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Abstract. We investigate the vibrational properties of zigzag and armchair single-

layer graphene sheets (SLGSs) using the molecular mechanics approach. The natural

frequencies of vibration and their associated intrinsic vibration modes are obtained.

Vibrational analysis is performed with different chirality and boundary conditions. The

simulations are carried out for three types of zigzag and armchair SLGS. The universal

force field potential is used for the molecular mechanics approach. The first four

natural frequencies are obtained for increasing lengths. The results indicate that the

natural frequencies decrease as the length increases. The results follow similar trends

with results of previous studies for SLGS using a continuum structural mechanics

approach. These results have shown the applicability of SLGSs as electromechanical

resonators.



Transverse vibration of single layer graphene sheets 2

PACS numbers: 62.25.-g

Mechanical properties of nanoscale systems

PACS numbers: 68.55.-a

Thin film structure and morphology

PACS numbers: 61.43.Bn

Structural modeling: serial-addition models, computer simulation

Keywords: graphene, bending, molecular mechanics, frequencies

Submitted to: Journal of Physics D: Applied Physics

1. Introduction

In 2003, Gan et. al. [1] described the in-situ exfoliation of a single layer with an

intersecting grain boundary in graphite using an STM operated in air. The exfoliation

technique has led to the successful production of graphene, opening a new era in the

field of nanoelectronics [2–4]. The very high in-plane stiffness of graphene sheets [5]

has suggested some possible use of graphite nanosheets for nanosensors and NEMS

applications [6, 7], due to their extremely high surface to volume ratio, as well as

large deflection capability under point loading [8–13]. In this paper the out-of-plane or

transverse vibration of single-layer graphene sheets (SLGSs) is considered. The vibration

studies could be useful for graphene based mass and/or gas sensors [6, 14, 14–18].

The vibration of single and multiple layer graphene sheets has been investigated

by several authors, using either continuum mechanics approaches [19], equivalent lattice

structures made by atomistic-continuum models representing the C-C bonds [20], and

molecular dynamics approaches combined with continuum mechanics for thickness

identification [21]. The out-of-plane deformation of SLGS has been considered using the

continuum mechanics models [13, 22],together with continuum and truss-like structural

assemblies [23–30]. In a recent paper a nonlinear mechanical model has been used

[31] to take account for large deformations in SLGS. They observed higher resonance

frequencies from the nonlinear model compared to the equivalent linear model. A

molecular mechanics (MM) approach based on the computation of the Hessian matrix

and its eigenvalues has been proposed by some authors to describe the structural

dynamics of single wall carbon nanotubes [32], and used to validate a lattice structural

mechanics approach in nanoribbons [33]. In this work, we describe the behavior of

the natural frequencies and modeshapes of single layer graphene sheets with various

boundary conditions using the MM method, and compare the findings with continuum

mechanics based on isotropic properties. Kirschoff-based plate formulations consider

the graphene sheets as an isotropic continuum, while edge effects and the finite size of

the sheets have been demonstrated to provide in-plane special orthotropic properties

[5, 29, 34, 35].
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The main novelty of our paper is the molecular mechanics [36, 37], which is a higher

fidelity model compared to the previously used models [20, 38] where the structural

mechanics (SM) approach is used. In the MM approach, the molecule first finds

the lowest energy configuration from its pre-optimized state and then the subsequent

calculations are performed. Finding the minimum potential energy surface is a key

distinguishing feature in the MM approach. It can be noted that during the optimization

the structures may change their configurations. Planar structure such as SLGS may

deform to attain the lowest energy configuration. This is ignored in the SM approach

[20, 38], which only considers the initial geometry of the molecule. In the SM approach

the Euler-Bernoulli beam model is used to represent the C-C bonds and subsequently

the finite element method [39] is used to discretise the equation of motion and obtain

the natural frequencies. In the formulation presented in ref [20, 38], the length and

the diameter of the ‘beams’ representing the C-C bonds are almost similar (length =

0.142nm and diameter = 0.146nm). It is well known [40] that for such ‘short beams’

the Euler-Bernoulli beam model used in [20, 38] produce inaccurate results as the shear

deformation is ignored. This can introduce error particularly for the calculation of higher

frequencies. The results obtained using the MM approach do not have these drawbacks

as neither the Euler-Bernoulli beam model, nor the finite element approach, is used.

Contrary to SM approaches, the molecular mechanics method also allows the natural

frequencies of the system in equilibrium to be computed without any requirement to

use an equivalent thickness value for the nanostructure. In general, the introduction of

the thickness concept in nanomaterials is highly contentious, leading to the well-known

”Yakobson’s paradox” [41, 42], responsible for the high scattering of Young’s moduli

and Poisson’s ratio results in open literature.

We will show that the MM approach is able to capture the equivalent anisotropic

properties and their influence in the structural dynamics of the graphene sheets, and

therefore provide a valid prediction tool to simulate the resonance behavior of graphene-

based NEMS devices. The paper is organized in the following way. The continuum

mechanics approach for the frequency analysis of graphene sheets is presented in

section 2. Section 3 will be centered on the analysis and calculation of the frequencies

using a molecular mechanics model. The numerical results and discussion will be

presented in section 4. Finally, the major conclusions of this paper will be drawn

in section 5 based on the results and analyses in section 4.

2. Vibration of single layer graphene

A single layer graphene sheet (shown in Fig. 1) may be approximated by a thin elastic

plate [11]. The equation of motion of the transverse free vibration of a thin elastic plate

[40, 43] can be expressed as

D

(
∂4w

∂x4
+ 2

∂2w

∂x2

∂2w

∂y2
+

∂4w

∂y4

)
+ ρ

∂2w

∂t2
= 0 (1)
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(a) Single layer graphene.

a

b

(b) Continuum plate model for graphene.

Fig. 1. A rectangular single layer graphene sheet (SLGS) and its mathematical

idealization using a thin continuum plate. The SLGS is assumed to be of dimension

a× b.

Here w ≡ w(x, y, t) is the transverse deflection, x, y are coordinates, t is the time, ρ is

the mass density per area and the bending rigidity is defined by

D =
Eh3

12(1− ν2)
(2)

E is the Young’s modulus, h is the thickness and ν is the Poisson’s ratio. We consider

rectangular graphene sheets with cantilevered (clamped at one edge) and bridged

(clamped at two opposite edges) boundary conditions. Following Blevins [44], the

natural frequency (in rad/s) of a rectangular plate of dimension a× b can be expressed

as

ωij =

{
π4D

a4ρ

}1/2 {
G4

x +G4
y

(a
b

)4

+2
(a
b

)2

[νHxHy + (1− ν)JxJy]

}1/2

(3)

where i, j = 1, 2, 3, . . . are mode indices. The values of the coefficients Gx, Hx, Jx and

Gy, Hy, Jy depend on the boundary conditions and the mode indices i, j. The first set

of coefficients depends on the boundary conditions of the edges of width (side b) while

the second set of coefficients depends on the boundary conditions of the edges of length

(side a). The boundary conditions on the two edges of length (side a) are free. In this

paper we consider the lower modes of vibration. For the first three modes the coefficients

Gy, Hy and Jy are given in Table 1. The coefficients Gx, Hx and Jx for both boundary

Table 1. Coefficients for the free-free boundary conditions of the edges of length (side

a)

.

Mode index (j) Gy Hy Jy
1 0 0 0

2 0 0 1.216

3 1.506 1.248 5.017

conditions on the edges of width (side b) are given in Table 2. General expressions of the

coefficients for the higher values of i and j are given in [44]. The values given in Tables
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Table 2. Coefficients for the two boundary conditions on the edges of width (side b)

.

Clamped-clamped Clamped-free

Mode index (i) Gx Hx Jx Gx Hx Jx
1 1.506 1.248 1.248 0.597 -0.0870 0.471

2 2.5 4.658 4.658 1.494 1.347 3.284

3 3.5 10.02 10.02 2.5 4.658 7.842

1 and 2 will be used to obtain the natural frequencies and compare with the molecular

mechanics simulation described in the next section.

3. Molecular simulation approach

Since atomic configurations can have significant impact on the mechanical properties of

single layer graphene sheets, zigzag and armchair models are adopted in this study. The

zigzag and armchair models of graphene sheets under consideration are:

• Zigzag sheet clamped at one edge (Cantilevered condition)

• Zigzag sheet clamped at two opposite edges (Bridged condition)

• Armchair sheet clamped at one edge (Cantilevered condition)

• Armchair sheet clamped at two opposite edges (Bridged condition)

Different atomic configurations and boundary conditions can be considered in an unified

manner within the scope of molecular mechanics. The general expression of total energy

is a sum of energies due to valence or bonded interactions and non-bonded interactions

[45]

E =

NB∑
0

1

2
kIJ(r − rIJ)

2 +

NA∑
0

kIJK (C0 + C1 cos θ + C2 cos 2θ)

+

NT∑
0

1

2
Vϕ (1− cos (nϕ0) cos (nϕ)) +

NI∑
0

Vω

(
CI

0 + CI
1 cosω + CI

2 cos 2ω
)

+

Nnb∑
0

RIJ

[
−2

(xIJ

x

)6

+
(xIJ

x

)12
]
+

Nnb∑
0

qI .qJ
ε.x

(4)

NB, NA, NT , NI and Nnb are the numbers of the bond-, angle-, torsion-, inversion- and

the non bonded-terms, respectively. kIJ and kIJK are the force constants of the bond-

and angle-terms, respectively. r and rIJ are the bond distance and natural bond distance

of the two atoms I and J , respectively. θ and θ0 are the angle and natural angle for

three atoms I − J −K, respectively. ϕ and ϕ0 are the torsion angle and torsion natural

angle for three atoms I − J − K − L, respectively. Vϕ, n, Vω, ω are the height of the

torsion barrier, periodicity of the torsion potential, height of the inversion barrier and

inversion- or out-of-plane-angle at atom I, respectively. CI
0 , C

I
1 and CI

2 are the Fourier
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coefficients of the inversions terms. x and xIJ are the distance and natural distance of

two non bonded atoms I and J . RIJ is the depth of the Lennard-Jones potential. qI and

ε are the partial charge of atoms I and dielectric constant. For the general nonlinear

case, the bend function should have a minimum θ = θ0, with the second derivative at θ0
equal to the force constant (kIJK). The Fourier coefficients of the general angle terms

C0, C1 and C2 are evaluated as a function of the natural angle θ0:

C2 =
1

4sin2θ0

C1 = −4C2 cos θ0

C0 = C2

(
2cos2θ0 + 1

) (5)

The bond stretching force constants (kIJ) are atom based and are obtained from

generalization of Badger’s rules. The assumption is that the bonding is dominated

by attractive ionic terms plus short-range Pauli repulsions [45]. The force constant (in

units of (kcal/mol)/Å2) then becomes

kIJ = 644.12
Z∗

IZ
∗
J

r3IJ
(6)

The Z∗
I is the effective atomic charges, in electron units. Similarly, the angle bend force

constants (kIJK) are generated using the angular generalization of Badger’s rule. The

force constant (in units of kcal/mol.rad2) then becomes [46]:

kIJK = 644.12
Z∗

IZ
∗
J

r5IJ

[
3rIJrJK

(
1− cos2θ0

)
− r2IK cos θ0

]
(7)

The torsional constant (kcal/mol) is defined as

Vϕ = 5
√

UIUJ [1 + 4.18 ln (BOJK)] (8)

where, BOJK is the bond order for Atom-J and Atom-K. UI and UJ are the atomic

constants defined with UFF sp2. Regarding the inversion term, the coefficients are

CI
0 = 1, CI

1 = −1 and CI
2 = 0 for sp2 atom type. In this study, we used the UFF

model [45], wherein the force field parameters are estimated using general rules based

only on the element, its hybridization and its connectivity. Hybridization determines

the type of bonding of the carbon atoms with its neighbours. The sp3 hybridization

corresponds to the well-known tetrahedral configuration in which carbon binds to four

neighbours giving rise to three-dimensional inter-connectivity of carbon atoms that is

found in diamond. The sp2 bonding in which carbon atoms bind to three neighbours also

known as trigonal hybridization gives planar structures found in graphite and graphene.

The sp2-hybridized carbon atoms, which are at their energy minimum in planar graphite

(or graphene), must be bent to form the closed sphere (fullerenes) or tube (CNT), which

produces angle strain. The characteristic reaction of fullerenes is electrophilic addition

at 6,6-double bonds, which reduces angle strain by changing sp2-hybridized carbons
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into sp3-hybridized ones. The change in hybridized orbitals causes the bond angles to

decrease from about 120◦ in the sp2 orbitals to about 109.5◦ in the sp3 orbitals. This

decrease in bond angles allows for the bonds to bend less when closing the sphere or

tube, and thus, the molecule becomes more stable. The force field functional forms and

parameters used in this study are in accordance with [45]. The calculation of frequency

and their validation for CNTs were detailed in [32]. In the following section we provide

the methodology of the frequency calculation.

3.1. Calculation of the natural frequencies

We start with the Hessian matrix fCAR, which holds the second partial derivatives of

the potential E with respect to the displacement of the atoms in cartesian coordinates

(CAR) [46, 47]:

fCARij
=

(
∂2E

∂ξi∂ξj

)
Opt

(9)

This is a 3N × 3N matrix (N is the number of atoms), where ξ1, ξ2, ξ3,. . ., ξ3N denote

the displacements in cartesian coordinates, ∆x1, ∆y1, ∆z1, . . ., ∆zN . The ()Opt refers to

the fact that the derivatives are taken at the equilibrium positions of the atoms. These

force constants are then converted to mass weighted cartesian coordinates (MWC) [47]

fMWCij
=

fCARij√
mimj

=

(
∂2E

∂ci∂cj

)
Opt

(10)

where, c1 =
√
m1ξ1 =

√
m1∆x1, c2 =

√
m1ξ2 =

√
m1∆y1 and so on. fMWC is

diagonalized, yielding a set of 3N eigenvectors and 3N eigenvalues.

The next step is to translate the center of mass to the origin, and determine the

moments and products of inertia, with the goal of finding the matrix that diagonalizes

the moment of inertia tensor. Using this matrix we can find the vectors corresponding

to the rotations and translations. Once these vectors are known, we know that the rest

of the normal modes are vibrations. The center of mass RCOM is found in the usual

way:

RCOM =

∑
α mαrα∑
α mα

(11)

where the sums are over the atoms, α. The origin is then shifted to the center of mass

rCOMα = rα −RCOM . Next we have to calculate the moments of inertia (the diagonal

elements) and the products of inertia (off diagonal elements) of the moment of inertia

tensor (I).

I =


Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =


∑

mα (y
2
α + z2α) −

∑
mα (xαyα) −

∑
mα (xαzα)

−
∑

mα (yαxα)
∑

mα (x
2
α + z2α) −

∑
mα (yαzα)

−
∑

mα (zαxα) −
∑

mα (zαyα)
∑

mα (x
2
α + x2

α)

 (12)

The sums appearing in the above expression is over the index α. This symmetric matrix

is diagonalized, yielding the principal moments (the eigenvalues I′) and a 3× 3 matrix
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(X), which is made up of the normalized eigenvectors of (I). The eigenvectors of the

moment of inertia tensor are used to generate the vectors corresponding to translation

and infinitesimal rotation of the molecular system. A Schmidt orthogonalization is used

to generate Nvib = 3N − 6 remaining vectors, which are orthogonal to the six rotational

and translational vectors. The result is a transformation matrix D which transforms

from mass weighted cartesian coordinates q to internal coordinates S = Dq, where

rotation and translation have been separated out. Now that we have coordinates in the

rotating and translating frame, we need to transform the Hessian, fMWC , to these new

internal coordinates (INT) [46, 47]. Only the Nvib coordinates corresponding to internal

coordinates will be diagonalized, although the full 3N coordinates are used to transform

the Hessian. The transformation is straightforward as follows:

fINT = DT fMWCD (13)

The Nvib × Nvib submatrix of fINT , which represents the force constants internal

coordinates, is diagonalized yielding Nvib eigenvalues λ = 4π2ω2, and Nvib eigenvectors.

If we call the transformation matrix composed of the eigenvectors L, then we have

LT fINTL = Λ (14)

where Λ is the diagonal matrix with eigenvalues λi. At this point, the eigenvalues need

to be converted to frequencies (in Hz) as

ωi =

√
λi

4π2
(15)

4. Results and discussions

The resonant frequencies of single layer graphene (SLG)-based resonators depend on the

geometric configurations. The atomic structures of SLGS could also exert significant

influence on their vibration behaviours. Thus, in this work, we analyze two groups

of SLG resonators, i.e., three zigzag SLGS (10,0), (14,0), (18,0) and three armchair

SLGS (11,11), (15,15), (19,19), with increasing length. In this study, we computed our

results using bridged (atoms at the two sides along width are restrained) and cantilevered

(atoms at one side along width are restrained) boundary conditions. The computational

results of the first four vibrational frequencies of these zigzag SLGS are calculated and

presented in Fig. 2 and Fig. 3, respectively, for bridged and cantilevered boundary

condition. Similarly, Fig. 4 and Fig. 5, respectively, presents the first four vibrational

frequencies of these armchair SLGS, for bridged and cantilevered boundary condition.

The widths of the SLGS are given in the figure captions.

4.1. Dependence of the length

As shown in Fig. 2 and Fig. 3, for SLGS with the length rising from around 20Å to

120Å, the fundamental frequencies are in the ranges of 100-3000 GHz (ref. Table 3) and
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Fig. 2. Bridged boundary condition - First four vibrational frequencies of zigzag

SLGS as a function of the length of SLGS. The widths are - (10,0): 9.317Å; (14,0):

13.554Å; (18,0): 17.803Å.

4-1300 GHz (ref. Table 4) for the zigzag SLGS with bridged and cantilevered boundary

conditions, respectively. While for the armchair SLGS, the variation of frequencies is

between 40-1070 GHz (ref. Table 5) and 2-415 GHz (ref. Table 6) for bridged and

cantilevered boundary conditions, respectively, with the length rising from around 40Å

to 210Å. The trend of the frequency changes with length are generally in accordance

with that given in the literature [20]. The discrepancy is primarily a result of the

different end constraints, geometric configurations of SLGS and the differences in the

simulation approaches. Recall that here the molecular mechanics approach is used as

opposed to the finite element method employed in [20, 38].

4.2. Dependence of the geometric configuration

For both zigzag and armchair SLGS, the frequencies of all five modes generally decrease

with increasing length. The curves of frequency becomes steeper for the SLGS of smaller

sheet length (≤ 50Å). This shows that the dependence on the aspect ratio is stronger for

the frequencies of shorter SLGS. In the meantime, it is also seen from Fig. 2 and Fig. 4

that, for a given length the frequencies of SLGS always decline with rising sheet width.

This issue can be further clarified from Tables 3 to 6. The frequencies of small-width

SLGS are always higher than the corresponding frequencies of large-width SLGS. This

is especially so when the length is relatively small. However, the effect of width on the
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Fig. 3. Cantilevered boundary condition - First four vibrational frequencies of zigzag

SLGS as a function of the length of SLGS. The widths are - (10,0): 9.317Å; (14,0):

13.554Å; (18,0): 17.803Å.

frequencies diminishes for SLGS with larger widths. As an example, for zigzag SLGS

(ref. Table 3) with width 9.317Å the frequency decreases form 784.10 to 101.88 GHz

when the length increases from 23.391Å to 121.822Å, while for certain length of 23.391Å

it only varies from 784.10 GHz to 752.30 GHz, when width increases from 9.317Å to

17.803Å. Similar behavior is also observed for armchair SLGS in Table 3. Thus we

see that when the aspect ratio of SLGS grows, the difference in frequency due to the

variation of length decreases significantly whereas the ratio between the frequencies

remains almost unchanged. This observation suggests that the influence of width on

the vibration frequency of SLGS does not significantly change with increasing length.

Here the decreasing frequencies with increasing length and width observed in Fig. 2,

and Fig. 4 can be attributed to the fact that SLGS of larger length and width possess

lower dynamic structural stiffness in both longitudinal and transverse directions. In

particular, for SLGS of small width their transverse stiffness is high. The frequency of

such SLGS thus becomes more sensitive to their longitudinal rigidity, which finally leads

to stronger effect of the length for SLGS with smaller width.

Based on the molecular mechanics method, mode shapes of the SLGS are obtained.

The first six mode shapes of zigzag and armchair sheets are demonstrated in the

supplementary document (see supplementary materials). The first mode shape plays

a significant role in the design of the nanomechanical resonators. It is perceived that
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Fig. 4. Bridged boundary condition - First four vibrational frequencies of armchair

SLGS as a function of the length of SLGS. The widths are - (11,11): 12.31Å; (15,15):

17.23Å; (19,19): 122.15Å.

the SLGS with different boundary conditions has a sinusoidal and/or hyperbolic sine

and cosine configuration. These configurations guarantee the ease of detection of any

small deflection in the SLGS. In addition, mode shapes of the SLGS, in contrast to the

CNTs, are not changed by the length or aspect ratio.

4.3. Dependence of the atomic structure

Next we examine the effect of atomic structures on the frequency of SLGS. To this end we

consider the calculated frequencies in Table 5 and Table 3 respectively, for armchair and

zigzag SLGS with the bridged boundary condition. Similarly, we consider the calculated

frequencies in Table 6, and Table 4 respectively, for armchair and zigzag SLGS with the

cantilevered boundary condition. The results in Fig. 6 show that the chirality does not

have a significant influence on the natural frequencies of vibration. It is shown that

for almost same width and length the fundamental frequencies of zigzag SLGS are only

higher than those of armchair SLGS for bridged case, whereas for cantilevered case,

it is almost comparable. In the context of single wall carbon nanotubes (SWCNTs),

the difference between the frequencies of the two types (e.g., zigzag and armchair) are

also not very large [32]. This may be expected as SWCNTs are effectively rolled up

SLGS. The frequency of SLGS is primarily determined by their geometry, i.e., length
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Fig. 5. Cantilevered boundary condition - First four vibrational frequencies of

armchair SLGS as a function of the length of SLGS. The widths are - (11,11): 12.31Å;

(15,15): 17.23Å; (19,19): 122.15Å.

and the aspect ratio, and cannot be substantially changed by varying their atomic

structure. This finding demonstrates that the continuum models can produce a good

approximation for the vibration of SLGS with different atomic structures.

4.4. Comparison with the continuum theory

In this section we investigate whether the vibrational frequencies obtained from the

simple continuum plate model are comparable with the vibrational frequencies computed

using the molecular mechanics approach. The density per unit area on the SLGS is

computed from the total mass divided by the total area on the SLGS. We use the first

natural frequency to obtain the bending rigidity D using the natural frequency equation

(3) with the values of the coefficients corresponding to i = 1 and j = 1 in Tables 1 and

2. We then use this value of D to compute the higher natural frequencies to understand

if the simple plate model is applicable. The first natural frequency is not shown in the

figures because the constant D is calculated using the first natural frequency.

In Fig. 7, the second and third bending mode frequencies are compared for the

bridged boundary condition. We used (10,0) zigzag SLGS as an example. The results

for the other types of SLGS used in this study show similar behavior. The analytical

results shown in Fig. 7 are obtained from equation (3) with the values of the coefficients
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Table 3. Vibrational frequencies of zigzag SLGS in GHz - Bridged boundary condition.

Index and

Width (Å)

Length (Å) ω1 ω2 ω3 ω4 ω5

23.391 784.10 1178.43 1842.16 2511.38 2960.40

47.995 293.30 504.48 623.61 967.17 1006.04

(10,0) 72.603 180.15 321.84 370.86 474.31 580.16

9.317 97.213 130.12 236.47 264.56 285.31 406.86

121.822 101.88 186.91 194.26 205.92 313.98

23.391 763.00 1014.94 1799.25 1850.99 2220.43

47.995 281.72 420.08 600.04 861.22 983.66

(14,0) 72.603 172.47 265.86 355.04 536.70 558.29

13.554 97.213 124.42 194.62 252.85 361.47 387.81

121.822 97.34 153.53 196.67 244.08 299.77

23.391 752.30 929.62 1430.21 1777.36 2059.21

47.995 275.09 374.56 587.23 772.02 897.41

(18,0) 72.603 168.02 235.48 345.94 477.20 544.22

17.803 97.213 121.12 171.99 246.01 346.27 379.20

121.822 94.72 135.45 191.26 272.03 291.82

Table 4. Vibrational frequencies of zigzag SLGS in GHz - Cantilevered boundary

condition.

Index and

Width (Å)

Length (Å) ω1 ω2 ω3 ω4 ω5

23.391 76.71 437.63 483.34 659.82 1323.45

47.995 19.18 115.03 166.98 206.05 321.91

(10,0) 72.603 8.58 50.46 73.69 134.18 140.80

9.317 97.213 5.20 28.57 41.25 78.61 99.77

121.822 3.75 18.70 26.34 50.53 79.32

23.391 75.35 339.71 471.07 854.05 1035.23

47.995 18.41 109.56 158.49 230.04 311.10

(14,0) 72.603 8.34 47.75 102.90 103.10 133.99

13.554 97.213 5.84 27.91 58.08 74.40 77.05

121.822 3.74 17.52 37.11 47.57 60.62

23.391 75.00 279.65 467.10 857.12 883.47

47.995 17.80 104.88 130.68 287.79 305.18

(18,0) 72.603 8.15 45.04 84.69 128.84 131.38

17.803 97.213 4.68 24.89 62.71 70.16 74.43

121.822 3.67 16.34 44.52 47.76 49.86
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Table 5. Vibrational frequencies of armchair SLGS in GHz - Bridged boundary

condition.

Index and

Width (Å)

Length (Å) ω1 ω2 ω3 ω4 ω5

41.21 282.84 411.22 628.37 858.54 1072.30

83.83 117.86 185.65 243.91 375.70 385.14

(11,11) 126.46 74.47 120.09 151.31 197.16 232.77

12.31 169.08 63.05 96.48 135.33 170.34 176.12

211.71 42.94 70.46 80.55 86.31 130.72

41.21 287.54 359.84 636.08 765.41 953.01

83.83 120.58 158.87 248.98 323.45 392.11

(15,15) 126.46 76.32 102.08 154.90 205.84 237.93

17.23 169.08 55.85 75.30 112.58 151.24 151.67

211.71 43.43 59.43 87.37 101.74 119.02

41.21 290.01 335.32 640.24 681.45 720.46

83.83 122.14 145.19 251.80 297.89 395.86

(19,19) 126.46 77.40 93.09 156.92 188.19 240.78

22.15 169.08 55.91 68.18 112.83 136.68 171.43

211.71 44.70 54.26 89.80 108.84 123.21

corresponding to i = 2, 3 for the clamped-clamped case in Table 2 and j = 1 in Table 1.

The trend in the variation of the frequencies with respect to the length is similar for both

the methods. The difference between the two theories is more prominent for SLGS with

smaller dimension. This is expected as the continuum theory may not be very suitable

for SLGS in this case. The continuum model tends to overestimate the MM predictions

(17 % and 37 % for the second and third mode respectively). The continuum mechanics

formulation assumes an isotropic equivalent material for the graphene. However, edge

effects have been demonstrated to play a significant role in the static [29, 34, 35, 48]

and dynamic [33] mechanical properties of SLGS, leading to an equivalent orthotropic,

rather than isotropic material model for the graphene. Although the dimensions of the

SLGS considered in this work are dissimilar, we notice a general agreement in terms of

magnitude between the eigenvalues calculated with our MM approach, and the results

using the MM3 potential in [21].

Figure 8 shows equivalent plots for the SLGS with cantilevered boundary condition.

The analytical results shown in Fig. 8 are obtained from equation (3) with the values

of the coefficients corresponding to i = 2, 3 for the clamped-free case in Table 2 and

j = 1 in Table 1. The results predicted by the two approaches agree more closely for

this boundary condition. The results obtained here shows that the boundary condition

has an effect on the accuracy of the predictions from the continuum theory.
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Table 6. Vibrational frequencies of armchair SLGS in GHz - Cantilevered boundary

condition.

Index and

Width (Å)

Length (Å) ω1 ω2 ω3 ω4 ω5

41.21 24.18 149.23 156.26 267.23 416.07

83.83 6.72 37.14 67.35 74.23 102.89

(11,11) 126.46 3.63 17.02 29.88 46.14 48.69

12.31 169.08 2.50 10.08 16.82 26.42 36.25

211.71 2.04 7.06 10.81 17.54 28.85

41.21 24.06 118.14 149.10 353.65 387.94

83.83 6.82 37.24 55.23 92.43 102.87

(15,15) 126.46 3.62 16.98 36.00 41.29 46.08

17.23 169.08 2.50 10.02 23.26 26.35 26.76

211.71 1.29 6.03 14.86 16.47 21.08

41.21 23.96 96.16 148.95 330.70 413.55

83.83 6.73 37.20 43.58 102.76 116.43

(19,19) 126.46 3.59 16.90 28.47 45.93 52.51

22.15 169.08 1.91 9.04 21.27 25.46 29.60

211.71 1.69 6.82 16.53 17.27 19.03

5. Conclusions

The vibrational properties zigzag and armchair single wall graphene sheets (SLGS) are

studied. A molecular mechanics based approach is used to estimate the frequencies. We

used the UFF model, wherein the force field parameters are estimated using general

rules based only on the element, its hybridization, and its connectivity. Two types of

boundary conditions are considered, namely, cantilevered and bridged. First five Natural

frequencies are calculated for three zigzag, namely, (10,0), (14,0) and (18,0) and three

armchair, namely, (11,11), (15,15) and (19,19) SLGS. The natural frequencies of SLGS

decrease with length but they are generally insensitive to the atomic structure. Results

obtained from the molecular mechanics approach are compared with the same obtained

using the continuum plate theory. The continuum mechanics results in general tend to

overestimate the natural frequencies. The two approach agree more for the cantilevered

boundary condition compared to the bridged boundary condition. The results obtained

in the paper may be useful for the design and analysis of vibrating SLGS based NEMS

and sensor devices.
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Fig. 7. Bridged boundary condition - vibrational frequencies of the zigzag SLGS

(10,0) for the second and third bending mode. Molecular mechanics results and

continuum mechanics results are compared for different values of the length.
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(a) Frequency of the second bending mode.

20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fr
eq

ue
nc

y 
(G

H
z)

Length (Å)
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