

linear solution 
j

M

~

 is identical to the limit state solution. 

The procedure described below provided an iterative procedure which seeks a sequence 

of values of 
j

R denoted by
k

j
R , so that each solution more closely approaches the correct 

solution. 
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Iterative Procedure 

We start the procedure with a linear solution for RR
j
=

0

, a constant and arbitraryλ , 

producing an initial solution  
0

~

j
Φ  and 

0
~

j
M . In the subsequent iterative procedure the 

moduli  
k

j
R  are adjusted so that a distribution of 

1+k

j
R  can be found so that for fixed 

k

j
Φ

~

 

the moment can be brought to the yield surface, as shown in Figure (1).  

 

i.e.   
1

~

~

+

==Φ
k

j

pj

k

j

k

j
k

j

R

M

R

M

 , hence    
k

j
k

j

pjk

j
R

M

M

R
~

1

=

+

                (3.2)                               

 

The quantity 
k

j

pj

M

M

~

is the scaling factor mentioned before.  

A new linear solution is now constructed for
1+

=

k

jj
RR . The load for this (k+1)

th

 

solution is chosen by computing the upper bound load parameter 
k

UB

λ  corresponding to 

the previous solution 
k

j
Δ

~

 and 
k

j
Φ

~

. 

At each iteration a corresponding lower bound on the limit load can be found by scaling 

the moment distribution  
k

j
M

~

 in equilibrium with 
i

k

UB

Fλ  so that, for the largest possible 

value of 
k

LB

λλ =  the scaled moments lie within yield,. 

Hence at a particular hinge point,  

  mj =     
pmk

UB

k

LB

k

m

M

M

=

λ

λ

~

     (3.3) 

and for  

 

 mj ≠     
pjk

UB

k

LB

k

j

M

M

≤

λ

λ

~

     (3.4) 

 

Hence the lower bound is given by: 

                                                   
k

m

pmk

UB

k

LB

M

M

~

λλ =                                               (3.5) 

 

Hence, at each iteration, both a lower and an upper bound is determined. In the 

following section we show that this procedure produces a monotonically reducing 

sequence of 
k

UB

λ that converges to the least upper bound. At the same time, at 

convergence, the lower bound equals the upper bound, demonstrating that the 

converged solution is the exact solution within the class of kinematic fields chosen. 

 

4. CONVERGENCE PROOF  

The rotations 
k

j
Φ

~

 and displacements 
k

i

Δ  at the k
th

 iteration are used to determine the 

upper bound 
k

UB
λ  via equation (2.4). The subsequent linear solution provides rotations 
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1
~

+

Φ

k

j
, displacements 

1+

Δ

k

i

and a new upper bound 
1+k

UB
λ . We now demonstrate that the 

upper bound load parameter always reduces during this process. 

 

Consider Figure 1 and the following inequality: 

 

                    ( ) 0

~

11

≥Φ−ΦΦ

∫∫

++

Φ

Φ

Φ

Φ

k

j

k

j

k

j

k

j

jpjjjj
dMdM           (4.1) 

                                                                

 i.e. the area A 0≥ . Hence, 

 

                    ( ) ( ) ( ) 0

~~~~~

2

1~~~

2

1
111

≥Φ−Φ−ΦΦ−ΦΦ

+++ k

j

k

jpj

k

j

k

jj

k

j

k

jj
MMM        (4.2) 

    

where, according to equation (2.4) 
k

ii

k

UB

k

jpj
FM Δ=Φ∑

~~

λ  and ∑
+++

Δ=Φ

111
~~

k

ii

k

UB

k

jpj
FM λ  

so inequality (4.2) becomes: 

                                                                                                                     

∑∑∑∑∑∑
+++++

Δ−Δ≥⎟

⎠

⎞

⎜

⎝

⎛

Δ−Δ−Φ⋅−Φ⋅

i

k

ii

k

UB

i

k

ii

k

UB

i

k

ii

k

UB

i

k

ii

k

UB

k

j

j

k

j

k

j

j

k

j
FFFFRR

1111
22

1
~~~~~

2

1~

2

1

λλλλ

           (4.3) 

 

Now the potential energies for the consecutive linear solutions corresponding to 

stiffnesses 
k

j
R  and 

1+k

j
R  are given by: 

   

∑∑

∑∑

Δ−Φ=Ω

Δ−Φ=Ω

+++

i

k

ii

k

UB

k

j

i

k

j

k

i

k

ji

k

UB

k

j

i

k

j

k

FR

FR

~~

2

1

~~

2

1

2

1
2

11

λ

λ

                 (4.4)                             

Hence inequality (4.4) becomes: 

 

  ∑
+++

Δ−≥Ω−Ω

i

k

ii

k

UB

k

UB

kk

F

111
~

)( λλ                                             (4.5) 

 

The solution of the linear problem with load
i

k

UB

Fλ    minimizes the potential energy and 

hence 
kk

Ω≤Ω

+1

 and, from (4.5), 

 

    
k

UB

k

UB

λλ ≤

+1

                                                                 (4.6) 

 

Note that equality in (4.6) only occurs when 
k

j

k

j
Φ=Φ

+
~~

1

 and 
k

j

k

j
RR =

+1

. Hence 
k

UB

λ  

defines a monotonically reducing sequence of upper bounds that converge to a solution 

where 
k

j

k

j
Φ=Φ

+
~~

1

. For this solution, at each hinge point two possibilities exist, depending 

on whether 
k

j

k

j
Φ=Φ

+
~~

1

 has a finite value (active hinges) or whether 
k

j

k

j
Φ=Φ

+
~~

1

 is 

infinitesimally small (inactive hinges). For active hinges equation (3.2) gives, 

 

    

1

~

~

+

==Φ

k

pj

k

k

j
k

j

R

M

R

M

and hence  
pj

k

j
MM =

~

              (4.7) 
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At inactive hinges 
pj

k

j
MM ≤

~

. Hence the conditions of both the upper and lower bound 

theorems are satisfied and the converged solution is the exact solution. 

 

At each iteration the equilibrium moments provide a lower bound 
k

LB

λ  which, we now 

see, becomes equal to the upper bound at convergence. However, it is not possible to 

prove that the lower bound forms a monotonically increasing sequence. In the examples 

that follow the lower bound does, generally, monotonically increase but in a few cases 

reductions do occur. However, the role of the lower bound in determining whether 

convergence has correctly occurred is essential, as will be demonstrated in the 

examples. 

5. APPLICATIONS 

In the following, we investigate the application of this method to the calculation of 

upper and lower bounds of the limit load for a range of portal framed structures. We 

begin with a single story frame to fix ideas. This is followed by the solution of multi-

story structures, with particular interest in the method’s convergence properties. 

5.1 Upper and Lower Bounds for a Single Story Frame. 

Figure 2 shows a simple portal frame with a fixed base at 1 and 2.  The vertical load 

HV α= and horizontal load λ=H  remains proportional and defined in magnitude by 

the load factor λ . The frame is of uniform section with a plastic moment 
Ypj

MM = . 

When two independent load systems can act simultaneously on a structure in any ratio, 

it is useful to study the load factors at collapse by means of an interaction diagram, 

Figure 3 (Horne, 1979). Any line radiating from the origin represents proportional 

loading and in the following calculations three different values of α are considered: 

0.25;1;4α = .  

For problems where concentrated loads are applied, equilibrium requires 

that maximum and minimum bending moments occur at the ends of 

uniform beam sections, i.e. at nodes 1 to 2 in Figure 2. Hence plastic hinges may only 

occur at such nodes and the rotation of local plastic hinges are given by 
j

Φ , 1=j  to 

5=j  as shown in Figure 4. The exact limit load solution consists of three alternative 

mechanisms, as shown in Figure 4, giving rise to the interaction diagram of Figure 3. 

According to the Linear Matching Method a sequence of linear analyses is undertaken 

in which the nodal stiffnesses are systematically changed to provide a sequence of upper 

and lower bounds to the limit load. The details of the procedure are given in Appendix 

A. Figures (5 a,b,c) show the evolution of the upper and lower bound values for three 

values of α, corresponding to different regions of the activation diagram shown in Fig 3.  

 

The evolution of the shape of the collapse mechanism as the solution converges is given  

in Figures (6 a,b,c), expressed as a function of the parameter 
v

u
=β , where u and v are 

the displacements in the directions of the applied loads as illustrated in Figure 4. The 

converged mechanism and limit load are consistent with the interaction diagram of 

Figure 3.   
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The iteration process is terminated when 
61

10

−−

<−

k

UB

k

UB

λλ   and this is achieved in all 

cases in less than 15 iterations. 

 

5.2 Graphical Representation of the Convergence Process   

Convergence of the LMM may be shown through the following graphical representation 

of the iterative process.  At the k
th

 iteration the method chooses a stiffness matrix for the 

next iteration such that: [ ] [ ][ ]
kk

p
RM Φ=

+
~

1

, and from the upper bound formula    

[ ][ ] [ ] [ ]
0

~~

FM

T
kk

UB

k

p
Δ=Φ λ . Now consider the elastic analysis for the (k+1)

th

 iteration, for 

which the magnitude of the applied load is 
k

UB
λ . The potential energy of the system for 

any [ ]Φ  is given by: 

 

   [ ] [ ][ ] [ ] [ ]
0

1

2

1

FR

k

UB

TkT

λΔ−ΦΦ=Ω

+

       (5.1) 

                                                                     

 

so  when  
k

Φ=Φ

~

 , Ω  is given by: 

 

( ) [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
0000

~

2

1~~

2

1~~

2

1~

FFFFM

k

UB

T
k

UB

T
k

UB

T
k

UB

T
kT

p

k

λλλλ Δ−=Δ−Δ=Δ−Φ=ΦΩ  

           (5.2) 

 

Hence, a quantity Ω  can be defined:  

 

    [ ]
( )

[ ] [ ]

k

UBT
k

F

λ

2

3

~
)

~

(

0

+

Δ

ΦΩ

=ΦΩ     (5.3) 

 

so that,  when [ ] [ ]
k

Φ=Φ

~~

             

 

    [ ]
k

UB

k

λ=ΦΩ )

~

(               (5.4) 

 

If we now consider the first variation of Ω about this point,  

 

  ( )
[ ] [ ][ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]
00

1

~~

~

~

F

M

F

R

T
k

T

p

T
k

k
T

k

k

Δ

Φ

=

Δ

ΦΦ

=ΦΩ

+

δδ

δ     (5.5) 

 

The upper bound load parameter is given by; 

 

                                              [ ]( )
[ ] [ ]

[ ] [ ]
0

~

~

~

F

M

T
k

kT

p
kk

UB

Δ

Φ

=Φλ             (5.6) 

Hence for constant [ ] [ ]
0

~

F

T
k

Δ  

 



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 9

       [ ]( )
[ ] [ ]

[ ] [ ]

( )
k

T
k

T

pk

UB

F

M

ΦΩ=

Δ

Φ

=Φ

~

~

~

0

δ

δ

δλ     (5.7) 

 

This argument demonstrates that the normalized potential energy of the linear problem 

Ω  and the upper bound load factor 
UB

λ  coincide at the kth iteration and their local 

slopes also coincide.  

 

Figure 7 shows 
UB

λ  versus the shape of mechanism parameter uv /=β  for the problem 

of Figure 2 for the case of 1=α . The plot also shows Ω  for the (k+1)
th

 =11
th

iteration. 

It can be seen that the matching process chooses a linear material so the upper bound 

load parameter and the normalised potential energy coincide and are tangential at the k
th

 

solution at 
k

β . The (k+1)
th

 solution is obtained as the minimum of the potential energy 

and use of the resulting rotations provides a lower value of the upper bound. In terms of 

this graphical representation the convexity conditions (4.1) and (4.2) require that the 

potential energy curve lies everywhere above the upper bound curve. 

 

Figure 8 shows the same representation as Figure 7 except over a wider range of  β  

and for iterations where the current solution is far from convergence, B, and close to 

convergence, C. Note that the shape of the potential energy curve depends on the 

distance from the converged solution. There is a vertex in the limit load plot at the 

minimum. As a result, an Ω curve which is tangential to the limit load curve close to the 

vertex must be narrow in order to ensure that it does not cross the upper bound curve.  

At the vertex, it must collapse onto a vertical line. This is indicative of the fact that there 

is no rotation at node 2 of Figure 2 for the mechanism associated with the vertex (ie 

mechanism III of Figure 4). The corresponding linear solution requires that the 

rotational stiffness of this node is ∞. Any variation of β away from this point requires 

rotation of this node resulting in a sharp increase in Ω .  Away from the vertex, where 

there is rotation and finite stiffnesses at all the nodes, there is a more gradual variation 

of Ω  with  β.  The mechanism corresponding to point A also has zero rotation at one of 

the nodes (node 3).  For the same reason as discussed above, the Ω  curve becomes 

narrow again as this point is approached. 

 

5.3 An estimate of the Rate of Convergence 

 

The rate of convergence of the method depends on both the nature of the particular 

problem and the choice of the initial set of 
0

j
R . Note that the value of 

1

UB

λ  is independent 

of the initial choice of λ  and also the absolute magnitude of R . For problems where all 

the possible hinges are active convergence tends to be rapid. But in the problem just 

described and those discussed later, there are a significant number of hinges which 

become inactive in the converged solution. For such hinges, 
j

R  begins with the initial 

assigned value and increases to much larger values as the solution converges towards 

the exact value. At each iteration, the value of the corresponding 
k

j
M

~

 is dominated by 

equilibrium considerations and remains relatively constant. Hence from (3.1) the 

corresponding rotation may be expected to reduce by a constant factor and hence the 

contribution to the upper bound will also reduce by a constant factor. If the convergence 

of the method were dominated by the reduction of the contribution to the upper bound 
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made by these inactive hinges, the rate of convergence would be expected to be 

geometric, i.e. the error reduces by a constant factor over each iteration. If the error in 

the upper bound at the kth iteration is 
k

δ , 

 

    
∞

−=

UB

k

UB

k

λλδ  ,     (5.8) 

 

this argument would imply that    
1

1
−

=

kk

C

δδ    where C>1 is a constant, an average of 

the constant values associated with the inactive hinges.  Hence 

 

                       
k

N

Nk

C

δδ

1

=

+

  

 

or     
kNk

CN δδ lnlnln +−=

+

    (5.9) 

 

Figure 9 shows the logarithm of 
k

δ versus the iteration numbers for the cases 0.25α = , 

1=α , 4=α  as shown in Figure 6 (a,b,c).  It can be seen that convergence closely 

follows equation (5.9) for 0.25α =  and 4=α   with, in this case 2=C , except when 

the error is extremely small, where numerical rounding errors begin to play a part. For 

1=α , the initial mechanism for 
j

R constant is very close to the optimal mechanism and 

convergence is more rapid. 

6. EXTENTION TO MULTI-STORY FRAME STRUCTURES 

 

In this section the extension to multi-story frame structures is discussed to verify the 

effectiveness of the proposed approach. The procedure is described in detail in 

Appendix B. 

 

6.1 Three Story Portal Frames  

 

Figure 10 presents the geometry and the sections at which it is necessary to allow for 

the possible occurrence of plastic hinges of a three story portal frame for a model with 

15 elements.  

 

Figure 11 show the exact collapse mechanism, namely a sway in the first two stories 

and  Figure 12 shows the convergence of 
UB

λ
 and 

LB

λ to the limit load corresponding to 

this mechanism. Note that the lower bound does not always monotonically increase, but 

eventually converges to the optimal upper bound. In Figure 13 the rate of convergence 

is shown where, again, geometric convergence with a slope of ln 2 occurs over most of 

the iterations.  It is interesting to note that the rate of geometric convergence is the same 

as that shown in Figure 9 for the structure of Figure 2, although there is no theoretical 

reason why this should be the case. 

 

6.2  A Ten Story Frame 

 

Figure 14 presents the geometry of a ten-story plane frame studied previously by Marin-

Artieda and Dargush (2007) where a number of alternative methods were applied. 

Figure 15 shows the optimal collapse mechanism in the form of an overall sway 
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mechanism. The convergence process is shown in Figure 16 in terms of values of 
UB

λ
, 

LB

λ
.  The converged values of the bounds and the collapse mechanism are consistent 

with the exact solution reported by Marin-Artieda and Dargush (2007) where they give 

a collapse load of 31.3kN for L= 6m and 
y

M =210kN/m, giving 894.0=

y

M

Lλ

.   

In the same paper, an ABAQUS step by step calculation is reported with a significantly 

lower collapse load. The reported collection of active hinges at collapse does not form a 

mechanism and hence no meaningful comparison can be made with this result.  The 

authors place greatest emphasis on the Reduced Elastic Modulus (REM) method of 

Marriott (1985), which gives a lower bound which tends to converge to a limit load of 

30.1kN, 4% less than the exact solution. The REM method gives no indication of the 

collapse mechanism. 

Note that final convergence of the lower bound to the upper bound in Figure 16 takes a 

significant number of iterations. The rate of convergence is shown in Figure 17 where it 

can be seen that convergence is initially rapid and geometric so that by 50 iterations the 

error has reduced to
8

10

−

. There is then about 200 iterations during which the error 

reduces slowly until, finally, geometric convergence is re-established at the same rate as 

initially. This behaviour arises from the very close proximity of two mechanisms with 

near identical collapse loads. The method initially converges towards the mechanism 

with the higher collapse load before moving over to the optimal mechanism. This 

phenomenon is best understood in the following example where the two mechanisms 

are moved further apart by a small change in a plastic modulus. 

    

Consider the case when the plastic moment in beams labelled f in Figure 14 is changed 

by 8% from ( ) 0.216
P Y

M f M=
 to ( ) 0.2

P Y

M f M=
. In this case the structure has two very 

distinct collapse mechanisms I and II, shown in Figure 18. Mechanism I consists of a 

sway of the entire structure with 
=

1

λ 0.8832, and for mechanism II only the last seven 

stories sway, giving 
=

2

λ 0.8785. Figure 19 shows the evolution of the two bounds with 

increasing number of iterations.  The upper bound shows a rapid convergence to 

mechanism I, followed by a very slow convergence to the optimal mechanism II where 

the upper and lower bounds coincide. The initial apparent convergence to mechanism I 

is shown to be false by the remaining large difference between the upper and lower 

bounds. Full convergence requires a large number of iterations; in excess of 500. 

It is evident from Figure 20 that the convergence is geometric in the early stages as the 

deformed shape converges towards mechanism I and again in the latter stages as 

mechanism II is approached, but it is much slower in-between as the solution process 

seeks out the new mechanism.  

 

It is clear that the existence of distinct mechanisms with near equal collapse load limits 

can delay eventual convergence to the optimal mechanism. The fact that the upper and 

lower bound do not coincide after the initial convergence process clearly indicates that 

this phenomenon has occurred and the lower bound will certainly be less at this stage 

than the eventual converged upper bound. In the following we ask the question: how 

close do collapse loads for adjacent mechanisms have to be for this phenomenon to 

occur. Consider again the structure and plastic moments shown in Figure 14. To answer 

this question, the values of the plastic moments for elements a(*), b(*), c(*)  in Figure 

21 are changed by an amount α, such that 
NEW

p P
M Mα= . Over the range 225.0 ≤≤α  

three possible optimal mechanisms occur, as shown in Figure 22. The converged values 
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of lambda are compared in Figure 23b with the upper bounds associated with the three 

mechanisms (see Appendix C), showing that a change in the optimal mechanism occurs 

at 5.0=α  and 05.1=α . Figure 23a shows the number of iterations to convergence over 

the entire range of α , which  is assumed to occur when 
61

10

−−

<−

k

UB

k

UB

λλ  

 

For this very precise criterion of convergence, it can be seen that large numbers of 

iterations are only required when there are two mechanisms with upper bounds that are 

very close to each other. The load factors for mechanism 1 and mechanism 2 coincide 

when 1=α . For 1<α and 05.1>α  convergence occurs in the order of 100 iterations. 

For 05.11 <<α  the load factors for the two competing mechanism differ by, at most 

2%.   

 

7. CONCLUSIONS 

 

The Linear Matching Method provides a programming method for the evaluation of 

limits in classical plasticity that differs significantly from other programming methods. 

Although it is best described as a convergent upper bound method, each iteration 

provides an equilibrium set of moments as well as a compatible set of kinematic 

variables. Hence both upper and lower bounds are generated which, at convergence, 

coincide and verifying that the exact solution has been obtained. This property is unique 

to the Linear Matching Method. 

 

This paper has concentrated on the convergence properties of the method applied to 

rigid plastic portal frames. We find convergence tends to be geometric and reasonably 

rapid.  We also find that the close proximity of upper bounds to the optimal mechanism 

can delay convergence, by the method first seeking out the mechanism associated with 

the non-optimal solution before then slowly converging to the optimal solution. It would 

appear that this phenomenon will only occur if the distributions of hinges in the two 

mechanisms are very distinct and the upper bounds very close together. The existence of 

the phenomenon in a particular problem is clearly displayed through the difference 

between the upper and lower bound. 

 

The inherent simplicity of the method by using, as its basis, linear analysis, together 

with its strong convergence properties, encourages the view that it is a method that may 

usefully be seen alongside classical programming approaches to structural design. 
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Appendix A- Linear matching method for single story frame- 

 Matrix Formulation 

 

The Linear Matching Method involves performing a sequence of linear analyses by 

systematically varying the stiffness, to provide a sequence of upper and lower bounds to 

the limit load. The details of the procedure are reported in this appendix. Let us assign a 

rotational stiffness 
i

R  at each plastic hinge 
j

Φ

~

and the related moments are given by:

[ ] [ ][ ]Φ=

~~

RM  where [ ]M

~

is a bending moment vector, [ ]R  is the diagonal matrix of 

rotational stiffnesses, where  

 

[ ]

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

=

5

4

3

2

1

~

~

~

~

~

~

M

M

M

M

M

M  , [ ]

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

=

5

4

3

2

1

0000

0000

0000

0000

0000

R

R

R

R

R

R  and [ ] [ ][ ]Δ=

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎡

Φ

Φ

Φ

Φ

Φ

=Φ

~

~

~

~

~

~

~

5

4

3

2

1

B     (A.1)                                

 

Here [ ]
⎥

⎦

⎤

⎢

⎣

⎡

=Δ

v

u

is the vector of independent degrees of freedom and [B] is the shape 

function matrix: 

 

[ ] [ ]

1
0

1 1

2
0

1
0

L

u
L L

and

v

L

L

⎡ ⎤

⎢ ⎥

⎢ ⎥
−

⎡ ⎤
⎢ ⎥

= Δ =
⎢ ⎥

⎢ ⎥
⎣ ⎦

⎢ ⎥

⎢ ⎥

⎢ ⎥⎣ ⎦

B                                                             (A.2) 

 

With the load vector ;  

 

                                        [ ] [ ]
0

0

0

F

V

H

F λλ =
⎥

⎦

⎤

⎢

⎣

⎡

=                                                          (A.3) 

 

 the total potential energy for the (k+1)
th

 linear solution is given by: 

 

[ ] [ ][ ] [ ] [ ] [ ] [ ][ ] [ ] [ ]
0

111

0

111
~~~

2

1~~~

2

1

FKFR

T

kk

UB

k

k

T

k

T

kk

UB

k

k

T

k ++++++

Δ−ΔΔ=Δ−ΦΦ=Ω λλ            (A.4) 

 

where [ ] [ ] [ ][ ]BRBK
k

T

k 11 ++

=     denote the stiffness matrix. The linear problem is solved by 

minimizing the potential energy, i.e.  

 

   [ ][ ] [ ]
0

1

1

~

FK

k

UB

k

k

λ=Δ

+

+

 

 

At each independent node the rotations are related to the independent displacement 

vector [ ]Δ  by (A.1). 
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Upper Bound Evaluation 

 

For a particular load ratio α  the vector of external loads can be written as follow: 

         

   [ ] [ ]
0

F

H

H

V

H

F λ

α

λ =
⎥

⎦

⎤

⎢

⎣

⎡

=
⎥

⎦

⎤

⎢

⎣

⎡

=                (A.5)                                

For any compatible mechanism from the upper bound formula eq. (2.3): 

 

    [ ] [ ]
j

j

Y

T

UB
MF Φ=Δ ∑

=

~~

5

1

0

λ               (A.6) 

 

For this particular case 
i

Φ ’s can defined so that they are always positive, see Figure 4; 

and hence  

           

   [ ] [ ] [ ] [ ][ ]∑
=

Δ≤Δ

5

1

0

~~

j

T

Y

T

UB
BIMFλ                         (A.7) 

where the vector [ ]I  is a unit matrix. 

The upper bound load multiplier from equation (A.6) is then given by : 

 

   

[ ] [ ][ ]

[ ] [ ]
0

5

1

~

~

F

BIM

T

n

T

Y

UB

Δ

Δ

=

∑
=

λ                   (A.8)                               

 

Briefly, the main steps for determinig the upper bound using the LMM are: 

 

1) The first linear analysis is made with R
i=1,5

=1 and 1
UB

λ = . 

2) The rotational stiffness R
i
 at each node is adjusted according to the rules of LMM 

so that at iteration k+1 the new distribution of rotational stiffness is :  

     

⎟
⎟

⎟

⎠

⎞

⎜
⎜

⎜

⎝

⎛

=
+

k

j

Yk

i

k

j

M

M

RR
~

1

  

 

3) A new linear analysis is performed with the new stiffness matrix 
1+k

j
R  so a new 

displacement vector [ ]Δ
~

and [ ] [ ][ ]Δ=Φ

~~

B  and 
k

UB

λ  can be evaluated and [ ] [ ]αλ

k

UB

F =  is 

the load for the next iteration. 

     

 The process is iterated until the lowest upper bound is reached. The lower bound is 

given by eq. (3.5): 

 

         

k

j

Yk

UB

k

LB

M

j

M

~
max

λλ =      (A.9) 
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Appendix B- Matrix formulation for multistory frame 

Let us consider a single beam element (Fig.B1a) with hinge positions at its ends 

adjacent but distinct from nodes i and j where the beam is connected to other beams. As 

before 
i

Φ  denotes the hinge rotation and the rotation of the nodes is separately denoted 

by  
i

ϑ .  The displacements of the nodes parallel to and perpendicular to the beam length 

are denoted by ,

i i

u v  respectively. 

 

For rotation of hinges with no rotation of nodes, Figure B1b : 

 

   

L

vv

L

vv
ij

j

ij

i

−

=Φ

−

=Φ ;                                     (B.1) 

 

and Fig.B1c shows the rotation of hinges due to rotations of nodes : 

 

                             
jjii

ϑϑ −=Φ−=Φ ;                                        (B.2) 

 

Hence the total rotation of the hinges is the sum of these (B.1) and (B.2): 

 

  
j

ij

ji

ij

i

L

vv

L

vv

ϑϑ −

−

=Φ−

−

=Φ ;                              (B.3)                         

 

The element is considered inextensible and hence the beam extension: 

 

     
ji

uue −= = constant 

 

Hence for a typical element the vector [ ]Φ of the local hinge rotations and beam 

extension is related to the element displacement vector [ ]u of nodal displacements and 

rotations as follow: 

 

[ ]

[ ]

[ ]

�

[ ][ ]uC

v

u

v
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LL

LL
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⎥

⎥

⎥

⎥

⎥

⎥
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⎢
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⎥
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⎤

⎢
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⎢
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⎣

⎡

−−

−−

=

⎥

⎥

⎥

⎦
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⎢

⎢

⎢

⎣

⎡

Φ

Φ

=Φ

ϑ

ϑ

����� ������ ��

0000

1
1

00
1

0

0
1

01
1

0

                            (B.4) 

           

where [ ]C is the compatibility matrix. In turn the element displacement vector [ ]u  is 

related to a global matrix of global degrees of freedom [ ]U  by the matrix [ ]Ψ , 

 

       [ ] [ ][ ]Uu Ψ=  

 

Hence   [ ] [ ][ ]UB=Φ    where [ ] [ ][ ]Ψ= CB   

  



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 16

The stiffness matrix for each element is now: 

  [ ] [ ] [ ][ ]BRBK

T

el

'

=      where  [ ]

⎥

⎥

⎥

⎦

⎤

⎢

⎢

⎢

⎣

⎡

=

l

j

i

E

R

R

R  

 

Where 
L

E is the elongation stiffness, given a suitable large value; in our calculations 

6

10.1=E . 

 

The solution of the linear problem for a particular set of  [ ]R  is, therefore, given by, 

 

            [ ][ ] [ ]
0

~

FUK
UB

λ=   where  [ ] [ ]∑=

el

el

KK              (B.5) 

                                                                              

The rotation at plastic hinges and the upper bound load parameter can be evaluated from 

the following relations: 

 

                             [ ] [ ][ ]UB

~~

=Φ                                                        (B.6) 

 

                     [ ] [ ] ∑ Φ=

hinges

jpj

T

UB
MFU

~~

λ                                                (B.7) 

  

Now according to the procedure we can adjust iteration by iteration the rotational 

stiffness at each hinge
k

j
R : 

 

                                                
k

j

Yjk

j

M

R

Φ

=

+

~

1

                                      (B.8) 

 

So with the new 
1k

R

+

⎡ ⎤
⎣ ⎦

matrix the [ ]K matrix can be reconstructed. We solve (B.5) and 

can determine the new rotations from (B.6) and the new upper bound from (B.7), so: 

 

    

[ ] [ ]
0

FU

M

T

pj

hinges

j

UB

∑ Φ

=λ             (B.10)                              

 

The lower bound can be evaluated from the upper bound from equation (3.5) 
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Appendix C- Upper Bound for frame of Figure 21 

 

In Fig.22 three different values of the collapse load multiplier can be determined 

assuming the 3 collapse mechanisms. 

 

For the first mechanism  : 

 

Work done: ( )
1

27.5 0.85 2 0.85 12 12 0.45 16 0.2
Y

L Mλ ϑ ϑ α⋅ ⋅ = + + + + ⋅ + ⋅⎡ ⎤
⎣ ⎦

 

 

ie.                  
1

15.7 8.6

27.5
Y

L

M

λ α +

=                                                                               (C.1) 

 

For the second mechanism: 

 

Work done: ( )
2

14 0.85 2 0.85 12 0.45 16 0.2
Y

L Mλ ϑ ϑ⋅ ⋅ = + + + ⋅ + ⋅  

 

ie.                   
2

Y

L

M

λ

=0.87857                                                                            (C.2) 

 

For the third mechanism : 

 

Work done: ( )
3

3

3 7 4 0.85 2 2 8 1

2

Y

L Mλ ϑ ϑ α

⎛ ⎞
⋅ ⋅ + ⋅ = ⋅ + ⋅ + ⋅⎡ ⎤

⎜ ⎟ ⎣ ⎦
⎝ ⎠

 

 

ie.                 
3

30.8

27
Y

L

M

λ α

=                                                                         (C.3) 
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Figure Captions 

 

Figure.1   Graphical interpretation of matching procedure at increment k+1.

Figure 2   A single story portal frame. 

Figure 3   Interaction diagram for the structure of Figure 1 (Horne, 1979). 

Figure 4 Possible collapse mechanisms for the structure of Fig 2. The number of each 

node is given in Fig.2. 

Figure 5   Evolution of the upper and lower bounds for (a) 25.0=α , (b) 1=α  and (c) 

4=α . 

Figure 6   Evolution of the shape of the collapse mechanism for (a) 25.0=α , (b) 1=α  

and (c) 4=α . 

Figure 7   Graphical Representation of the convergence process for the k=10
th

 iteration. 

Figure 8   The variation of Ω   at different stages of the convergence process. 

Figure.9   Rate of convergence for 25.0=α , 1=α  and 4=α . The plot shows 

geometric convergence ( 25.0=α , 1=α ) except when the error is extremely small.  

Figure.10  Three story portal frame analysed in section 6.1.  The plastic moment of each 

beam element is indicated on the figure. 

Figure 11  The collapse mechanism observed in the analysis of the structure in Fig 10. 

Figure 12 Evolution of the upper and lower bound for the structure in Fig 10.           

Figure.13 Rate of convergence shows approximately geometric convergence. 

Figure.14  Ten-story frame. The plastic moments assumed in the initial analysis of 

section 6.2 are indicated adjacent to each beam element, 

Figure.15 Collapse mechanism for the ten-story frame of Fig 14.  

Figure.16 Evolution of the upper and lower bound related to Fig.15. 

Figure.17 Rate of convergence initially rapid and geometric (the error has reduced 

to
8

10

−

) then the error reduces slowly until, finally, geometric convergence 

Figure 18 The collapse mechanisms observed in the analysis of the structure shown in 

Fig 14. 

Figure 19 Evolution of upper and lower bounds  for the structure of Fig14, showing the 

initial rapid convergence towards the limit load corresponding to mechanism I followed 

by a slower convergence to the exact limit load corresponding to mechanism  II 

Figure.20 Rate of convergence shows a rapid and geometric convergence to the first 

upper bound and then a slower convergence to the second upper bound 

Figure. 21 Structure in Fig14 with a range of plastic moment values given by 

p

NEW

p
MM α= .     

Figure.22 Optimal collapse mechanism over a     Range 225.0 ≤≤ α . 
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Figure 23 (a) Number of iterations for convergence as a function of the strength 

parameter α (b) Limit loads for each of the mechanism shown in Fig 22, showing the 

range of dominance of each mechanism. 

Figure A1 Nodal rotations. 

Figure B1  (a) Beam element from nodes i and j , (b) Beam with no rotation of nodes, 

(c) beams with the rotation of hinges due to rotations of nodes. 
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