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Noise-resisting ciphering based on a chaotic multi-stream pseudo-random number generator

. This Cms-PRNG co-generates an arbitrarily large number of uncorrelated chaotic sequences. These cogenerated sequences are actually used in several steps of the ciphering process. Noisy transmission conditions are considered, with realistic assumptions. The efficiency of the proposed method for ciphering and deciphering is illustrated through numerical simulations based on a Cms-PRNG involving ten coupled chaotic sequences.

I. INTRODUCTION

A. Chaos and cryptography: a brief state of the art Besides conventional cryptographic methods, relying on number theory, chaos-based cryptography has aroused a great attention for a few years. Indeed, chaotic systems seem to exhibit promising properties, among which one can mention: long-term unpredictability, noise-like behavior, spread spectrum. . . Two main classes can be distinguished in chaos-based cryptographic methods: those based on continuous-time chaos and those based on discrete-time chaos. In this paper, we will focus on cryptography with discretetime chaos, owing to a less computational complexity and no need for synchronization. The first references dealing with chaos cryptography are [START_REF] Matthews | On the derivation of a chaotic encryption algorithm[END_REF], which proposes a stream cipher based on a one-dimensional chaotic map and [START_REF] Habutsu | A secret key cryptosystem by iterating a chaotic map[END_REF], in which the secret key is chosen as some parameter of the tent map.

Generally the principle of discrete chaos based cryptography is directly inspired from that of classical cryptography, in the sense that either pseudo-random numbers are generated from a discrete chaotic system to perform stream ciphering or the cipher message follows the chaotic orbit whose initial condition is deduced from the plain message in block ciphering. Then chaos based cryptographic schemes are used in hashing techniques, authentication process, or key-exchange protocols. . . among other applications.

Most of the methods aimed at designing chaotic cryptosystems resort to pseudo-random number generators (which will be denoted chaotic PRNG in the sequel). Beside standard PRNG (see [9] and the references therein for a thorough study), chaotic systems can be used to generate sequences of pseudorandom numbers. Some works study the random properties exhibited by these chaotic PRNG, while other references discuss about their involvement in cryptography. We mention in this section a rapid survey about chaotic PRNG, among the numerous papers available in the literature. In the companion references [START_REF] Stojanovski | Chaos-Based Random Number Generators-Part I: Analysis[END_REF], [START_REF] Stojanovski | Chaos-Based Random Number Generators-Part II: Practical Realization[END_REF], an analysis is performed of the application of a chaotic piecewise linear one dimensional map as random number generator. The parameter values for which the RNG behaves as a Markov information source are analytically and practically studied. The reference [START_REF] Li | A multiple peudorandom-bit generator based on spatiotemporal chaotic map[END_REF] studies the cryptographic properties of a new pseudo-random bit generator based on the coupled map lattice: spatiotemporal chaos is dealt with, stemming from partial differential equation or coupled ordinary differential equations. It means that chaotic properties are exploited both in time and in space. A large number of chaotic oscillators are coupled to produce chaotic orbits whose period is too long to be reached in realistic conditions. In the paper [START_REF] Assad | Design and analyses of efficient chaotic generators for crypto-systems[END_REF] a perturbing orbit technique is used to avoid dynamical degradation due to finite state representation. It shows that this process also increases the cycle length. The authors proposes an analysis of the randomness based on system and signal processing tools. The work [START_REF] Kanso | Logistic chaotic maps for binary numbers generations[END_REF] proposes a chaotic PRNG based on a simple logistic map and on two coupled logistic maps. This CPRNG is used to encrypt binary plaintexts through bitwise XOR operation, as in standard stream ciphers. The reference [START_REF] Behnia | A novel dynamic model of pseudo random number generator[END_REF] proposes a review of RNG features and chaotic systems theory. It studies a family of rational order chaotic maps, obtained as the ratio between polynomials. Then some statistical tests are performed through an invariant measure to evaluate the performances of the corresponding chaotic PRNG. In the reference [START_REF] González | Statistical complexity measure of pseudorandom bit generator[END_REF], a particular statistical complexity measure (introduced by [START_REF] Martin | Statistical complexity and disequilibrium[END_REF]) is used to quantify the randomness of any PRNG. This measure exhibits the following interesting property: it is null for totally random process. The proposed method is evaluated on standard well-known PRNG as well as PRNG based on Lorenz chaotic system. This measure is improved in [START_REF] Larrondo | Random number generators and causality[END_REF]. The same authors present in [START_REF] Larrondo | Intensive statistical complexity measure of pseudorandom number generators[END_REF] a quantifier to predict whether a given RNG will pass the Marsaglia DIEHARD test suite [START_REF] Marsaglia | [END_REF]. The reference [START_REF] De Micco | Randomizing nonlinear maps via symbolic dynamics[END_REF] proposes a method to classify randomizing techniques, through a representation based on the statistical properties (see [START_REF] Martin | Statistical complexity and disequilibrium[END_REF], [START_REF] Larrondo | Intensive statistical complexity measure of pseudorandom number generators[END_REF]) of chaotic systems. They define randomizing techniques as suitable manipulations of the generated time series in order to improve their statistical properties. They show that PRNG based on very simple chaotic systems may be greatly improved by resorting to symbolic dynamics. Two techniques are tested, called discretization and skipping. A novel and efficient technique is presented in the papers [START_REF] Lozi | New enhanced chaotic number generators[END_REF], [START_REF] Lozi | Chaotic pseudo-random number generators via ultra weak coupling of chaotic maps and double threshold sampling sequences[END_REF] to randomize chaotic data. This technique relies on chaotic sampling and mixing, through extremely weak coupling of a piecewise linear chaotic map. The proposed method has been thoroughly studied and characterized and the generated numbers possess good random properties. A new generator on the torus has been proposed in [START_REF] Lozi | Random properties of ring-coupled tent maps on the torus[END_REF]: this generator will be used in the present paper to co-generate uncorrelated pseudo-random sequences to design an efficient and noise resisting chaotic cryptosystem by using the technique of chaotic sampling.

B. Problem formulation

This paper deals with the not so widely treated problem of data transmission in a noisy environment, based on a Cms-PRNG. The originality of this paper is twofold. First a novel ciphering method is proposed aimed at resisting to a noisy transmission channel. The main idea is to establish, between the transmitter and the receiver, a correspondence between the alphabet constituting the plain text and some intervals defining a partition of [-1, 1]. Some realistic assumption about the noise boundedness allows to restrict the bounds of the aforementioned intervals in order to precisely resist to the effects of the noise. An extra scrambling resorting to a co-generated chaotic sequence enhances the ciphering process. Then a new chaotic substitution method is developed: considering a chaotic carrier, belonging to the set of cogenerated and coupled pseudo-random chaotic sequences, the idea is to randomly/chaotically (in fact, this is determined by a second pseudo-random chaotic sequence) replace some elements of the carrier by a ciphered element (a letter here) of the message. At the receiver end, a copy of the Cms-PRNG, with the same parameters (hence we deal with a symmetrical ciphering method) allows to generate the necessary chaotic sequences and therefore to retrieve the initial message. The paper is organized as follows. In section II the chaotic pseudo-random numbers generator is detailed. Then section III is dedicated to the ciphering and the transmission processes. The decoding principle is summarized. In the last section some numerical illustrations show the efficiency of the proposed noise-resisting chaotic ciphering.

II. CMS-PRNG DESCRIPTION

The design of the proposed noise-resisting chaotic ciphering requires multiple random sequences. For this purpose consider the system with alternate coupled maps confined to the pdimensional torus [-1, 1] p recently introduced by Lozi and defined by:

                                                                               x 1 n+1 = 1 -2|x 1 n | +k 1     1 - p j=3 ε 1,j   x 2 n + p j=3 ε 1,j x j n   . . . = . . . x m n+1 = 1 -2|x m n | +k m     1 - p j=1,j =m,m+1 ε m,j   x m+1 n + p j=1,j =m,m+1 ε m,j x j n   . . . = . . . x p-1 n+1 = 1 -2|x p-1 n | +k p-1     1 - p-2 j=1 ε p-1,j   x p n + p-2 j=1 ε p-1,j x j n   x p n+1 = 1 -2|x p n | +k p     1 - p-1 j=2 ε p,j   x 1 n + p-1 j=2 ε p,j x j n   (1) 
For more clarity, we also give the equation of the Cms-PRNG in dimension 4:

                                   x 1 n+1 = 1 -2|x 1 n | + k 1 (1 -ε 1,3 -ε 1,4 )x 2 n +ε 1,3 x 3 n + ε 1,4 x 4 n x 2 n+1 = 1 -2|x 2 n | + k 2 (1 -ε 2,4 -ε 2,1 )x 3 n +ε 2,4 x 4 n + ε 2,1 x 1 n x 3 n+1 = 1 -2|x 3 n | + k 3 (1 -ε 3,1 -ε 3,2 )x 4 n +ε 3,1 x 1 n + ε 3,2 x 2 n x 4 n+1 = 1 -2|x 4 n | + k 4 (1 -ε 4,2 -ε 4,3 )x 1 n +ε 4,2 x 2 n + ε 4,3 x 3 n (2)
with the following extra conditions, to stay on the torus, for all j ∈ {1, . . . , p}:

• if x j n+1 < -1 then add 2 • if x j n+1 > 1 then subtract 2
and k i = 1 or k i = -1 for i ∈ {1, . . . , p}.

It has been shown in reference [START_REF] Espinel | New alternate lozi function for random number generation[END_REF] that the chaotic map (1) co-generates p (p is arbitrarily chosen) uncorrelated sequences of pseudo-random numbers. This is a key property, that allows to use any generated chaotic sequence at any step of the proposed ciphering process: for security purpose, the transmitter and the receiver can agree to invert the role of the employed sequences. This property is very useful in the proposed method: the transmitter and the receiver can generate exactly the same pseudo-random sequences (from the same parameters and the same initial conditions, this point is discussed just below), but if an intruder intercept one of these sequences, he/she cannot deduce any information about the other coupled sequences. Therefore the proposed ciphering scheme is intrinsically linked with the inherent properties of the Cms-PRNG.

In practice,it is sufficient to choose p = 10 (see [START_REF] Espinel | New alternate lozi function for random number generation[END_REF]) to obtain good statistical properties. Among these p sequences, some will be used in the noise resisting transmission or ciphering process. Owing to their property of being non correlated, several sequences issued from the same chaotic generator can be entangled and transmitted at the same time.

Another interest for considering a coupled map such as [START_REF] Assad | Design and analyses of efficient chaotic generators for crypto-systems[END_REF] is that it provides many parameters, some of which will be used as secret keys. In the present work, we choose the parameters k i , i = 1, . . . , p as secret keys together with some of the ε i,j , i, j = 1, . . . , p. The only condition we impose is that the ε i,j must belong to the interval [10 -15 , 10 -5 ] to ensure good random properties for the generated sequences.

Besides, we choose to keep the initial conditions public and to eliminate the N 0 first iterations precisely to avoid the influence of the initial conditions. This means that the ciphered message will be transmitted inside a pseudo random carrier signal once its N 0 first iterations have been removed. In practice, some tests have been performed, showing that N 0 can be set to about 100 iterations. For security requirements, the value of N 0 can be increased at will.

Remark 1. To bear the fact that the initial conditions are public, the Cms-PRNG must exhibit a particularly strong sensitivity to its parameters, since some of the parameters only are kept secret. Some numerical tests illustrate this sensitivity, reported in the Appendix, at the end of the paper.

III. NOISE-RESISTING CIPHERING

In this section we detail the noise-resisting ciphered transmission principle, consisting of two steps: the ciphering process and the transmission process. Both resort to the coupled chaotic pseudo-random generated sequences.

A. Ciphering principle

We begin with some notations that will be used in the sequel.

The plain text is denoted (t k ) k=1,...,N : the letters t k , for i = 1, . . . , N belong to the alphabet {l 1 , . . . , l π } composed of π letters.

The ciphered text is a sequence of real numbers, denoted y k , k = 1, . . . , N and each y k belongs to the interval [-1, 1].

The transmitted signal (at the transmitter side) is denoted s n while the received signal is ŝn (at the receiver side).

In this paper we consider noisy transmission conditions, which means that ŝn = s n + α n , where α n > 0 denotes an unknown additive noise at time n. We make the following classical assumption: the additive noise is bounded by a known bound K, which means that

||s n -ŝn || = α n ≤ K, ∀n ≥ 0 (3) 
We detail first how to transform each letter of the plain text t k into a real number y k ∈ [-1, 1], with an original noise-resisting method. In a second step, the sequence y k will be transformed to obtain a uniform distribution on the interval [-1, 1].

• Define a partition as follows:

[-1, 1] = m=1,π I m ( 4 
)
with a m , b m the bounds of the interval each interval I m , i.e.:

I m = [a m , b m ].
In fact, owing to the presence of additive noise, not all real numbers inside I m can be selected, one must avoid an interval of length K at each side of the interval I m . Therefore some smaller intervals need to be defined.

• Define a sub-interval I m included in the corresponding interval I m such that:

I m = [a m , b m ] ⊂ I m (5) 
and

[a m -K, b m + K] ⊂ I m ( 6 
)
where we recall that K is the upper bound on the noise, see [START_REF] Espinel | New alternate lozi function for random number generation[END_REF].

Then the coding consists in randomly (i.e. with another pseudo-random sequence generated by (1): x p-1 n ) choosing for each letter t k of the plain text, a real number y k inside the interval I m (and not I m ) if t k = l m . Each interval I m corresponds to a letter l m , for m = 1, . . . , π. Remark that each letter has a frequency of apparition in the plain text, depending on the initial language. Therefore one must carefully choose the length of each interval I m in proportion to the corresponding frequency of the letter l m . An illustration is given by figure 1 for an alphabet with three letters: the letter A as a frequency of 10%, the letter B has a frequency of 30% and the letter C of 60%. Since one needs to leave some holes at the edges of the intervals I m to resist the additive noise, the transmitted signal cannot have a random-like repartition. So we propose to transform the ciphered data y k before transmitting it. For all steps n ∈ N such that an encrypted letter is transmitted, we propose to transmit not directly y n but:

ỹn =    y n + x p-2 n if y n + x p-2 n ∈ [-1, 1] y n + x p-2 n + 2 if y n + x p-2 n < -1 y n + x p-2 n -2 if y n + x p-2 n > 1 (7) 
For simplicity of presentation, in the sequel, y n will denote ỹn , the ciphered message to transmit.

Then the obtained signal to transmit has the desired uniform repartition, as illustrated by figure 3

B. Transmission principle

We present now how to transmit the ciphered text using substitution method in a new pseudo-random chaotic The ciphered text y k , defined by [START_REF] Larrondo | Intensive statistical complexity measure of pseudorandom number generators[END_REF], is not directly transmitted, it is chaotically hidden in a chaotic carrier signal, as is explained below.

The ciphering makes use of two coupled chaotic sequences:

x 1
n is used as chaotic carrier, while x p n is used to select the substitution times.

s n = x 1 n if x p n < T y k(n) if x p n ≥ T ( 8 
)
where T is a predefined threshold. For example, as the x p n are equally distributed on the interval [-1, 1], if one chooses T = 0.8, one ciphered letter will be transmitted in average each 10 element of the sequence x 1 n . If one chooses T = 0.98, one element over 100 is replaced by a letter.

We do not detail here the sequence k(n), it is easily understandable that k(n) increase of +1 each time s n = y k(n) in order to transmit each element of the ciphered sequence y k .

C. Decoding principle

At the receiver end, suppose that the same Cms-PRNG defined by ( 1) is available. The transmitter and the authorized receiver have fixed the same parameters, therefore the ciphering is a symmetrical one.

According to the substitution principle defined by [START_REF] Larrondo | Random number generators and causality[END_REF] and the hypothesis (3) on the additive noise, the received signal can be expressed as: Since the initial conditions of the chaotic pseudo-random number generator (1) are assumed to be public, the receiver exactly knows when x p n is smaller or larger than the threshold T , so the receiver is able to reconstruct the sequence (y k(n) + α n ), i.e. the sequence y q + β q where β q = α n for q = k(n).

ŝn = x 1 n + α n or y k(n) + α n (9) 
Since β q ≤ K, there exists m ∈ {1, 2, . . . , π} such that ŝn ∈ I m . The receiver also exactly knows the value of x p-2 n and deduce from the rules (7) the value y q . Then the knowledge of the correspondence between the interval I m and the letter l m enables the receiver to retrieve the initial message.

IV. NUMERICAL ILLUSTRATIONS

Now we summarize the main steps of the proposed algorithm:

1) Choose the secret parameters k i = 1 or k i = -1 for i ∈ {1, . . . , p} and ε i,j ∈ [10 -15 , 10 -5 ], for i, j = 1, . . . , p 2) Choose N 0 ≥ 100 3) Define the initial conditions shared by the transmitter and the receiver 4) Iterate the Cms-PRNG (1) with the previous initial conditions, both at the transmitter and the receiver side 5) Apply the ciphering and transmission principle as detailed before The figure 4 shows the noisy signal at the receiver side (recall that the transmitted signal is given by figure 3). Notice that the figures 2 to 4 represent our simulations with 10 9 iterations. Remark 2. To generate the bounded additive noise in our simulations, we resort to the Box-Muller formula. The process consists of generating a white gaussian noise from two random sequences, uniformly distributed in ]0, 1]. These two random sequences are chosen between the remaining chaotic sequences (that have not been used in another step of the chaotic coding) and their absolute values are considered. The obtained noise is represented in figure 5. Notice that in real conditions, the noise naturally affects the transmission through the channel.

V. CONCLUSION

In this paper we have proposed a novel method of noiseresisting ciphering. The originality lies in the use of a chaotic pseudo-random number generator: several co-generated sequences can be used at different steps of the ciphering process, since they present the strong property of being uncorrelated. Each letter of the initial alphabet of the plain text is encoded as a subinterval of [-1, 1]. The bounds of each interval are defined in function of the known bound of the additive noise. A pseudo-random sequence is used to enhance the complexity of the ciphering. The transmission consists of a substitution technique inside a chaotic carrier, depending on another cogenerated sequence. The efficiency of the proposed scheme is illustrated on some numerical simulations. As further work, some studies should be performed of several sets of unknown parameters, since with the considered CMS-PRNG with 10 states, the number of possible parameters amounts to 90 (the ε i,j and the k i ). It is also possible to discuss about the opportunity to keep secret the correspondence between the alphabet and the intervals I m .
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  k 1 = 1, k 2 = -1, k 3 = 1, k 4 = -1

		1		x 2	x 3	x 4
	i=2	0.802775649423882687	0.198337199944899456	0.893873727345795399	-0.347193769493635562
	i=3	0.407214033713460932	-0.290548081240143419	0.865058835244629565	-0.497163215517021417
	i=4	-0.104976034759294692	-0.446154478326659054	0.772719118773404601	0.412887220696436463
	i=5	0.343893580914444885	-0.665027721577955644	-0.1325510441039911	0.279201330018808036
				TABLE I	
	CASE 1: Iteration x 1	x 2	x 3	x 4
	i=2	0.802775649423882687	0.198337199944899456	0.893873727345795399	0.0828063103885205709
	i=3	0.407214030273460315	-0.290548084551144059	-0.704941107276218393	-0.362836944247290738
	i=4	0.104976187115677827	-0.876155183551102557	-0.772719161018440959	-0.132888008099043914
	i=5	0.0861075414927185007	0.0204085218923464214 -0.678326329298663211	0.629247595921321956
				TABLE II	
			CASE 2:		

• Once this first step of the coding is achieved, one has to ensure that the ciphered text has a random-like distribution inside [-1, 1]. With the aforementioned coding alone, this property cannot be ensured, as it can be seen in figure2:

APPENDIX

In this part, we show the results of some tests we have performed to evaluate the required sensitivity of the trajectories of the Cms-PRNG (1) to the parameters k i and ε i,j . The same initial conditions are kept, and only one parameter is changed in each test, with respect to the other test. To alleviate the presentation, we give the results in the case n = 4. The sensitivity increases with the value of n.

Below are the initial conditions (i = 1), kept for all the tests:

• Sensitivity to the k i .

The following values are chosen for the ε i,j :

The results are presented in tables I and II. Considering these two tests, with the considered set of parameters, choosing the value N 0 ≥ 4 is sufficient.

• Sensitivity to the ε i,j .

The same methodology has been tested, with the following values for the k i :

and only one ε i,j is slightly varied (from 10 -15 ) from one test to another. For lack of place, the tables with the obtained results are not reported here. Again the value of N 0 can be fixed larger than 4.