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Abstract

The isothermal inelastic behaviour of the dry polyamid 66 (PA66) is considered. It
is shown that the so called time-temperature equivalence principle can be recovered
by a symmetry analysis of the differential equations governing the material rheology,
which are written within a thermodynamical framework of relaxation. The symmetry
analysis leads to the expression of a translation shift factor from a reference curve
to another curve at a different temperature. This shift factor is compared to that
given by the well-known Williams-Landel-Ferry empiric relation.

Key words: Thermodynamics of Relaxations, Lie Groups, DNLR Approach,
Williams Landel Ferry Relation.

1 Introduction

The powerfullness of the Lie group symmetry analysis has been extensively
used to support the finding of analytic solutions to partial differential equa-
tions (for a body of results, see Ibragimov (1995)). In the context of continuum
solids mechanics, Lie groups have been applied to solve both the Navier and
the Lame equations (see Ozer (2003), Chirkunov (1973)), or in a similar spirit,
to partially solve the ideal plasticity equation (Senashov (1980), Annin et al.
(1985)).
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The point of view advocated in this contribution is the involvement of Lie
groups as a predictive method to obtain invariance properties of materials:
from the knowledge of the constitutive law of a specific material and its ex-
perimental response for a given set of control conditions, the ability of Lie
symmetries to predict the material behaviour under various control conditions
shall be assessed.

The focus of the present paper is on the time temperature equivalence principle
(here abbreviated as TTEP), which was successfully confirmed by experimen-
tal data on several polymers, and fitted with empiric relations such as the
Williams-Landel-Ferry (WLF) relation (e.g. Hotta and Terentjev (2001), Laot
(2001), Ricco and Pegoretti (2000)) or the Kohlrausch relation (Meyer et al.
(1999), O’Connell and McKenna (1997), Nicholson et al. (2001)). To briefly
illustrate the TTEP, let us consider the data summarized in the Figure 1,
representing the experimental and isothermal evolution of the secant modulus
Es(t, T ) (introduced here as a function of the time t and the temperature T )
of a polymer (polyamid 66, abbreviated as PA66) versus time, at different
constant temperatures and for a given strain rate. Each curve being parame-
terized by the temperature T ′ (taken in the set 413K, 433K, and 453K) can be
translated along the time axis with a horizontal shift factor, aT ′→T , to coincide
with a master curve at a reference temperature T (here 393K, see Figure 2).
This invariance property may be mathematically expressed as

Es(t, T ) = Es(aT ′→T t, T ′) ⇒ Es(log t, T ) = Es(log t + log aT ′→T , T ′) (1)

where aT ′→T is a shift factor that may be empirically formulated as a function
of the reference temperature T and the temperature T ′.

In a previous paper (Rahouadj et al. (2003a),Rahouadj et al. (2003b)), Ra-
houadj et al showed that a thermomechanical behaviour formalized within an
approach of relaxation called DNLR (Distribution of Non Linear Relaxations)
approach (Cunat (2001), Cunat (2000)) obeys the TTEP, and that the sym-
metry analysis proves a convenient method to predict this principle. Relying
on the initial methodology presented in (Rahouadj et al. (2003a),Rahouadj
et al. (2003b)) and on the work of Magnenet et al (Magnenet et al. (2005),
Magnenet et al. (2007)), the purpose of the present work is then to theoreti-
cally express the shift factor aT ′→T of the TTEP and to compare it with the
empiric form given by the WLF formulation. This theoretical formulation will
be obtained from a Lie groups analysis of the DNLR constitutive equations.

The following conventions shall be used below: vectors and matrices are de-
noted by bold face letters, and the total derivative of an expression, e.g.
u(t, f(t)), with respect to time t will be written u̇ = ∂u

∂t
+ ∂u

∂f
ḟ . Accordingly, the

total derivative u̇ accounts for both the explicit and the implicit dependence
of the functional u upon time (u depends on f , which itself is a function of
the time).
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2 Constitutive law within the thermodynamics of relaxation

A short reminder of the constitutive thermomechanics framework of relax-
ation is first given. For a homogeneous continuous medium, Cunat (Cunat
(2001), Cunat (2000)) showed that the evolution of the intensive variables
Y (e.g. stress tensor σ, temperature T ) and intensive generalized forces A
may be associated with the dual extensive variables y (e.g. volume weighted
strain tensor V ε, entropy s) and extensive internal variables z (describing the
microstructure) by the rate form of the constitutive equations

⎧⎪⎨
⎪⎩

Y = ∂e
∂y

−A = ∂e
∂z

⇒
⎛
⎜⎝ Ẏ

−Ȧ

⎞
⎟⎠ =

⎛
⎜⎝ au b

bT g

⎞
⎟⎠

⎛
⎜⎝ ẏ

ż

⎞
⎟⎠ (2)

where au = ∂2e
∂y2 is the Tisza matrix (the superscript “u” means “unrelaxed”),

b = ∂2e
∂y∂z

is the coupling matrix, and g = ∂2e
∂z2 the matrix of dissipation, defined

as the matrices of second order derivatives of the generalized internal energy
potential e(y, z). These matrices are, for the sake of simplicity, assumed to
be constant in the vicinity of the thermodynamical equilibrium. Eqs. (2) may
be reasonably completed (Cunat (2001), Cunat (2000)) by a linear kinetic
evolution of the internal variables

ż = LA (3)

where L is the matrix of kinetic coefficients satisfying Onsager’s properties (see
Onsager (1931)). To obtain the corresponding constitutive equations, Cunat
proposed to introduce a state of reference, called “the relaxed state” (or even-
tually the steady state in non equilibrium situations), defined by the condition
−Ȧr = 0 (the superscript “r” refers to this state). Using (2) and (3), one can
show (Cunat (2001), Cunat (2000)) that the kinetic evolution equation of the
microstructural reaction advancement is given by

żk = −zk − zr
k

τk
| k = 1..N (4)

where zr
k is the value of the kth reaction advancement at the relaxed state,

N the number of modes (or chemical processes), and τk the corresponding
relaxation time.

Actually, in an experimental context, it can be easier to control a subset of
the extensive variables y completed by another subset of intensive variables
Y . Thus, let be γ ⊂ {y, Y } the vector of experimentally controled variables,
and β the set of the dual thermodynamic variables. By using a Legendre
transformation of the internal energy e(y, z), the thermodynamic potential
ψ(γ, z) may be expressed as a function of γ and z. In this case, it has been

3
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shown that the DNLR equations take the general form (Cunat (2001),Cunat
(2000)) ⎛

⎜⎝ β̇

−Ȧ

⎞
⎟⎠ =

⎛
⎜⎝ au b

bT g

⎞
⎟⎠

⎛
⎜⎝ γ̇

ż

⎞
⎟⎠ (5)

where au = ∂2ψ
∂γ2 , b = ∂2ψ

∂γ∂z
, and g = ∂2ψ

∂z2 are the “new” formulations of the
Tisza, coupling and dissipation matrices. Note that dissipative reorganizations
are modelled by a spectral analysis based on fluctuating modes, relatively to
the new relaxed state associated with the new value of γ.

3 Application to the inelastic behaviour for uniaxial loading paths

Let identify the components of the controlled variables γ to the uniaxial strain
tensor ε and the temperature T , associated with the Cauchy stress tensor σ and
the entropy s (components of β), respectively. The suitable thermodynamical
potential ψ(γ, z) is then the Helmholtz free energy f(ε, T, z), and the relation
(5) incorporating (4) gives (Cunat (2001),Cunat (2000))

Δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = σ̇ − Euε̇ + αuEuṪ +
N∑

k=1

b1
k

zk − zr
k

τk
= 0

Δ2 = −ṡ + αuEuε̇ − Cu

T
Ṫ +

N∑
k=1

b2
k

zk − zr
k

τk
= 0

Δ2+i = −Ȧi − b1
i ε̇ − b2

i Ṫ +
N∑

k=1

gik
zk − zr

k

τk

= 0 | i = 1..N

(6)

where the constants Eu, b1
k, αu, b2

k,
Cu

T
, and gik are defined as the following

second order derivatives of f

Eu =
∂2f

∂ε2
; b1

k =
∂2f

∂ε∂zk
| k = 1..N ; −αuEu =

∂2f

∂ε∂T
(7)

Cu

T
=

∂2f

∂T 2
; b2

k =
∂2f

∂T∂zk
| k = 1..N ; gik =

∂2f

∂zi∂zk
| i, k = 1..N (8)

among which we recognize the instantaneous Young modulus Eu, the dilata-
tion coefficient αu, and the specific heat Cu. The value of the internal vari-
ables at the relaxed state, denoted zr

k, is given by the condition −Ȧk = 0,
i.e. Ak = Ar

k = constant. Under the assumption of an isothermal condition,
Ṫ = 0, the second equation of (5) leads to

−Ȧr
i = 0 = b1

i ε̇ +
N∑

k=1

gikż
r
k ⇒ żr

k = −
N∑

i=1

(g−1)kib
1
i ε̇ | k = 1..N (9)

4
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In a first approach, the constants of integration appearing in (9) are assumed
to be equal to zero, leading to a value of zr

k that only depends on the applied
strain ε, via

zr
k = −

N∑
i=1

(g−1)kib
1
i ε = ckε | k = 1..N (10)

Considering a linear “thermo-visco-elastic” behaviour corresponding to a sim-
plified DNLR version (more exactly called DLR version), Cunat showed that
the relaxation times τj may be modelized as functions of the temperature T
only, according to

τj(T ) =
h

kT
exp(

ΔHj − TΔSj

RT
) | j = 1..N (11)

where h is the Planck constant, k the Boltzmann constant, and R the ideal gas
constant. The physical parameters ΔHj and ΔSj correspond to the apparent
activation enthalpy and entropy of the jth dissipative mode respectively. The
activation enthalpies are supposed to be the same for each mode, ΔHj = ΔH ,
indicating that the material is considered as “thermorheologically simple”. The
chosen deformation path is such that ε linearly increases as a function of
the time (ε = ε̇t). Summarizing Eqs. (6-11) then gives the final form of the
constitutive equations

Δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = σ̇ − Euε̇ +
N∑

j=1

b1
j

zj − cj ε̇t
h

kT
exp

(
ΔH−TΔSj

RT

) = 0

Δ2 = −ṡ + αuEuε̇ +
N∑

j=1

b2
j

zj − cj ε̇t
h

kT
exp

(
ΔH−TΔSj

RT

) = 0

Δ2+i = −Ȧi − b1
i ε̇ +

N∑
j=1

gij
zj − cj ε̇t

h
kT

exp
(

ΔH−TΔSj

RT

) = 0 | i = 1..N

(12)

The parameters of the present DLR model are summarized into the following
set

{Eu, b
1
j , cj, ΔH, ΔSj, αu, b

2
j , gij} | j = 1..N (13)

For continuous thermal loadings, such a simple model can be used to reproduce
inelastic behaviours, as we shall see in the following section.

4 Lie groups computational method

Let us now formulate the Lie groups computational method for the constitutive
equations (12). Using Olver notations (Olver (1989)), one considers the smooth
manifold M = X × U , where X is the set of independent variables (in our
case, t) and U is the set of dependent variables

U = {ε(t), T (t), zk(t), σ(t), s(t), Ak(t)} | k = 1..N (14)

5
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Let v be a vector field on M, expressed as an infinitesimal operator

v = ξ
∂

∂t
+ φε

∂

∂ε
+ φT

∂

∂T
+

N∑
k=1

φzk

∂

∂zk

+ φσ
∂

∂σ
+ φs

∂

∂s
+

N∑
k=1

φAk

∂

∂Ak

(15)

where the components ξ, φε, φT , φzk
, φσ, φs, φAk

(k = 1..N) depend a priori on
all the variables t, ε, T , zk, σ, s, Ak. The vector field v generates a symmetry
group for equations (12) if and only if it transforms a solution of (12) into
another one. It is well-established (Olver (1989)) that a necessary and sufficient
condition for this property is given by

pr(1)vΔ = 0 whenever Δ = 0 (16)

where pr(1)v is the first prolongation of v given in the present case (accounting
for Ṫ = 0) by the more specific expression

pr(1)v =v + (φ̇ε − ξ̇ε̇)
∂

∂ε̇
+ φ̇T

∂

∂Ṫ
+

N∑
k=1

(φ̇zk
− ξ̇żk)

∂

∂żk

+(φ̇σ − ξ̇σ̇)
∂

∂σ̇
+ (φ̇s − ξ̇ṡ)

∂

∂ṡ
+

N∑
k=1

(φ̇Ak
− ξ̇Ȧk)

∂

∂Ȧk

(17)

The search of the symmetry groups of (12) amounts to find all generators
having the general form of (15), and satisfying the symmetry condition (16).
The determining equations, obtained by inserting (12) and (17) into (16), take
the following form

− ξ
N∑

j=1

(
b1
jcj ε̇

τj(T )

)
− φT

N∑
j=1

(
b1
j

∂τj(T )

∂T

zj − cj ε̇t

τ 2
j (T )

)
+

N∑
j=1

(
φzj

b1
j

τj(T )

)

−Eu(φ̇ε − ξ̇ε̇) + φ̇σ − ξ̇

⎛
⎝Euε̇ −

N∑
j=1

b1
j

zj − cj ε̇t

τj(T )

⎞
⎠ = 0 (18)

− ξ
N∑

j=1

(
b2
jcj ε̇

τj(T )

)
− φT

N∑
j=1

(
b2
j

∂τj(T )

∂T

zj − cj ε̇t

τ 2
j (T )

)
+

N∑
j=1

(
φzj

b2
j

τj(T )

)

+ αuEu(φ̇ε − ξ̇ε̇) − φ̇s + ξ̇

⎛
⎝αuEuε̇ +

N∑
j=1

b2
j

zj − cj ε̇t

τj(T )

⎞
⎠ = 0 (19)

6
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− ξ
N∑

j=1

(
gijcj ε̇

τj(T )

)
− φT

N∑
j=1

(
gij

∂τj(T )

∂T

zj − cj ε̇t

τ 2
j (T )

)
+

N∑
j=1

(
gijφzj

τj(T )

)

− b1
i (φ̇ε − ξ̇ε̇) − φ̇Ai

+ ξ̇

⎛
⎝−b1

i ε̇ +
N∑

j=1

gij
zj − cj ε̇t

τj(T )

⎞
⎠ = 0 | i = 1..N (20)

in which we do not insert the expression of the relaxation times (11) for sim-
plicity. The solution of the system of equations (18), (19) and (20) with respect
to the unknowns

ξ, φε, φT , φzk
, φσ, φs, φAk

| k = 1..N (21)

is a difficult task in the general case. We focus in the present contribution
to a particular set of generators v, that shall highlight the time temperature
equivalence principle.

5 The time-temperature equivalence principle

5.1 Formal approach

Since it is not possible to completely solve the non-linear determining equa-
tions (18), (19) and (20), an algorithm to find some particular solution has
been implemented. More precisely, a few components of v are assigned a given
value (0, 1, or t for ξ, and 0, 1 or α for φα, where α is a notation for an element
of {ε, T, zk, σ, s, Ak | k = 1..N}), and one searches the remaining components
of v (see Figure 3 for a schematic representation). For instance, as far as t is
concerned, one looks for any generator having the form:

v = v′ or v =
∂

∂t
+ v′ or v = t

∂

∂t
+ v′ (22)

where v′ has no components in t. This structure of the generator has been
used because 0, 1 and α generate three classical Lie groups, see e.g. Olver
(1989). Indeed, the first value (φα = 0) corresponds to the identity group:
ᾱ = α, where ᾱ is the transformed value of α by the group; the second value
(φα = 1) corresponds to the group of translation: ᾱ = α + μ, while φα = α
generates the group of dilatation: ᾱ = eμα (i.e. a translation along the time
axis in the log Es vs. log t representation). In practice, a symbolic program
(Maple�) has been used, and the following particular but interesting solution
for the symmetry condition pr(1)vΔ = 0 has been obtained:

7
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ξ = t ; φε = ε ; φT = − RT 2

RT + ΔH
φσ = σ ; φs = s ; φzk

= zk ; φAk
= Ak | k = 1..N (23)

The explicit expression of a one-parameter group G is given by the exponenti-
ation of its infinitesimal generator (Olver (1989)) obtained in the present case
by solving the first order differential system resulting from (23)

dt′

dμ
= t′ ;

dε′

dμ
= ε′ ;

dT ′

dμ
= − RT ′2

RT ′ + ΔH
(24)

dσ′

dμ
= σ′ ;

ds′

dμ
= s′ ;

dz′k
dμ

= z′k ;
dA′

k

dμ
= A′

k | k = 1..N

where μ is the group parameter, and the superscript “ ’ ” on any variable
x means that x′ is the transformed of x under the action of the group. The
differential system (24) must be completed by the initial conditions

t′|μ=0 = t ; ε′|μ=0 = ε ; T ′|μ=0 = T (25)

σ′|μ=0 = σ ; s′|μ=0 = s ; z′k|μ=0 = zk ; A′
k|μ=0 = Ak | k = 1..N

corresponding to the existence of a neutral element for the group G (Olver
(1989)). The solution of the system (24) and (25) corresponds to the one-
parameter group of transformations

t′ = eμt ; ε′ = eμε ; z′k = eμzk ; σ′ = eμσ ; s′ = eμs ; A′
k = eμAk (26)

T ′ = exp

(
LW

(
ΔH

R
exp

(
μT − T ln(T ∗) + ΔH

R

T

))
− μ + ln(T ∗) − ΔH

RT

)

(27)
where LW (x) is the Lambert function 1 and T ∗ is the non-dimensional tem-
perature defined by

T ∗ =
T

T0
with T0 = 1K (28)

Inverting Equ. (27), it is possible to express the group parameter μ vs T and
T ′ as

μ(T, T ′) =
ΔH(T − T ′)

RTT ′ + ln
T

T ′ (29)

Equations (26) and (27) imply that if the set of functions

ε(t) , T (t) = T , zk(t), σ(t) , s(t) , Ak(t) | k = 1..N (30)

1 defined as the solution of the equation LW (x)eLW (x) = x

8
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(the temperature is considered as a constant) satisfies the governing equations
(12), then the new set of functions given by

ε′(t′) = eμε(t) = eμε(e−μt′)

T ′ = exp
(
LW

(
ΔH
R

exp
(

μT−T ln(T ∗)+ΔH
R

T

))
− μ + ln(T ∗) − ΔH

RT

)

z′k(t
′) = eμzk(t) = eμzk(e

−μt′) | k = 1..N

σ′(t′) = eμσ(t) = eμσ(e−μt′)

s′(t′) = eμs(t) = eμs(e−μt′)

A′
k(t

′) = eμAk(t) = eμAk(e
−μt′) | k = 1..N

(31)

also satisfies the constitutive equations (12) for all values of the group param-
eter μ. It is then possible to highlight an invariance property for the material:
noting εT (t) and σT (t) the strain and the stress values at a given time and
temperature, let us define the secant modulus Es at the time t and for the
temperature T by

Es(t, T ) =
σT (t)

εT (t)
(32)

Taking (32) and (31) into account, and considering that the functions σ(t) and
ε(t) are associated with T whereas the functions σ′(t′) and ε′(t′) are associated
with T ′, one may deduce that

Es(t, T ) =
σT (t)

εT (t)
=

eμσT (t)

eμεT (t)
=

σ′
T ′(t′)

ε′T ′(t′)
= Es(t

′, T ′) = Es(e
μt, T ′) (33)

A logarithmic representation of the first relation of (26) leads to

log t′ = log t +
μ

ln 10
(34)

Considering (34), Equ. (33) may then be rewritten in the new form

Es(log t, T ) = Es(log t +
μ

ln 10
, T ′) (35)

This last relationship means that it is possible to deduce the isothermal curve
of the modulus Es(t, T

′) at T ′ from the curve of Es(t, T ) at T by a simple
translation along the time axis in the log-log representation. The value of the
corresponding shift factor μ/ ln 10 is given by Equ. (29). In the next section,
these results will be compared to experimental data of a specific polymer.

9
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5.2 Validation of the group on the basis of experimental data for dry polyamid 66

In order to model isothermal tensile curves, let us rewrite the first constitutive
equation in (6) as

Δ1 = σ̇ − Euε̇ +
N∑

k=1

σk − p0
kErε̇t

τk(T )
= 0 (36)

where Er is the relaxed modulus defined by the equality p0
kEr = b1

kck = (k =
1..N , see Equ. (6)), in which p0

k is the weight of the kth dissipation mode given
from the fluctuation theory by (Cunat (2001), Cunat (2000))

p0
k =

√
τk(T )

N∑
i=1

√
τi(T )

| k = 1..N (37)

Keeping in mind that the overall stress σ can be written as a sum of N partial
stresses σj associated with the N dissipative and orthogonal modes

σ =
N∑

j=1

σj =
N∑

j=1

b1
jzj (38)

one can compute σ (inserting (38) into (36)). In order to simulate a continuous
spectrum by means of a discrete analysis, an arbitrary number N of 20 modes
has been considered, with relaxations times equally distributed on a logarith-
mic scale upon D = 3 decades in an interval [τmin; τmax] (i.e. τmax/τmin = 10D):

log τk = log τmin +
(k − 1)D

N − 1
= log τmax − D +

(k − 1)D

N − 1
| k = 1..N (39)

The parameters Eu, Er are adjusted independently on the temperature, whereas
the maximum relaxation time τmax is adjusted at each temperature. Four
experimental and isothermal tensile curves obtained by Ehrenstein (Ehren-
stein and Montagne (1999)) at temperatures between 393K and 454K for dry
polyamid 66 (PA66) and the corresponding theoretical modelling (equation
(36)) are given in Figure 4. The experimental and theoretical secant moduli
Es(t) versus time at different temperatures T are also represented (see Fig-
ure 5). Equation (35) allows to obtain a master curve by translating each
curve along the time axes (Figure 6). Using relation (11) (where ΔH = ΔHj ,
j = 1..N) and the discrete relaxation times given in (39), one further identifies
the value of the free activation enthalpy ΔGj = ΔH − TΔSj for each mode
associated with the four temperatures from T = 393K to 453K, according to
the relation

ΔGj = RT ln
(

kT

h
τj

)
(40)
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Finally, a linear interpolation of ΔGj = ΔH − TΔSj vs T leads to the value
of ΔH . The mean value (that will be discussed in the concluding remarks)
obtained from this method is ΔH = 13620 J.mol−1, allowing the computation
of a theoretical shift factor μ/ ln 10 (Equ. (29)) between two isothermal tensile
curves at T and T ′. The theoretical shift factors have been compared to the
factors measured experimentally at T and T ′ for the secant modulus (Figure
(7)). From Figure 7, one concludes that Equ. (29) may be considered as a
good approximation of the experimental homothetic factor.

5.3 Comparison to the Williams-Landel-Ferry empirical law

It is possible to compare the shift factor μ/ ln 10 given by relation (29) to
the Williams, Landel and Ferry formulation (see e.g. Ferry (1980)), which
empirically states the following equivalence property satisfied by the secant
modulus of relaxation

Es(t, T ) = Es(taT ′→T , T ′)
ρ(T )T

ρ(T ′)T ′ (41)

where ρ(T ) denotes the mass density at T , and aT ′→T a shift factor given
empirically by the relation

log aT ′→T = − C1(T
′ − T )

C2 + T ′ − T
(42)

The constants C1 and C2 are some coefficients depending on the material.
In many cases, it is usually assumed that the ratio ρ(T )T

ρ(T ′)T ′ is approximatively
equal to 1 (e.g. Hotta and Terentjev (2001), Laot (2001)). As a consequence,
one can remark that the parameter μ(T, T ′)/ ln 10 of the group corresponding
to Equ. (29) can exactly be identified to the coefficient aT ′→T given by the
WLF empiric relation. Identifying (33) and (41) with ρ(T )T

ρ(T ′)T ′ = 1, one actually
obtains aT ′→T ≡ eμ(T,T ′), which may be rewritten as

μ(T, T ′)
ln 10

≡ log aT ′→T ⇒ ΔH(T − T ′)
RTT ′ ln 10

+
1

ln 10
ln

T

T ′ ≡ − C1(T
′ − T )

C2 + T ′ − T
(43)

Consequently, considering the two WLF coefficients C1 and C2 (relation (42))
as unknowns, the DLR shift factor given by

μ(T, T ′)
ln 10

=
ΔH(T − T ′)
RTT ′ ln 10

+
1

ln 10
ln

T

T ′ (44)

may be fitted to the expression of the WLF shift factor (42) using the least
squares method. This leads to the following values of the coefficients

C1 = 3 , C2 = 530K (45)
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and the DLR and WLF shift factors compared on Figure 8 are seen to fit well
together.

5.4 Discussion

If the activation enthalpy ΔH is not the same for all the modes, then the
particular group given by Equ. (23) does not represent a symmetry for the
constitutive equations. A physical interpretation of this breaking of symmetry
may be due to the temperature which only affects the kinetics of the reactions
described by the internal variables z. Furthermore, the linear interpolation
ΔGj = ΔH −TΔSj is possible if ΔH and ΔSj are temperature independent.
In our opinion, this assumption is acceptable for most of time-dependent ma-
terials, especially in the case of monotonic and uniaxial loading conditions.
For cyclic loading paths, Mrabet et al. (2005) showed that the consideration
of a non-linear dependence of the time spectrum {τk, k = 1..N} with the load-
ing conditions is unavoidable to capture well the mechanical behaviour of the
tested polymer. The values of C1 = 3 and C2 = 530K previously identified are
quite different from the universal values C1 = 17.4 and C2 = 51.6K proposed
by Ferry (Ferry (1980)) and suitable for several polymers when the chosen ref-
erence temperature is the glass transition temperature. However, the author
also showed that a better adjustment can be obtained when these coefficients
are specially chosen for each polymer. From Ferry (Ferry (1980)) and e.g Hotta
(Hotta and Terentjev (2001)) et al or Laot (Laot (2001)), the “typical” values
of the WLF coefficients are in the following ranges

2 � C1 � 30 (46)

35K � C2 � 220K

We surmise that the difference between (46) and the present values C1 = 3
and C2 = 530K is due to the independence of Eu and Er with respect to the
temperature. This assumption can be considered as true only in a small range
of temperature above the glass transition (Ehrenstein and Montagne (1999)).
It can be shown that a better fit of experimental data with Equ. (36) can be
obtained, considering a small decrease of Eu and Er with the temperature.
The value of ΔH may also be compared with the value calculated using WLF
model, for which the apparent activation energy Ea is defined as (e.g. Laot
(2001))

Ea

R
=

d(ln aT ′→T )

d
(

1

T ′

) =
T ′2C1C2 ln 10

(C2 + T ′ − Tg)2
(47)

where Tg = 363K is the glass transition temperature of the considered poly-
mer. From the correspondence between DLR and WLF models written as
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ln aT ′→T ≡ μ(T, T ′), one obtains by a derivation of (29) with respect to 1/T ′

dμ(T, T ′)

d
(

1

T ′

) ≡ d(ln aT ′→T )

d
(

1

T ′

) ⇒ ΔH ≡ RT ′2C1C2 ln 10

(C2 + T ′ − Tg)2
− RT ′∗ (48)

where T ′∗ is the non dimensional value of T ′, coming from the derivation of
the logarithmic term of (29). One can notice that this WLF equivalent value
of ΔH increases with the temperature T ′, from a value of 12038 J.mol−1 for
T ′ = 413K to a value of 12522 J.mol−1 for T ′ = 453K. These values are close
to the estimated value ΔH = 13620 J.mol−1 obtained for the DLR approach.

A discussion about the determination of the theoretical shift factor μ is also
in order: it results from the exponentiation of a particular generator the com-
ponents of which satisfy the determining system. In the present range of me-
chanical loading, the particular solution obtained with the group of dilatation
for t (that is, with ξ = t) is found to be unique for the considered constitutive
equations. However, for other testing conditions (e.g. different loading paths:
relaxation, creep, etc...), the constitutive equations may not be adequate to
reproduce experimental data and we cannot stipulate a priori that the so-
lution (23) will still be valid. More generally, for a given set of constitutive
equations, one could identify several symmetry groups each having a generator
of the form t ∂

∂t
+v′. In this case, the problem of discriminating one or another

solution is not trivial and still open.

From a broader point of view, the powerfullness of the present methodology
based on symmetry groups is to provide a mathematical frame to establish
and predict master curves, as done in this work for the time-temperature su-
perposition principle. Indeed, finding the Lie symmetries of a given set of con-
stitutive equations allows the writing of mapping rules that leave its solution
invariant. More precisely, the fundamental ideas of the present contribution
may be summarized in the following steps:

• find a suitable set of constitutive equations that fit the experimental data
obtained at given levels of some parameters (e.g. temperature, strain rate...),

• for these equations, write and solve the corresponding determining system
to obtain the Lie symmetries,

• extrapolate or interpolate experimental data for other values of the loading
parameters.

One should keep in mind that the extrapolation could be debatable if differ-
ent internal processes are involved in the considered range of the controled
variables.
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6 Conclusion

The general programme of exploiting the postulated Lie group structure of
the constitutive response of dissipative materials to predict the material’s
response when some control parameters vary (strain rate, temperature) has
been followed in the present contribution. A set of isothermal viscoelastic-like
equations has been identified and validated from experimental data on the
dry polyamid (PA66), involving a temperature-dependent spectrum of relax-
ation times and assuming constant apparent activation enthalpy and entropy.
It has been shown that the symmetry analysis of the constitutive equations
written within a thermodynamical framework of relaxation leads to a time-
temperature equivalence principle. Thereby, the characteristic system allowing
the determination of the corresponding Lie symmetries has been formulated
and a particular solution has been highlighted, based on a specific algorithm
focusing on three classical groups (identity, translation, dilatation). The ex-
ponentiation of the group generator leads to the formulation of a theoretical
shift factor that reveals the existence of a master curve, encapsulating the ma-
terial’s response for the considered range of temperatures. This master curve
can be obtained by translating curves of the material response in terms of
the secant modulus Es(t, T ) at different temperatures along the time axis in a
logarithmic representation. It has been shown that the theoretical expression
of the predicted shift factors and the Williams-Landel-Ferry empirical relation
exhibit similar evolutions in the considered range of temperatures. Works to
extend the approach to cyclic loadings paths and to validate it on experimental
tests are in progress.
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Figure 1. Experimental secant modulus Es(t, T ) vs time t (log-log representation)
for PA66 at different temperatures.
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Figure 2. Master curve obtained at 393K by translation of curves of Figure 1 along
the time axis.
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Figure 3. Algorithm to partially solve the determining equations.
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Figure 4. Experimental and DNLR simplified version (called DLR) stresses (see Equ.
36) vs strain curves for PA66 at different temperatures, ε̇ = 0.00018 s−1.

20



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

 7.9

 8

 8.1

 8.2

 8.3

 8.4

 8.5

 8.6

 8.7

 2.2  2.4  2.6  2.8  3  3.2

lo
g

E
s(

t,
T

) 
(M

P
a)

log t (s)

393K

413K

433K

453K

Experimental data

Model

Figure 5. Experimental and modelling secant modulus Es(t, T ) (see Equ. 32) vs time
for different temperatures.
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Figure 6. Experimental and modelling master curves for the secant modulus obtained
from a time shift (see Equ. (35)).
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Figure 7. Comparison between the DLR shift factor μ(T, T ′)/ ln 10 (Equ. (44)) and
the experimental shift factors measured for the three values T ′ = 413K, T ′ = 433K,
T ′ = 453K, assuming T = 393K.
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Figure 8. Comparison between the DLR shift factor μ(T, T ′)/ ln 10 (Equ. (44)) and
the WLF shift factor log aT ′

→T (Equ. (42)) vs T ′ for T = 393K.
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