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Spatial estimates for transient and steady-state solutions in

transversely isotropic plates of Mindlin-type

Francesca Passarella∗ Vittorio Zampoli †

Department of Information Engineering and Applied Mathematics

University of Salerno - 84084 Fisciano (Sa), Italy

Abstract

This paper concerns with a state of bending for a linear transversely isotropic plate model

based on the Mindlin assumption on the displacement. By using appropriate families of line-

integral measures, we are able to establish results about the spatial behaviour of transient and

steady-state solutions. All the results are obtained under relaxed hypotheses on the positive

definiteness of the elasticity tensor.

Keywords: Mindlin plates; Bending; Transverse isotropy; Strong elliptic elasticity tensor;

Spatial behaviour.

1 Introduction

The theory concerning elastic plates is useful in a wide range of practical applications, from building

materials to electronic production; for this reason, properties of such particular mechanical structure

are investigated in several articles, see e.g. Naghdi (1972), Green and Naghdi (1967), Lagnese and

Lions (1988). The classical linear theory based on Kirchhoff’s elastic strain-displacement relations

completely neglects the effects of transverse shear forces, cf. Lagnese and Lions (1988) and Nowinski

(1978). For this reason, mathematical discrepancies due to such assumption have led studies toward

increasingly refined models that take into account not only the deflection of plate’s middle section,

but also transverse shear deformations.

The following assumptions on the displacement field characterize the Mindlin-type thin elastic plate

theory, cf. Mindlin (1951) and Reissner (1944)

uα(x1, x2, x3, t) = u0
α(x1, x2, t) + x3vα(x1, x2, t),

u3(x1, x2, x3, t) = w(x1, x2, t),

∗ e-mail: passarella@diima.unisa.it
†Corresponding author, e-mail: zampoli@diima.unisa.it
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with respect to rectangular coordinates x1, x2, x3 such that the x1x2-plane represents the middle

plane of the plate. Due to the linearity of the problem in concern, we can consider separately the

extensional motion, characterized by u0
1 and u0

2, and the state of bending, represented by v1, v2 and

w. In this context, we can remark that the theory based on the Mindlin-model is developed by

Constanda (1990) for the elastostatic bending of a thin plate, including the effects of transverse shear

deformation. Furthermore, a dynamic model for small deformations of a thin thermoelastic plate is

described by Schiavone and Tait (1993).

The Reissner–Mindlin and Kirchhoff–Love models are the two most common models of a thin

linearly elastic plate. It is often remarked in the engineering literature that the Reissner–Mindlin

model is more accurate, particularly for thin plates and when transverse shear plays a significant

role, see Hughes (1987). In fact, both Mindlin (1951) and Reissner (1945, 1947) have independently

proposed a plate theory that incorporates the effect of transverse shear deformation for analyzing

thick plates.

Moreover, Arnold et al. (2002) show that the Reissner–Mindlin plate bending model has a wider

range of applicability than the Kirchhoff–Love model for the approximation of clamped linearly elastic

plates. In fact, under the assumption that the body force density is constant in the transverse

direction, they prove that the Reissner–Mindlin model solution converges to the three-dimensional

linear elasticity solution in the relative energy norm for the full range of surface loads.

On the other hand, the theory for transversely isotropic materials shows a good applicability for

plate mathematical models that take into account transverse shear deformations (see, for details, the

paper by Paroni et al. (2006)). Transversely isotropic materials, characterized by 5 elastic constants,

have interesting applications in civil, mechanical and aerospace engineering. The main feature of such

structures is represented by the existence of an axis of rotational symmetry, that is an axis for which

any rotation about it does not change its properties; the plane perpendicular to this axis of rotational

symmetry is called plane of isotropy. An example for this kind of materials is represented by laminates

made of randomly oriented chopped fibers placed in a certain plane; mechanical properties of a bundled

structure have no preferential direction in that plane. Each plane containing the axis of rotation is a

plane of symmetry and therefore transversely isotropic materials admit an infinite number of elastic

symmetries. Properties of such materials are widely investigated by Gurtin (1972), Padovani (2002),

Merodio and Ogden (2003), Chiriţă (2006), Chiriţă et al. (2007) and Zhang et al. (2006). In addition,

Simmonds (2004) obtains an exact 3-D Lévy-type solution for bending of an elastic slab taking into

account transversal isotropy. In particular, Merodio and Ogden (2003), Chiriţă (2006) and Chiriţă

et al. (2007) establish the necessary and sufficient conditions for strong ellipticity characterizing a

transversely isotropic elastic solid.

For a transversely isotropic plate described through the Mindlin-model and without positive defi-

niteness assumptions on the elasticity tensor, Passarella and Zampoli (2007) have established a unique-

ness result and a Galerkin representation of solution of the field equations. Furthermore, under the

hypotheses of positive definiteness of the elasticity tensor, they prove a variational theorem of Gurtin
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type and a minimum principle.

In the present work, we take into account the linear theory characterizing a state of bending

for (bounded and unbounded) plates of Mindlin-type, under the strong ellipticity condition on the

elasticity tensor. In particular, using the time-weighted surface power function method (cf. Chiriţă

and Ciarletta (1999, 2003) and Ciarletta et al. (2005)), we derive the first-order differential inequalities

satisfied by a family of appropriate integral measures depending on a specific parameter. Then, we

obtain a spatial decay estimate of Saint-Venant’s type with time-independent decay rate and we prove

the existence of a domain of influence.

Moreover, we consider a (bounded and semi-infinite) strip subjected to prescribed harmonic data on

its end. Starting from an idea shown by Ciarletta et al. (2005) and Chiriţă (1995), we introduce a set

of appropriate line-integral measures associated with the amplitude of time-harmonic vibrations. We

derive a differential inequality describing the behaviour of steady-state solutions under the hypothesis

that frequency of harmonic vibrations is lower than a certain critical value.

2 Formulation of the problem

Throughout this paper, we study the behaviour of a homogeneous and transversely isotropic elastic

solid that occupies at time t = 0 the right cylinder B̄ of length 2h with the (bounded and unbounded)

cross-section Σ̄ and the smooth lateral boundary Π. We call B and Σ be the interiors of B̄ and Σ̄,

we choose the rectangular Cartesian coordinate frame in such a way that Ox1x2 is the middle plane

and thus the faces of the plate are situated at x3 = ±h. Moreover, we suppose that Σ is a simply

connected region, L is the boundary of Σ and that h � diam Σ.

We employ the usual summation and differentiation conventions. Latin subscripts (unless otherwise

specified) are understood to range over the integers {1, 2, 3}, whereas Greek subscripts are confined

to the range {1, 2}; summation over repeated subscripts is implied. Superposed dots or subscripts

preceded by a comma mean partial derivative with respect to the time or the corresponding Cartesian

variables. In this connection, we will disregard regularity questions, simply understanding a degree of

smoothness sufficient to ensure analysis to be valid.

According to the linear theory of elastodynamics, the field equations are

equations of motion

stress–strain relation

strain–displacement relation

tji,j + fi = ρüi, on B × (0,∞)

tij = Cijklekl

eij =
1
2
(ui,j + uj,i)

(1)

where ui are the components of the displacement vector, tij are the components of the stress tensor,

fi are the components of the body force vector, ρ is the reference mass density and Cijkl are the

components of the symmetric elasticity tensor. We assume (see Gurtin (1972)) that the direction of
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transversal isotropy is the one indicated by the x3 coordinate axis and that

cij = Ciijj = cji, i, j (not summed) ∈ {1, 2, 3}, c11 = c22, c13 = c23,

c44 = c55 = C2323 = C1313, c66 = C1212 =
c11 − c12

2
.

(2)

Apart from the terms obtained using symmetries (2), these are the only non-zero components of Cijkl .

We consider the class of transversely isotropic materials having a strongly elliptic elasticity tensor,

that is

Cijklmimknjnl > 0 for every non-zero vector mi, ni.

The strong ellipticity condition becomes

c66 (n1m2 − n2m1)
2 + c11 (n1m1 + n2m2)

2 + 2 (c13 + c44) (n1m1 + n2m2)n3m3+

+c33n
2
3m

2
3 + c44

(
n2

3m
2
1 + n2

1m
2
3 + n2

3m
2
2 + n2

2m
2
3

)
> 0

or equivalently (see e.g. Merodio and Ogden (2003) and Chiriţă (2006))

c11 > 0, c11 > c12, c33 > 0, c44 > 0, |c13 + c44| < c44 +
√

c11c33. (3)

Gurtin (1972) proves that C is positive definite if

Cijklφijφkl > 0 for every non-zero symmetric tensor φij

and then it is strongly elliptic too.

A state of bending for an elastic plate is characterized by the following relations

uα(x1, x2, x3, t) = −uα(x1, x2,−x3, t), u3(x1, x2, x3, t) = u3(x1, x2,−x3, t)

for every (x1, x2, x3) ∈ B, t ∈ [0,∞); moreover, we assume that the body loads obey to the relations

fα(x1, x2, x3, t) = −fα(x1, x2,−x3, t), f3(x1, x2, x3, t) = f3(x1, x2,−x3, t).

In the context of the theory of thin plates of uniform thickness such that ui vary smoothly with respect

to x3, we consider as independent variables:

vα(x1, x2, t) =
3

2h3

∫ h

−h

x3uα(x1, x2, x3, t)dx3, w(x1, x2, t) =
1
2h

∫ h

−h

u3 (x1, x2, x3, t)dx3.

If we use the following notations

Mij(x1, x2, t) =
3

2h3

∫ h

−h

x3tij(x1, x2, x3, t)dx3,

τij(x1, x2, t) =
1
2h

∫ h

−h

tij(x1, x2, x3, t)dx3,

F (x1, x2, t) =
1
2h

∫ h

−h

f3(x1, x2, x3, t) dx3 +
1
h

t33(x1, x2, h, t),

Hα(x1, x2, t) =
1
2h

∫ h

−h

x3fα(x1, x2, x3, t) dx3 + t3α(x1, x2, h, t);
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we obtain Mα3 = 0, ταβ = 0, τ33 = 0 since tαβ , t33 are odd functions and tα3 is even with respect to

x3 and we get the equations of motion

h2

3
Mβα,β − τα3 + Hα = ρ

h2

3
v̈α, τβ3,β + F = ρẅ on Σ × (0,∞). (4)

In the present paper, we restrict our attention to the state of bending characterized by

uα(x1, x2, x3, t) = x3vα(x1, x2, t), u3(x1, x2, x3, t) = w(x1, x2, t), (5)

and we assume that

F (x1, x2, t) = 0, Hα(x1, x2, t) = 0.

Now, we can write the following equations of motion

h2

3
Mβα,β − τα3 = ρ

h2

3
v̈α, τβ3,β = ρẅ on Σ × (0,∞), (6)

the constitutive equations

M11 = c11ε11 + c12ε22, M12 = M21 = (c11 − c12)ε12,

M22 = c12ε11 + c11ε22, τα3 = τ3α = 2c44ξα,
(7)

and the geometrical equations

εαβ =
1
2
(vα,β + vβ,α), ξα =

1
2

(w,α + vα) . (8)

The system (6) - (8) can be rewritten in terms of {vα, w}

h2

3
c11 − c12

2
vα,ββ +

h2

3
c11 + c12

2
vβ,βα − c44(w,α + vα) = ρ

h2

3
v̈α,

c44w,ββ + c44vβ,β = ρẅ.

(9)

We consider the problem P defined by (9), the homogeneous initial conditions

vα(x1, x2, 0) = 0, w(x1, x2, 0) = 0, v̇α(x1, x2, 0) = 0, ẇ(x1, x2, 0) = 0, on Σ (10)

and the boundary conditions (Dirichlet problem)

vα = v̆α, w = w̆, on L1 × [0, +∞), vα = 0, w = 0, on L2 × [0, +∞), (11)

where L1 and L2 are disjoint and complementary nonempty subsets of L and v̆α and w̆ are assigned

fields representing external data D of the problem in concern. Throughout this paper we assume that

a smooth solution of the problem P exists.

The internal energy density of a transversely isotropic elastic plate (considering a state of bending)

is a positive definite quadratic form if and only if c44 > 0, c11 > 0, |c12| < c11. From strong ellipticity

conditions (3), we observe that it is c12 < c11, thus there is a relaxation upon constitutive coefficients

with respect to positiveness conditions.

5
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3 Spatial behaviour of transient solutions and estimates re-

lated to κ-measure

In this section, we establish results describing the spatial behaviour of solutions of given data on the

interval [0, T ] under the strong ellipticity condition on the elasticity tensor.

By using the equality vα,12 = vα,21, we can rewrite the system (9) in the following form

h2

3
M̂βα,β − τα3 = ρ

h2

3
v̈α, τβ3,β = ρẅ on Σ × (0,∞), (12)

where M̂βα are given by

M̂11 = c11v1,1 +
c11 − κ

2
v2,2, M̂12 =

c12 + κ

2
v1,2 +

c11 − c12

2
v2,1,

M̂21 =
c11 − c12

2
v1,2 +

c12 + κ

2
v2,1, M̂22 =

c11 − κ

2
v1,1 + c11v2,2.

(13)

Here the parameter κ is introduced for mathematical convenience, more precisely, in order to get an

appropriate family of measures which can cover the whole class of strongly elliptic elastic materials with

transverse isotropy. For example, if κ = −c12 then we obtain M̂βα =
c11 − c12

2
vα,β +

c11 + c12

2
δαβvτ,τ ,

and if κ = c11 then we get M̂βα =
c11 − c12

2
vα,β +

c11 + c12

2
vβ,α. Moreover, if we choose κ = c11−2c12,

then M̂αβ = Mαβ.

We define the support D∗
T of external data D on the time interval [0, T ], that is

D∗
T = {x ∈ L : ∃s ∈ [0, T ] so that v̆1 (x, s) �= 0 or v̆2 (x, s) �= 0 or w̆ (x, s) �= 0}

and, for convenience, we assume that D∗
T is a bounded regular curve of L. We consider the following

sets

Dr =
{
x ∈ Σ : D∗

T ∩ S(x, r) �= ∅
}

, Σr = Σ\Dr, Σ(r1, r2) = Σr2\Σr1,

where r ≥ 0, r2 ≤ r1 and S(x, r) is the closed disk with radius r and center at x. Further, let Lr be

the subcurve of ∂Σr contained inside Σ and whose unit normal vector n is forwarded to the exterior

of Dr. For any positive parameter λ, we define the following function

Iκ(r, t) = −
∫ t

0

∫
Lr

e−λs

[
τβ3(s)ẇ(s) +

h2

3
M̂βα(s)v̇α(s)

]
nβ dl ds, r ≥ 0, t ∈ [0, T ]. (14)

Now, with the help of Eqs. (12), (13) we obtain[
τβ3ẇ +

h2

3
M̂βαv̇α

]
,β

=
∂

∂t
[T + W ] , (15)

where

T =
ρ

2

(
ẇ2 +

h2

3
v̇αv̇α

)
, W =

1
2

(
W0 +

h2

3
W1 +

h2

3
W2

)
,

W0 = 4c44(ξ2
1 + ξ2

2), W1 = c11

(
v2
1,1 + v2

2,2

)
+ (c11 − κ) v1,1v2,2,

W2 =
c11 − c12

2
(
v2
2,1 + v2

1,2

)
+ (c12 + κ) v2,1v1,2.

(16)
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We use the definitions of Σr and Iκ(r, t), the divergence theorem and Eq. (15) in order to write, for

r2 < r1,

Iκ(r1, t) − Iκ(r2, t) = −
∫ t

0

∫
Σ(r1,r2)

e−λs ∂

∂s
[T (s) + W(s)] dσ ds =

= −
∫

Σ(r1,r2)

e−λt [T (t) + W(t)] dσ − λ

∫ t

0

∫
Σ(r1,r2)

e−λs [T (s) + W(s)] dσ ds.

(17)

We can then prove that function Iκ(r, t) satisfies some properties.

Theorem 1. Let ρ be greater than zero, the strong ellipticity condition (3) be valid and κ satisfy

the relation

−c11 < κ < min {3c11, c11 − 2c12} . (18)

For a solution {vα, w} of initial-boundary value problem P and called D̂T the bounded support of

external data D on the time interval [0, T ], it is possible to prove that

1) Iκ(r, t) is a continuous differentiable function on r ≥ 0 and

∂Iκ

∂t
(r, t) = −

∫
Lr

e−λt

[
τβ3(t)ẇ(t) +

h2

3
M̂βα(t)v̇α(t)

]
nβ dl, (19)

∂Iκ

∂r
(r, t) = −

∫
Lr

e−λt [T (t) + W(t)] dl − λ

∫ t

0

∫
Lr

e−λs [T (s) + W(s)] dl ds. (20)

2) Iκ(r, t) is a non-increasing function with respect to r, i.e.

Iκ(r1, t) ≤ Iκ(r2, t) r2 < r1. (21)

3) Iκ(r, t) satisfies the following first-order differential inequalities

|Iκ(r, t)| + cκ

λ

∂Iκ

∂r
(r, t) ≤ 0 and

∣∣∣∣∂Iκ

∂t
(r, t)

∣∣∣∣ + cκ
∂Iκ

∂r
(r, t) ≤ 0, (22)

where

cκ =
√

ηκ

ρ
with ηκ = max

{
c44,

c11 + κ

2
,
3c11 − κ

2
,
c11 − 2c12 − κ

2

}
. (23)

4) Iκ(r, t) is a non-negative function and

0 ≤ Iκ(r, t) =
∫

Σr

e−λt [T (t) + W(t)] dσ + λ

∫ t

0

∫
Σr

e−λs [T (s) + W(s)] dσ ds. (24)

Proof. From a direct differentiation of Eq. (14) with respect to the variable t we get Eq. (19),

while from Eq. (17) and through a differentiation with respect to r, we have Eq. (20).

The kinetic energy T and the quadratic form W are positive definite if ρ > 0 and hypotheses (3),

(18) hold, thus Eq. (17) implies that Iκ(r, t) is a non-increasing function with respect to r.

We can estimate Iκ(r, t) and
∂Iκ

∂t
(r, t) in terms of

∂Iκ

∂r
(r, t). At the beginning, we denote by Aα

the matrix associated to the quadratic form Wα and we consider the functional F [A
α
; ϕ, γ] ≡ ϕ·Aαγ

for the variables ϕ = {ϕ1, ϕ2} and γ = {γ1, γ2} . The hypotheses (3), (18) imply

k(α)
m (γ2

1 + γ2
2) ≤ F [Aα; γ, γ] ≤ k

(α)
M (γ2

1 + γ2
2), (25)

7
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where

k(1)
m = min

{
c11 + κ

2
,
3c11 − κ

2

}
, k(2)

m = min
{

c11 + κ

2
,
c11 − 2c12 − κ

2

}
,

k
(1)
M = max

{
c11 + κ

2
,
3c11 − κ

2

}
, k

(2)
M = max

{
c11 + κ

2
,
c11 − 2c12 − κ

2

}
.

(26)

Through Schwarz inequality and Eqs. (13), (16), we can see that

F [Aα; ϕ, γ] ≤ [F [Aα; ϕ, ϕ]]1/2[F [Aα; γ, γ]]1/2 (27)

and
F

[
A1; M̂(1), γ̂(1)

]
= M̂2

11 + M̂2
22, F

[
A1; γ̂

(1), γ̂(1)
]

= W1,

F
[
A2; M̂(2), γ̂(2)

]
= M̂2

21 + M̂2
12, F

[
A2; γ̂

(2), γ̂(2)
]

= W2,

(28)

where

M̂(1) =
{
M̂11, M̂22

}
, γ̂(1) = {v1,1, v2,2} , M̂(2) =

{
M̂21, M̂12

}
, γ̂(2) = {v1,2, v2,1} .

Collecting Eqs. (16), (25) - (28), we deduce that

τβ3τβ3 = c44W0,

M̂2
11 + M̂2

22 ≤ F1/2
[
A1; M̂(1), M̂(1)

]
W1/2

1 ≤
[
k

(1)
M

(
M̂2

11 + M̂2
22

)]1/2

W1/2
1 ,

M̂2
21 + M̂2

12 ≤ F1/2
[
A2; M̂(2), M̂(2)

]
W1/2

2 ≤
[
k

(2)
M

(
M̂2

21 + M̂2
12

)]1/2

W1/2
2

(29)

and, consequently, we can conclude

τβ3τβ3 +
h2

3
M̂βαM̂βα ≤ c44W0 +

h2k
(1)
M

3
W1 +

h2k
(2)
M

3
W2 ≤ 2ηκW , (30)

where ηκ = max
{

c44, k
(1)
M , k

(2)
M

}
is given by Eq. (23). Using Cauchy-Schwarz and arithmetic-geometric

mean inequalities, it is∣∣∣∣[τβ3ẇ +
h2

3
M̂βαv̇α

]
nβ

∣∣∣∣ ≤ ερ

2

[
ẇ2 +

h2

3
v̇αv̇α

]
+

1
2ερ

[
τβ3τβ3 +

h2

3
M̂βαM̂βα

]
. (31)

Furthermore, we use estimates (30), (31) into Eqs. (14) and (19) in order to obtain

|Iκ(r, t)| ≤ ε

∫ t

0

∫
Lr

e−λs

[
T (s) +

ηκ

ε2ρ
W(s)

]
dl ds, (32)

∣∣∣∣∂Iκ

∂t
(r, t)

∣∣∣∣ ≤ ε

∫
Lr

e−λt

[
T (t) +

ηκ

ε2ρ
W(t)

]
dl . (33)

Remembering Eq. (20) and setting ε = cκ =
√

ηκ

ρ
into (32), (33), we verify differential inequalities

(22).
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If the plate is bounded, then r ranges in [0, �], with � = maxx∈Σ̄

{
miny∈D∗

T

√
(x1 − y1)2 + (x2 − y2)2

}
.

In view of the homogeneous initial conditions and by taking into consideration the definition for Lr

from (14) we deduce that

Iκ(r, 0) = 0, Iκ(�, t) = 0, r ∈ [0, �], t ∈ [0, T ].

Thus, by setting r1 = �, r2 = r ∈ [0, �] into relations (17), (21), we arrive to Eq. (24).

On the other hand, if the plate is unbounded, then the variable r ranges in [0,∞). Eq. (22)2 can

be rewritten as follows

∂Iκ

∂t
(r, t) + cκ

∂Iκ

∂r
(r, t) ≤ 0, −∂Iκ

∂t
(r, t) + cκ

∂Iκ

∂r
(r, t) ≤ 0. (34)

If we choose a pair (r0, t0) such that t0 ∈ [0, T ] and r0 ≥ cκt0 and we put t = t0 +
r − r0

cκ
into

inequality (34)1, we obtain

d

dr

[
Iκ

(
r, t0 +

r − r0

cκ

)]
≤ 0 ⇒ Iκ

(
r1, t0 +

r1 − r0

cκ

)
≤ Iκ

(
r2, t0 +

r2 − r0

cκ

)
, r1 ≥ r2,

so that, considering r1 = r0 and r2 = r0 − cκt0, we deduce

Iκ(r0, t0) ≤ Iκ(r0 − cκt0, 0) = 0. (35)

Similarly, if we set t = t0 − r − r0

cκ
in inequality (34)2, then

d

dr

[
Iκ

(
r, t0 − r − r0

cκ

)]
≤ 0 ⇒ Iκ

(
r1, t0 − r1 − r0

cκ

)
≤ Iκ

(
r2, t0 − r2 − r0

cκ

)
, r1 ≥ r2

and thus, for r1 = r0 + cκt0 and r2 = r0,

Iκ(r0, t0) ≥ Iκ(r0 + cκt0, 0) = 0. (36)

We can notice from relations (35) and (36) that

Iκ(∞, t) ≡ lim
r0→∞ Iκ(r0, t0) = 0. (37)

Finally, through Eqs. (17), (21), (37) we can arrive to inequality (24) and the proof is complete.

The results obtained up to now lead us to formulate the following theorem.

Theorem 2. Let hypotheses of previous theorem be still valid. Then, for each fixed t ∈ [0, T ], we

have the following results.

1. Spatial decay:

Iκ(r, t) ≤ exp
(
− λ

cκ
r

)
Iκ(0, t) , 0 ≤ r < cκt. (38)

2. Domain of influence:

vα = w = 0, on Σr × [0, T ], cκt ≤ r. (39)

9
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Proof. Since Iκ(r, t) is a non-negative function, then we can write from Eq. (22)1

∂

∂r

[
exp

(
λ

cκ
r

)
Iκ(r, t)

]
≤ 0 =⇒ Iκ(r, t) ≤ exp

(
− λ

cκ
r

)
Iκ(0, t).

Now, putting r = cκt into (22)2, we have

d

dt
[Iκ(cκt, t)] ≤ 0 ⇒ Iκ(cκt, t) ≤ Iκ(0, 0) = 0, 0 ≤ t. (40)

On the other hand, we deduce from Eqs. (21), (24) that

0 ≤ Iκ(r, t) ≤ Iκ(cκt, t), r ≥ cκt. (41)

Thus, Eqs. (40), (41) imply

Iκ(r, t) = 0, for r ≥ cκt. (42)

Obviously, Eq. (39) follows from Eqs. (24), (42) and from the positive definiteness of T and W .

Now, according to Gurtin (1972), we depict the domain of influence of external given data at time

T as the set of the points of Σ̄ that can be reached by signals propagating from the support D̂T on

the time interval [0, T ], with speeds equal to or less than the maximum speed of propagation

c =
√

η

ρ
with η = inf

κ
ηκ

where κ ∈ ]−c11, min {3c11, c11 − 2c12}[; in particular, |c12| < c11 ⇒ κ ∈ ]−c11, c11 − 2c12[ , while

c12 ≤ −c11 ⇒ κ ∈ ]−c11, 3c11[.

4 Spatial behaviour of steady-state solutions and estimates

related to κ-measure

Throughout this section we study the problem of spatial behaviour of steady vibrations for transversely

isotropic elastic plates having a strongly elliptic elasticity tensor. We assume that Σ is a rectangular

strip and choose a Cartesian frame reference such that the middle surface of the plate Σ is defined by

Σ = {(x1, x2) ∈ IR2 : x1 ∈ [0, �1], x2 ∈ [0, �2]}, (43)

where �1, �2 are some positive constants and �2 < ∞.

We discuss the problem of steady-state vibrations assuming that {vα, w} are separable with respect

to space and time variables and that the time dependence is periodic, that is

vα = Re[ζα(x1, x2; ω)eiωt], w = Re[ψ(x1, x2; ω)eiωt],

where Re[f ] represents the real part of f , ω ∈ IR+ is the prescribed frequency of oscillation and ζα, ψ

are complex vector functions. The equations of motion (9) imply that the amplitude {ζα, ψ} satisfies

10
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the following system of differential equations

h2

3

[
c11 − c12

2
ζα,ββ +

c11 + c12

2
ζβ,βα

]
− c44(ψ,α + ζα) + ρ

h2ω2

3
ζα = 0,

c44(ψ,ββ + ζβ,β) + ρω2ψ = 0.

(44)

In what follows, we assume prescribed harmonic vibrations insisting on the end located at x1 = 0,

so that we consider the problem P0 defined by Eqs. (44), homogeneous initial conditions and the

following boundary conditions

ζα(x1, 0) = 0, ψ(x1, 0) = 0, x1 ∈ [0, �1],

ζα(x1, �2) = 0, ψ(x1, �2) = 0, x1 ∈ [0, �1],

ζα(�1, x2) = 0, ψ(�1, x2) = 0, x2 ∈ [0, �2],

ζα(0, x2) = ζ̆α(x2), ψ(0, x2) = ψ̆(x2), x2 ∈ [0, �2]

(45)

where ζ̆α and ψ̆ are prescribed continuous functions such that

ζ̆α(0) = 0, ψ̆(0) = 0, ζ̆α(�2) = 0, ψ̆(�2) = 0.

The system (44) can be rewritten in the following form

h2

3
Γβα,β − χα + ρ

h2ω2

3
ζα = 0, χβ,β + ρω2ψ = 0 on Σ × (0,∞) (46)

where
Γ11 = c11ζ1,1 +

c11 − κ

2
ζ2,2, Γ12 =

c12 + κ

2
ζ1,2 +

c11 − c12

2
ζ2,1,

Γ21 =
c11 − c12

2
ζ1,2 +

c12 + κ

2
ζ2,1, Γ22 =

c11 − κ

2
ζ1,1 + c11ζ2,2

(47)

and

χα = c44 (ψ,α + ζα) . (48)

We define the following function

Jκ(x1) =
∫

Lx1

[
χ1ψ + χ1ψ̄ +

h2

3
(
Γ1αζα + Γ1αζ̄α

)]
dx2, x1 ∈ [0, �1], (49)

where superposed bars denote complex conjugates and Lx1 = {(x1, x2): x2 ∈ [0, �2]}. Considering

Eqs. (47) - (49), we have

Jκ(x1) =
∫

Lx1

{
c44

[(
ψ̄,1 + ζ̄1

)
ψ + (ψ,1 + ζ1) ψ̄

]
+

h2

3

[
c11

(
ζ̄1,1ζ1 + ζ1,1ζ̄1

)
+

+
c11 − κ

2
(
ζ̄2,2ζ1 + ζ2,2ζ̄1

)
+

c12 + κ

2
(
ζ̄1,2ζ2 + ζ1,2ζ̄2

)
+

c11 − c12

2
(
ζ̄2,1ζ2 + ζ2,1ζ̄2

)]}
dx2.

(50)

11
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Arithmetic-geometric and Schwarz inequalities lead to∫
Lx1

(
ζ̄1,1ζ1 + ζ1,1ζ̄1

)
dx2 ≤

(∫
Lx1

ζ1,1ζ̄1,1dx2

)1/2(
�2
2

π2

∫
Lx1

ζ1,2ζ̄1,2dx2

)1/2

≤ �2

2π

∫
Lx1

ζ1,αζ̄1,αdx2,

∫
Lx1

(
ζ̄2,2ζ1 + ζ2,2ζ̄1

)
dx2 ≤

(∫
Lx1

ζ2,2ζ̄2,2dx2

)1/2(
�2
2

π2

∫
Lx1

ζ1,2ζ̄1,2dx2

)1/2

≤ �2

2π

∫
Lx1

ζα,2ζ̄α,2dx2,

∫
Lx1

[(ζ̄1 + ψ̄,1)ψ + (ζ1 + ψ,1)ψ̄]dx2 ≤
(∫

Lx1

(ζ̄1 + ψ̄,1)(ζ1 + ψ,1)dx2

)1/2(
�2
2

π2

∫
Lx1

ψ,2ψ̄,2dx2

)1/2

≤ �2

2π

∫
Lx1

(ζ̄1 + ψ̄,1)(ζ1 + ψ,1)dx2 +
�2

2π

∫
Lx1

ψ,2ψ̄,2dx2,

(51)

∫
Lx1

(
ζ̄1,2ζ2 + ζ1,2ζ̄2

)
dx2 ≤

(∫
Lx1

ζ1,2ζ̄1,2dx2

)1/2(
�2
2

π2

∫
Lx1

ζ2,2ζ̄2,2dx2

)1/2

≤ �2

2π

∫
Lx1

ζα,2ζ̄α,2dx2,

∫
Lx1

(
ζ̄2,1ζ2 + ζ2,1ζ̄2

)
dx2 ≤

(∫
Lx1

ζ2,1ζ̄2,1dx2

)1/2(
�2
2

π2

∫
Lx1

ζ2,2ζ̄2,2dx2

)1/2

≤ �2

2π

∫
Lx1

ζ2,αζ̄2,αdx2,

where we have used the well-known membrane problem and boundary conditions (45)1,2, i.e.

π2

�2
2

∫
Lx1

ζαζ̄αdx2 ≤
∫

Lx1

ζα,2ζ̄α,2dx2,
π2

�2
2

∫
Lx1

ψψ̄dx2 ≤
∫

Lx1

ψ,2ψ̄,2dx2. (52)

By means of Eqs. (50), (51) we obtain

|Jκ(x1)| ≤
∫

Lx1

[
�2c44

2π
(ζ̄1 + ψ̄,1)(ζ1 + ψ,1) +

�2c44

2π
ψ,2ψ̄,2 +

h2�2c11

6π
ζ1,αζ̄1,α+

+
h2�2 (c11 − κ)

12π
ζα,2ζ̄α,2 +

h2�2 (c12 + κ)
12π

ζα,2ζ̄α,2 +
h2�2 (c11 − c12)

12π
ζ2,αζ̄2,α

]
dx2.

(53)

This relation allows us to prove the following theorem about properties of function Jκ.

Theorem 3. Let hypotheses of Theorem 1 be still valid and let frequency ω obey to

ω < ωm (54)

where

ωm =
π

�2

[
2ρ

μκ

(
1 +

6�2
2

π2h2

)]−1/2

, 0 < μκ = min
{
c44, k

(1)
m , k(2)

m

}
. (55)

The function Jκ is non-decreasing and it satisfies the following inequality

νκ|Jk(x1)| ≤ J ′
k(x1), with νκ = min

i=1,...,6

pi

Pi
, (56)

where
P1 =

�2

2π
c44, P2 =

�2

2π
c44, P3 =

�2

2π
c11, P4 =

�2

4π
(c11 − c12) ,

P5 =
�2

4π
(3c11 + c12) , P6 =

�2

2π
c11

(57)
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and

p1 = 2μκ, p2 = 2μκ
h2π2

2(6�2
2 + π2h2)

(
1 − ω2

ω2
m

)
, p3 = 2μκ, p4 = 2μκ,

p5 = 2μκ

(
1 − ω2

ω2
m

)
, p6 = μκ

(
1 − ω2

ω2
m

)
.

(58)

Proof. Differentiating Jκ we obtain

J ′
κ(x1) =

∫
Lx1

[
χ1ψ,1 + χ1ψ̄,1 + χ1,1ψ + χ1,1ψ̄+

+
h2

3
(
Γ1αζα,1 + Γ1αζ̄α,1 + Γ1α,1ζα + Γ1α,1ζ̄α

)]
dx2.

(59)

Eqs. (46) allow us to show that

h2

3
Γ1α,1 = −h2

3
Γ2α,2 + χα − ρ

h2ω2

3
ζα, χ1,1 = −χ2,2 − ρω2ψ; (60)

thus, with an integration by parts, boundary conditions (45) and Eq. (48), we arrive to

J ′
κ(x1) = 2

∫
Lx1

[
W̃ − ρω2

(
h2

3
ζ̄αζα + ψ̄ψ

)]
dx2, (61)

where

W̃ = W̃0 +
h2

3
W̃1 +

h2

3
W̃2, W̃0 = c44

(
ζ̄α + ψ̄,α

)
(ζα + ψ,α) ,

W̃1 = c11

(
ζ̄1,1ζ1,1 + ζ̄2,2ζ2,2

)
+

c11 − κ

2
(
ζ̄1,1ζ2,2 + ζ1,1ζ̄2,2

)
,

W̃2 =
c11 − c12

2
(
ζ2,1ζ̄2,1 + ζ1,2ζ̄1,2

)
+

c12 + κ

2
(
ζ̄2,1ζ1,2 + ζ2,1ζ̄1,2

)
.

(62)

The quadratic form W̃ is positive definite if relations (3) and (18) are verified. It is then easy to see

that

μκ

[(
ζ̄α + ψ̄,α

)
(ζα + ψ,α) +

h2

3
ζ̄α,βζα,β

]
≤ W̃ (63)

and k
(α)
m are defined into Eqs. (26). Considering Eqs. (52), (61), (63), we get

J ′
κ(x1) ≥ 2μκ

∫
Lx1

[(
ζ̄α + ψ̄,α

)
(ζα + ψ,α) +

h2

3
ζ̄α,βζα,β −

− ρω2�2
2

π2μκ

(
h2

3
ζα,2ζ̄α,2 + ψ,2ψ̄,2

)]
dx2.

(64)

Using the relations (52), we can observe that

6�2
2

π2h2

∫
Lx1

[
(ζ2 + ψ,2)(ζ̄2 + ψ̄,2) +

h2

6
ζ̄2,2ζ2,2

]
dx2 ≥ �2

2

π2

∫
Lx1

ζ2,2ζ̄2,2dx2 ≥

≥
∫

Lx1

ζ2ζ̄2dx2.
(65)

Further, using Schwarz and arithmetic-geometric mean inequalities, it follows

13
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(
ζ̄2 + ψ̄,2

)
(ζ2 + ψ,2) ≥ (1 − ε) ζ2ζ̄2 +

(
1 − 1

ε

)
ψ,2ψ̄,2, for every ε > 0

and, for ε = 2, it is (
ζ̄2 + ψ̄,2

)
(ζ2 + ψ,2) ≥ −ζ2ζ̄2 +

1
2
ψ,2ψ̄,2; (66)

thus ∫
Lx1

[
(ζ2 + ψ,2)(ζ̄2 + ψ̄,2) +

h2

6
ζ2,2ζ̄2,2

]
dx2 ≥

∫
Lx1

(ζ2 + ψ,2)(ζ̄2 + ψ̄,2)dx2 ≥

≥
∫

Lx1

(
−ζ2ζ̄2 +

1
2
ψ,2ψ̄,2

)
dx2.

(67)

Combining Eqs. (65), (67) we obtain∫
Lx1

[
(ζ2 + ψ,2)(ζ̄2 + ψ̄,2) +

h2

6
ζ2,2ζ̄2,2

]
dx2 ≥ h2π2

2(6�2
2 + π2h2)

∫
Lx1

ψ,2ψ̄,2dx2. (68)

Moreover, Eqs. (64), (68) imply

J ′
κ(x1) ≥ μκ

∫
Lx1

{
2

(
ζ̄1 + ψ̄,1

)
(ζ1 + ψ,1) +

h2π2

6�2
2 + π2h2

[
1 − ω2 2ρ�2

2

π2μκ

(
1 +

6�2
2

π2h2

)]
ψ̄,2ψ,2+

+
2h2

3
ζ̄1,1ζ1,1 +

2h2

3
ζ̄2,1ζ2,1 +

2h2

3

(
1 − ω2 ρ�2

2

π2μκ

)
ζ̄1,2ζ1,2+

+
h2

3

(
1 − ω2 2ρ�2

2

π2μκ

)
ζ̄2,2ζ2,2

}
dx2.

(69)

If we note that the critical frequency ωm defined by Eq. (55) is such that

min

{
�2

π

√
2ρ

μκ

(
1 +

6�2
2

π2h2

)
,
�2

π

√
ρ

μκ
,
�2

π

√
2ρ

μκ

}
=

1
ωm

then we have

J ′
κ(x1) ≥

∫
Lx1

[
p1

(
ζ̄1 + ψ̄,1

)
(ζ1 + ψ,1) + p2ψ̄,2ψ,2 +

h2

3
p3ζ̄1,1ζ1,1+

+
h2

3
p4ζ̄2,1ζ2,1 +

h2

3
p5ζ̄1,2ζ1,2 +

h2

3
p6ζ̄2,2ζ2,2

]
dx2 ≥ 0.

(70)

This relation implies that Jκ is a non-decreasing function. On the other hand, Eq. (53) implies

|Jκ(x1)| ≤
∫

Lx1

[
P1(ζ̄1 + ψ̄,1)(ζ1 + ψ,1) + P2ψ,2ψ̄,2 +

h2

3
P3ζ1,1ζ̄1,1+

+
h2

3
P4ζ2,1ζ̄2,1 +

h2

3
P5ζ1,2ζ̄1,2 +

h2

3
P6ζ2,2ζ̄2,2

]
dx2

(71)

and consequently

|Jκ(x1)| ≤
1
νκ

∫
Lx1

[
p1(ζ̄1 + ψ̄,1)(ζ1 + ψ,1) + p2ψ,2ψ̄,2 +

h2

3
p3ζ1,1ζ̄1,1+

+
h2

3
p4ζ2,1ζ̄2,1 +

h2

3
p5ζ1,2ζ̄1,2 +

h2

3
p6ζ2,2ζ̄2,2

]
dx2.

(72)
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Finally, Eqs. (70), (72) lead to Eq. (56).

We consider the class of steady-state vibrations {ζα, ψ} for which

E(x1) =
∫

Sx1

[
P1(ζ̄1 + ψ̄,1)(ζ1 + ψ,1) + P2ψ,2ψ̄,2 +

h2

3
P3ζ1,1ζ̄1,1+

+
h2

3
P4ζ2,1ζ̄2,1 +

h2

3
P5ζ1,2ζ̄1,2 +

h2

3
P6ζ2,2ζ̄2,2

]
da < ∞,

(73)

where Sx1 = Σ∩[x1,∞[×[0, �2]. We can prove from Eqs. (50), (71), (73) that E(x1) is a non-increasing

function and

−E ′
(x1) =

∫
Lx1

[
P1(ζ̄1 + ψ̄,1)(ζ1 + ψ,1) + P2ψ,2ψ̄,2 +

h2

3
P3ζ1,1ζ̄1,1+

+
h2

3
P4ζ2,1ζ̄2,1 +

h2

3
P5ζ1,2ζ̄1,2 +

h2

3
P6ζ2,2ζ̄2,2

]
da ≥ |Jκ(x1)| .

(74)

When the strip Σ is bounded, then the hypothesis (73) is trivially verified and Eqs (45)3, (74) imply

E ′
(�1) = 0 ⇒ Jκ(�1) = 0. (75)

Moreover, if the strip Σ is semi-infinite and the hypothesis (73) is satisfied, then Eq. (74) implies

lim
x1→∞ E ′

(x1) = 0 ⇒ Jκ(∞) ≡ lim
x1→∞Jκ(x1) = 0. (76)

Now, we can establish a theorem furnishing information about the spatial behaviour of the ampli-

tude of vibrations, provided that the frequency of the harmonic vibrations is lower than the critical

value ωm.

Theorem 4. Let hypotheses of Theorem 3 be still true and let {ζα, ψ} be the steady-state vibra-

tions for which Eq. (73) holds. Then, the function −Jκ is a measure of the amplitude {ζα, ψ} of the

harmonic vibration, that is −Jκ ≥ 0 and −Jκ = 0 implies {ζα, ψ} = {0, 0}. Moreover, the following

decay estimate of Saint-Venant type, with exponential decay factor
1
νκ

, is valid

0 ≤ −Jκ(x1) ≤ −Jκ(0) exp
(
−x1

νκ

)
. (77)

Proof. In both bounded and semi-infinite cases, from hypothesis (54) about frequency ω and from

the fact that Jκ is non-decreasing, Eqs. (75), (76) imply

Jκ(x1) ≤ 0, for all x1

and inequality (56) becomes

J ′
κ(x1) +

1
νκ

Jκ(x1) ≥ 0. (78)

Through an integration of Eq. (78), we get the decay estimate (77).

To conclude, we can remark that, in the context of steady-state vibrations for which E(x1) is

bounded and the excitation frequency is lower than the critical value ωm, Eq. (77) describes an

exponential decay with the greatest decay factor
1
ν

, where ν = inf
κ

νκ.
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5 Remark

The investigation performed is based on the assumption concerning the strong ellipticity of elasticity

tensor. The results obtained under such hypothesis are thus valid also for classes of particular materials

characterized by reversed properties, like negative Poisson’s ratio and negative stiffness (auxetic or

anti-rubber materials). These particular structures (see, for example, Park and Lakes (2007)) expand

laterally when stretched, in contrast to ordinary materials. While optimal bounds for the spatial

estimates are not so easy to obtain, in the present paper we offer the crude bounds in the spatial

estimates of Theorem 2 and Theorem 4. Our results can be compared with other results of the

literature (see e.g. Sanchez Palencia (1988), (1989)).
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Chiriţă, S., 2006. On the strong ellipticity condition for transversely isotropic linearly elastic

solids. An. St. Univ. “Al I. Cuza” Iasi, Matematica 52, 245-250.
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