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Abstract The elastic - full plastic loading curve is for all materials sufficient to explain the 

strength of beams and beam columns loaded by bending and compression. This theory is 

extended for the influence of shear stress, and it is shown to be the only way to explain the 

combined bending-shear strength from test results. Also, the in the past derived bearing 

strength theory is extended here for bracing action. It will be shown for continuous beams as 

example, that besides moment redistribution by plastic flow in bending, a plastic shear flow 

mechanism exists that is also able to cause full moment redistribution. The derivations lead 

to requirements for the design rules and show how the shear stress may reduce the ultimate 

bending capacity.  

 

Herleitung der Scherfestigkeit von Durchlaufträgern 
 
Zusammenfassung Die bi-lineare elastisch-plastische Arbeitslinie reicht bei allen 

Materialien aus, um die Festigkeit von Balken und Stützen unter Biege- und Druckbelastung 

zu beschreiben. Diese Theorie wird hier um den Einfluss der Scherspannung erweitert, und 

es wird gezeigt, dass nur auf diese Weise die in Versuchen ermittelte, kombinierte Biege-

Scherfestigkeit bestimmt werden kann. Des Weiteren wird die herkömmliche Traglasttheorie 

für den Fall der Aussteifung erweitert. Am Beispiel des Durchlaufträgers wird gezeigt, dass 

neben der Momentenumlagerung durch plastisches Fließen infolge Biegung auch ein 

plastisches Fließen infolge Schubs existiert, das ebenfalls zu einer vollständigen 

Momentenumlagerung führen kann. Aus den Herleitungen ergeben sich Anforderungen an 

die Bemessungsregeln, und sie zeigen, wie die Scherspannung die Biegetragfähigkeit 

reduzieren kann. 

____________________________________________________________________ 

 

 

1  Introduction 
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Because of the renewed attention to the bearing and shear strength of beams, leading to 

new proposals for the Eurocode, that should not be based on empirical rules, a theoretical 

analysis, explaining the test results, is necessary as real basis for the design rules. As 

continuation on the theoretical explanation of the bearing strengths of locally loaded blocks in 

van der Put (2008) and the bracing action in van der Put (1991), the theory is extended here, 

based on the data of beams loaded close to the supports (Vermeijden 1968) by showing that 

besides the ultimate compression strength by confined dilatation, the shear strength is 

determining for this mechanism. Thus, by adequate dimensions of the bearing plates, the 

shear strength is determining.  

Based on the elastic-plastic beam theory, that was extended for the influence of normal 

force and shear in van der Put (1991), the apparently contradictory test results by Leicester 

and Young (1991) of the shear- and bending strengths of beams and continuous beams 

could be explained. It appears that the usually applied secant modulus approach according 

to the theory of elasticity is not able to explain the data by Leicester and Young (1991) and 

Vermeijden (1968), nor to give the right stress distribution in two span beams, 

underestimating the bearing capacity by a factor of 2/3, in Vermeijden (1968), while the 

elastic-plastic beam theory according to Fig. 1 gives a very precise description of the data 

and the determining shear- and bending strengths. These derivations, confirmed by the tests, 

lead to the proper requirements for design rules for the Codes, given here in the conclusions.  

 

2  Shear and bending strengths of beams  

 

When there is plastic flow in compression, shear only can be carried in the elastic region. It 

has been shown before that perfect linear elastic-plastic behaviour, leading to this simple 

shear stress distribution, given in Fig. 1, is a good approach, according to the equilibrium 

method, to model plastic deformation with respect to the theoretical one given in van de 

Kuilen (1991), where the exact tanh-approach is used for the stresses in the compression 

zone.  

 
Fig. 1: Bending and shear stresses. 
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Abb.1: Biege- und Scherspannungen. 

Accordingly, Fig. 1 is for bending of a rectangular beam of width b and height h, loaded by a 

moment M and a shear force V:  

( )c t
M h h x

h x
b 2 2 3

σ +σ −⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
                             (1) 

The resultant normal force is zero, thus: 

t c

c

x
1

2 h

σ +σ ⎛ ⎞σ = −⎜ ⎟
⎝ ⎠

                                                (2) 

Elimination of x/h from Eq. (1) and (2) gives for 
m

σ  the quasi linear bending stress: 

 t c

m c2

t c

36M

bh

σ −σ
σ = = σ

σ +σ

           (3) 

The total shear force V is:  

v

2 x
V ' bh 1

3 h

⎛ ⎞= σ −⎜ ⎟
⎝ ⎠

,  

or by substitution of 1 - x/h from Eq. (2): 

c v

v

c t

2 '3V

2bh

σ σ
σ = =

σ +σ

   (4)  

where 
c

σ , 
t

σ , 
v
'σ  are the compression, tension and shear stress, respectively. The design 

shear stress 
v

σ  is the quasi linear elastic shear stress divided by the total height “h”, 

following from a linear elastic stress calculation. Thus, 
v

σ  and the design bending stress 
m

σ  

follow from the secant modulus up to the ultimate load point.  

At bending failure is: 
c c

fσ = , or 
t t

fσ =  and the design 
m m

fσ = . At shear failure is: 

v v
' f 'σ =  and the design 

v v
fσ = . 

For failure in bending and shear, there is a critical value of the shear slenderness 

u u
M /V h  where the ultimate bending strength is reached at the same time as the ultimate 

shear stress. In the test of Fig. 3 is, according to Eq.(3) and (4): 

u c t c m

u v v

M a 3f f f
3

V h h 8f ' 4f

−

= = = =   (5) 

 

The value 3 as critical value mostly applies as mean value for common dimensions and 

strength classes. At this critical value the strengths 
m
f  according to Fig. 2 (bending failure) 

and Fig. 3 (shear - bending failure at a/h = 3) are equal. However, this is not the case for 
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high grades as discussed below. The meaning of a/h is given in Fig. 2. Above the critical 

value of a/h, shear is not determining and there is bending failure with 
c c

fσ =  and 
t t

fσ = . 

Below this value, rotation and bending strength is reduced by the high shear force reducing 

the thickness of the plastic zone x until x = 0 (at M/Vh ≈ 1 to 1.5, depending on the grade). 

Then the maximal possible shear strength is reached: 
u v

V 0.67f ' bh=  
v

0.67f bh= , at a 

moment: 2 2

u m c
M f bh / 6 f bh / 6= =   (

t c
f f>  because 

t
f  is the bending tensile strength that, 

by the volume effect, is about 1.7 times the real tensile strength). For high grades thus a 

different critical a/h applies. This can be explained by the modified beam theory given here. 

This was shown in a review of the preliminary publication by Leicester and Young (1991) but 

not applied by the author in its final version. It is therefore published in van der Put (1991) of 

the same meeting.  

In Leicester and Young (1991) the following supposed contradictions were given 

regarding the strengths of high quality wood, LVL (laminated veneer lumber): 

- Fig. 3 and 4 show a lower bending strength than Fig. 2, although the opposite is expected 

because of the volume effect.  

- The shear strength of 7.6 MPa of Fig. 4 is about 40% higher than the shear strength of 5.4 

MPa of the standard shear test of Fig. 3, while the bending strength is lower.  

 

Fig. 2: Test specimen for the bending strength, L/h = 18, sample size 50, 

 
m
f 77.8=  MPa with 

v
σ = 3.2 MPa (< 

s
f , no shear failures). 

Abb. 2: Proben für die Biegefestigkeit, L/h = 18, Probenanzahl 50 
               

m
f 77.8=  MPa  mit 

v
σ = 3,2 MPa (< 

s
f , keine Scherbrüche). 

 

 

Fig. 3: Test specimen for the shear strength, L/h = 6, sample size 70,  

 
m

64.8σ =  MPa and 
v
f 5.4=  MPa (only shear failures). 

Abb. 3: Proben für die Scherfestigkeit, L/h = 6, Probenanzahl 70, 
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m

64.8σ =  MPa und 
v
f 5.4=  MPa (nur Scherbrüche). 

 

 

Fig. 4: Australian test specimen for the shear strength, L/h = 6, sample size 14,  

 
m
f 50.0=  MPa with 

v
σ = 7.6 MPa (2 specimens failed in shear). 

Abb. 4: Australische Proben für Scherfestigkeit, L/h = 6, Probenanzahl 14, 
               

m
f 50.0=  MPa mit 

v
σ = 7,6 MPa ( Bei 2 Proben Brüche unter Scherlast). 

 

 

To explain this, first the elastic moment distribution of the beam on 3 supports, occurring at 

first flow, is determined. A cut of the beam at the middle support at point B (Fig. 4) will give a 

rotation at B by the loading P of: 2
PL / 16EIϕ = . Only the non-symmetrical shear strain due 

to 
B

M /L  will also give a rotation at B. The moment at support B to close the gap gives a 

contrary rotation of 
B

' M L / 3EIϕ = . However, the shear deformation caused by the reaction 

B
M /L  of this moment also closes the gap by: 

B
/G M /LbhGγ = τ ≈ . Thus:  

2

B B
PL M M L

16EI LbhG 3EI
ϕ− γ = − =   or:   

B 2

2

3PL 1
M

16 4h
1

L

= ⋅

+

  (6) 

With: h = 45 mm; L =270  mm follows that 
B

3PL
M 0.9

16
= ⋅ . Consequently, for σm, 0.9·50 = 45 

MPa is found.  

 

It now appears that the field- and support moments are equal and also that 

m c
f 45MPaσ ≈ ≈  . The equality of field- and support moment is verified by a finite element 

calculation for this case in van de Kuilen and Leijten (2001). 

The shear slenderness: M/Vh of the field moment at the side of the free support is: M/Vh = 

L/2h = 3. This is not determining because at the mid-support is: B

B

M L
1.5

V h 4h
≈ ≈  

(
m v
f / 4f 45 /(4 7.6) 1.5= = ⋅ ≈ ) 
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In general, the shear slenderness M/Vh can be written according to Eq. (5) and (3), with α 

being the ratio between tensile stress and compression strength t

c
f

σ

α = :  

cm

v v

fM f 3 1

Vh 4f 1 4f

α −
= = ⋅

α +

,     or at Point B:     
3 1 45

1.5
1 4 7.6

α −
= ⋅

α + ⋅

     giving:    α  ≈ 1,  

showing that there is just no plastic flow and indicating that the maximal bending stress is: 

m c
f 45 MPaσ = =  and the maximal shear stress is: 

v v
f f ' 7.6= =  MPa. 

For Fig. 3 now applies: M/Vh = L/2h = 3 and 
v

f 5.4 MPa=  or: 

3 1 45
3

1 4 5.4

α −
= ⋅

α + ⋅

    or    α =  1.56,     giving a bending strength of: 

m

45 (3 1.56 1)
64.9 MPa

(1 1.56)

⋅ ⋅ −
σ = =

+

,  

in agreement with the measured value of 64.8 MPa.  

The bending strength of the bending test of Fig. 2 is: 
m
f =  77.8 MPa. Thus:  

3 1
77.8 45

1

α −
= ⋅

α +

    or   α =  2.15 

as is common for high quality wood (van der Put 1991). The maximal shear stress of 7.6 

MPa occurs at the neutral line at point B. For shear failure at plastic flow in compression, as 

in Fig. 2, the maximal shear stress is combined with a tension stress and will be, also due to 

the volume effect, about 0.9 times lower. Thus: 
v v

f ' 0.9 f 0.9 7.6 6.8= ⋅ = ⋅ =   MPa. This 

means that the real design shear strength at the maximal bending strength will be:  

v

v,m

2f ' 2 6.8
f 4.3MPa

1 1 2.15

⋅
= = =  

α + +

,  (7) 

that will occur in the test at: a/h = (3·2.15 - 1)·45/(3.15·4·4.3) = 4.5.  

Thus for LVL the bending test can be repeated with the load at a distance of 203 mm from 

the support to obtain the shear strength at ultimate bending without bending strength 

reduction.  

In this comparison of different beams and loading cases, it is assumed that corrections 

for volume effect for bending, as for clear wood, can be ignored for LVL. If there is any effect, 

it will be included in the values of α . The same is to be expected for the tropical hard woods 

in van de Kuilen and Leijten (2001). The measured shear strength of 9.1 2
N/mm  of the 

web of the Spruce I-profile in van de Kuilen and Leijten 2001) is, as can be expected from 

Eq.(9): 
v v
f 19.20 3.03logA= − , or 

v
f 19.20 3.03log(110x20) 9.1= − =  2

N / mm , where 
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v
A  is the area of the web.  

Because in Fig. 4 the field and support moments are almost equal and 
B

M  is equal to the 

linear elastic ultimate moment due to the high shear loading, this should also be the case for 

the field moment and a brittle failure in bending is to be expected. This is not reported in 

Leicester and Young (1991), and from the tests by Vermeijden (1968) it follows that by the 

high shear stress, there is stress redistribution and a flow in shear, making the gap between 

the beams AB and CB, to be closed by 
B

M , much smaller, reducing 
B

M  and providing 

compatibility for flow of the field bending moments in the ultimate state.  

 

 

3  Shear strength of close to the support loaded two span beams  

 

3.1  Test results  

In Vermeijden (1968), two series of tests have been done for concrete formwork according to 

Fig. 5 and 6 with variable values of “a”. Here, the calculated 
B B

M /V h  values range from 0.9 

to 2.6, giving an extension around the shear slenderness value of 1.5 of Fig. 4. The test-

results are given in Table 1. The design stresses follow from: 

B B
mB v c,902

s

6M 1.5V R
 ;   ;  

bh Abh
σ = σ = σ =   

For Series A, the reactions R, shear forces V and moments M are: 

⎛ ⎞
= = − + =⎜ ⎟

⎝ ⎠

2

A C A2

3a 3a
R R P 1 V

2L 2L
 

⎛ ⎞
= + − =⎜ ⎟⎜ ⎟

⎝ ⎠

2

B B2

3a 3a
R 2P 1 2V

2L 2L

 

= − −B

a
M 1.5Pa(1 )

L
 

⎛ ⎞
= = − +⎜ ⎟

⎝ ⎠

2

P D 2

3a 3a
M M Pa 1

2L 2L
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Fig. 5: Series A, a = 8, 12, 16 and 24 cm; L/h = 11.6, sample size 4x5 = 20  

 bxh = 59x78 mm2. 

Abb. 5: Prüfreihe A, a = 8, 12, 16 und 24 cm; L/h = 11,6, Probenanzahl 4x5 = 20  
 bxh = 59x78 mm2. 

 

 

 

Fig. 6: Series B, a = 8, 12, 14, 16, 24 cm; L/h = 10.3, sample size 5x4 = 20  

 bxh = 59x78 mm2. 

Abb. 6: Prüfreihe B, a = 8, 12, 14, 16, 24 cm; L/h = 10,3,  
Probengröße 5x4 = 20; bxh = 59x78 mm2. 

 

 

The failure modes of Series A are as follows:  

At a = 80 mm, failure occurs by compression perpendicular to the grain after a huge 

deformation (flow) at the loading points and in one of the 5 beams also by shear and bending 

failure at point B.  

At a = 120 mm, there also is a strong deformation at the loading points. Failure of 4 of the 5 

beams occurs by bending in the field at knots near P and in one case also at point B. One 

beam failed by shear. 

At a = 160 mm, the same occurred as at a = 120 mm.  

At a = 240 mm, all 5 beams failed by bending in the field and 2 beams also by failures at the 

middle support.  

For Series B, the reactions R, shear forces V and moments M are: 
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2

A B A2

a a
R R P P 1.5 V

2LL

⎛ ⎞⎛ ⎞= = + − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

B B2

a a a
R 2P 1 1 2V

L L 2L

⎛ ⎞⎛ ⎞= − + − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

B

a a
M Pa 1 1

L 2L

⎛ ⎞⎛ ⎞= − − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

2

P D

a a a
M M P 3 1

2L L L

⎛ ⎞⎛ ⎞⎛ ⎞= = − −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

B B
mB v c,902

s

6M 1.5V R
; ;

bh Abh
σ = σ = σ = ; 

s
A = 58.7x100 mm2. 

 

Table 1:  Mean values of the strengths in MPa; 
max
P  in kN. 

Tabelle 1: Durchschnittswerte der Festigkeiten in MPa; 
max
P  in kN. 

  a 

 cm 

 

 

c,90
σ   

 

 

v
σ  

At B 

m,B
σ  

At P 

m,P
σ  

mean 

max
P  

 

  8  

12  

16 

24 

8.2  

7.1 

6.6 

5.4  

8.0 

6.9 

6.3 

5.2  

40.3 

46.9 

52.2 

54.9 

26.0 

29.8 

33.0  

35.2 

21.45 

17.70 

15.95 

12.20 

Series A 

4x5 specimens 

  8  

12  

14  

16  

24 

7.0 

7.4 

7.0 

6.8 

6.0 

6.9 

7.3 

6.8 

6.7 

5.8 

24.1 

36.7  

37.7 

42.1 

48.7 

  3.7  

  8.5  

10.8 

13.2 

23.2 

21.15 

22.85 

21.55 

21.45 

20.00 

Series B 

5x4 specimens 

Lowest Dutch (1960) strength class. Moisture content 20%. Underlined values 

means: determining failure value.  

Besides determining bending failures at a = 24 cm, also failure by compression 

perpendicular to the grain was determining at a = 8 cm, while failure by shear 

combined with compression and bending occurred in all other cases.  

 

The failure modes of Series B are as follows: 

At a = 80 mm, failure occurred by compression, pressing the wood fully together. Secondary 
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bending failure also occurred in 2 beams after strong deformation and cut through of the 

fibers by the steel plates of the middle support, point B.  

At a = 120 mm, there is also a strong deformation at the support and loading points. Failure 

occurred by shear and in one case also by secondary bending failure at B.  

At a = 140 mm, bending failure occurred at the middle support. 

At a = 160 mm, bending failure occurred at B in 3 of the 4 beams, in one case combined with 

shear failure. Shear failure alone occurred in 1 of the 4 beams.  

At a = 240 mm, all beams failed by bending at point B. In one beam also at point P.  

 

3.2  Discussion of the test results 

In Table 1 of Series A, at a = 240 mm, all beams failed by bending in the field although the 

bending moment at support B is 1.6 times higher. This cannot be explained by a volume 

effect or a round-off of the moment-peaks by the fact that the reaction is not a point load, 

because then the strength should also strongly increase with smaller values of a/h, yet the 

contrary is occurring. According to Larsen (1975), the volume effect for bending is: 

 
0.11

m

m,0

f 200
c

f h

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

, where “c” ranges from c = 1.05 when L/h = 35 to  

c = 1.15 when L/h = 7.  

Consequently: 

0.0565 0.11

0m

m,0

Lf 200

f L h

⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.  

For equal beam depths, the determining strength ratio by the volume effect thus is: 

0.0565 0.0565

B

P

M L a / 2 80 12
1.1

M a / 2 12

− −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

, while the round-off effect of 
B

M  is of the 

same order: 0.9, showing the total influence of these effects to be negligible and as a result, 

there should be a strong moment redistribution by plasticity.  

Flow in compression perpendicular to the grain in the oblique bracing direction, also 

causes flow in shear deformation of the beams cross section at B. This strongly reduces the 

moment at the support 
B

M . This shear deformation at the B cross section also occurred at 

a/h = 1, and for a higher value of a = 160 mm, even a pure shear mechanism did occur. It 

can be concluded that there is clear moment redistribution, reducing 
B

M  which at the end 

will be equal to the field moment as shown by the failure of both moments in e.g. beam 8a 

and 10a. The calculation of the real failure stresses should therefore not be based on linear 
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elastic design values, but on a mechanism according to the theory of plasticity as will be 

discussed later.  

 

3.3  Explanation of the measured shear strength. 

The shear strength of a large number of tests can e.g. be found in Larsen (1975) and the 

regression line of all tests of shear in bending, shear in torsion and block shear is:  

v v
f 20.95 3.35logA= − ,  (8) 

where 
v
f  is in MPa and 

v
A  is the sheared area in 2mm .  

Omitting the block tests, the regression line is: 

v v
f 19.20 3.03logA= −   (9) 

For the tests by Vermeijden (1968), the values of 
v

A  = b x a are: for b = 58.7 mm and a = 

80, 120, 140, 160 and 240 mm, given in Table 2. For the median value of 
v

A  = 58.7 x 140 = 

8218 mm2, the reference value for the shear strength becomes: 

v,0
f 20.95 3.35log8218 7.8MPa= − =  ,  (10)  

and Eq.(8) can be written: 

v v v
v v,0

A A A
f f 3.35log 3.35 0.434 ln 1.455ln

8218 8218 8218

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = − ⋅ = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

,  

v v

v,0

f A
1 0.186 ln

f 8218

⎛ ⎞= − ⋅ ⎜ ⎟
⎝ ⎠

  

According to the theory of the Appendix the power law approximation gives: 

v v
A 8218

v,0

f A
n [ ( ) / ( )] 0.186

f 8218
=

= ∂ ∂ = − , and the last equation becomes: 

0.186

v v

v,0

f A

f 8218

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

The other regression line Eq. (9) gives n = 0.18 and 
v,0
f  = 7.3 MPa. For the data by 

Vermeijden (1968), 
v,0
f  is still lower, 

v,0
f  = 6.8 MPa, probably because only bending with 

shear is involved and due to the higher moisture content and lower grade.  

The power law representation of the regression line gives a meaning to the data to represent 

the volume effect according to the Weibull weakest link theory. The variation coefficient for 

the occurring of failure determining disturbances is 1.2·0.186 = 0.22.  

Because 
v
f  is not very sensitive for the value of “n”, a rounded value of n = 0.2 can be 

chosen. This is the same value as given in Eurocode 5 for larger dimensions. This value 
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leads to:  

−

⎛ ⎞
= ⋅⎜ ⎟

⎝ ⎠

0.2

v
v v,0

A
f f

8218
,  (11) 

giving a precise fit in Table 2 and an explanation of the measured strength values to be 

governed by shear failure in probably all cases.  

 

Table 2: Theoretically extrapolated first flow values of 
v
f  in MPa. 

Tabelle 2: Theoretisch hochgerechnete erste Fließwerte von 
v
f  in MPa. 

 

  a 

 cm 

 

 

v
A b a= ⋅

2mm  

 

 

Theory 

Eq.(11) 

  
v
f  

Measure-

ments 

Series A+B 

  
v
f  

  8  

12  

14  

16  

24 

  4696  

  7044    

  8218  

  9392 

14088 

7.6 

7.0 

6.8 

6.6 

6.1 

7.5 

7.1 

6.8 

6.5 

(5.5)  

 

 

3.4  Determination of the bending strength. 

When shear is determining, the pure shear flow mechanism over length “a” of the beam 

requires two equal opposite ultimate shear forces 
U

V and thus also two equal opposite end 

moments of 2
U

V a / . Thus for Series B, the field moment 
P

M  is equal to 
B

M , the moment 

at the support as given in Fig. 7. For Series A, this also is the case due to the bending flow 

mechanisms which start earlier before shear flow. It can be seen in Table 3 for Series A that 

m
σ  reaches the bending strength.  

According to Fig. 7 is, for equal moments: B
D B

M (L a)
M M

L

−

− =  or:  

B

B

a M (L a)
P a 1 M

L L

−⎛ ⎞⋅ ⋅ − − =⎜ ⎟
⎝ ⎠

 or:  

 



EJWWP473_source 

 13

 

Fig. 7: Equal field and support moments 
P B

M M=  of Series B. 

 Abb. 7: Gleiche Feld- und Auflagenmomente 
P B

M M=  von Prüfreihe B. 

 

Table 3: Measured strength values at (shear-) flow.  

Tabelle 3: Gemessene Festigkeitswerte bei Scherfließen. 
 

  a 

 mm 

 

 

M/Vh   

 

P 

kN 

m,B
σ  

m,P
σ  

MPa 

v
σ  

MPa 

c,90
σ

MPa 

 

  80  

120  

160 

240 

 0.9 

 1.2 

 1.5 

 2.0 

21.45 

17.70 

15.95 

12.20 

 26.3 

 31.3 

 36.2 

 38.6 

 7.6 

 6.5 

 6.0 

 4.8  

 7.9 

 6.7 

 6.2 

 5.0  

Series A 

  80  

120  

140  

160  

240 

 0.5 

 0.8 

 0.9 

 1.0 

 1.5 

21.15 

22.85 

21.55 

21.45 

20.00 

 13.4 

 21.1 

 22.8 

 25.5 

 33.0 

 6.5 

 6.8 

 6.35

 6.2 

 5.4  

 6.8 

 7.1 

 6.6 

 6.5 

 5.6  

Series B 

 

B

1 a / L
M Pa

2 a / L

−

=

−

  (12)  

B

B

L a M 1 a / L
V P P

L L 1 a / 2L

− −
= + =

−

  (13) 

B

B

M a

V h 2h
=  (14) 
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The same applies for Series A, Fig. 8, leading for the highest shear force to: 

B

Pa
M

1 a / L
=

+

,        
B

1 2a / L
V P

1 a / L

+
=

+

,          B

B

M a 1

V h h 1 2a / L
= ⋅

+

  (15) 

These equations result in the strength values given in Table 3. 

 

 

Fig. 8: Equal field and support moments 
P B

M M=  of Series A.  

Abb. 8: Gleiche Feld und Auflagenmomente 
P B

M M=  von Prüfreihe A. 

 

 

The shear strength according to Eq. (11), adapted to the strength of 6.35 MPa at a = 140mm, 

becomes: 

0.2

v

v

A
f 6.35

8218

−

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠

  (16) 

and is given in Table 4. 

 

Table 4: Theoretical flow values of 
v
f  in MPa. 

Tabelle 4: Theoretische Fließwerte von 
v
f  in MPa. 

 

  a 

 mm 

 

 

v
A b a= ⋅

2mm  

 

Theory 

 

Eq.(16) 

  
v
f  

Measure-

ments 

Series A 

  
v
f  

Measure-

ments 

Series B 

  
v
f  

Measure-

ments 

mean A +B 

  
v
f  

  80  

120  

140  

  4696  

  7044    

  8218  

  7.1 

  6.6 

  6.4 

  7.6 

  6.5 

   

 (6.5) 

  6.8 

  6.4 

  7.1 

  6.6 

  6.4 
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160  

240 

  9392 

14088 

  6.2 

  5.7 

  6.0 

  4.8 

  6.2 

  5.4 

  6.1 

  5.1 

 

The data of 
v
f  suggest the same cause and type of shear failure in Series A and B shown in 

Table 2 and Table 4. The calculated mean value of the shear strength of both series appears 

to follow the theoretical Eq. (16) precisely.  

The increase of the bending strength 
m
f  is explained by the beam theory (see Fig. 1 and 

Equations (1) to (5)) showing a decrease of the ultimate shear force with the increase of 

M/Vh and an increase of the bending rotation with a coinciding increase of the bending 

moment. Series B, at a = 240 mm, did show only bending failure, while for lower values of “a” 

combined bending and shear failures occurred. The boundary of this combined failure thus 

lies here at a value of a = 160 mm. This means for Series B of Table 3 at a = 160 mm, that 

1α = , and 
m c
f f 25.5= =  MPa and 

v
f =

v
f ' =  6.2 MPa. For a = 240 mm then, the ultimate 

combined shear-bending strength according to Eq.(3) is: 

m c

(3 1)
f f 33

( 1)

α −
= ⋅ =

α +

 
(3 1)

25.5
( 1)

α −
= ⋅

α +

, or: 1.34α = . Consequently: 

v

v

2f ' 2 6.2
f 5.3 MPa

( 1) 2.34

⋅
= = =

α +

, which agrees with the measured value of 5.4 MPa in Table 

3.  

The value of t c t ,0 c1.34 f / f 1.7 f / fα = = = ⋅ , gives 
t ,0 c
f / f 1.34 / 1.7 0.8= = . Thus the tensile 

strength 
t ,0
f  is 0.8 times the compression strength. The factor 1.7 is due to the volume effect 

of the bending tensile strength 
t
f  with respect to the pure tensile strength 

t ,0
f . 

Below a slenderness ratio of M/Vh = 1, there is no flow in bending and there is a linear 

elastic bending stress state: 
m m

fσ <  ; 
m,t m,c

σ = σ , or 1α = . Thus the point where 
m c
f f=  

and 
v v
f f '=  and 1α = , occurs at M/Vh = 1 in Series B. For Series A, this point is found by 

interpolation in Table 3 between a = 80 mm and 120 mm, where M/Vh = 0.9 to 1.2, giving 

m c
f f= =  28 MPa. With this value of 

c
f , the values of 

m c
f / f  for other values of “a” can be 

calculated. According to Eq. (17), based on Eq. (3), the values of α  are known and are given 

in Table 5. 

 

Table 5: Theoretical strength values of Series A with 
v
f  in MPa. 
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Tabelle 5: Theoretische Festigkeitswerte von Testserie A mit 
v
f  in MPa. 

 

  a 

 mm 

 

 

v
A b a= ⋅

2
mm  

 

Theory 

Eq.(18) 

  
v

f '  

 

M/Vh 

m,B
f  

m,P
f  

 

 

Theory 

  α  

Eq.(17) 

Theory 

Eq.(19)

   
v
f  

 

Measure-

ments 

   
v
f  

 

  80  

120  

160  

240 

  4696  

  7044    

  9392 

14088 

  7.6 

  7.0 

  6.6 

  6.1 

  0.9 

  1.2 

  1.5 

  2.0 

(26.3)

 31.3 

 36.2 

 38.6 

~ 1 

   1.13 

   1.34 

   1.47 

  7.6 

  6.6 

  5.7 

  4.9 

  7.6 

  6.5 

  6.0 

  4.8 

 

m c

m c

(1 f / f )

(3 f / f )

+
α =

−

  (17) 

An adaptation of 
v,0

f '  of Eq. (16), to give the value of 7.6 MPa at a = 80 mm, is: 

0.2

v v
f ' 6.8 (A / 8218)

−

= ⋅   (18) 

This adaptation of 
v
f  for the stronger Series A is, according to Eq. (4) or Eq. (7):  

v

v

2f '
f

( 1)
=

α +

  (19)  

Based on the data base at that time, the bending strength at 20% m.c. is 35.4 MPa for 

ungraded wood at commercial sizes applying for beams of at least twice the height of the test 

specimens. Thus, including the volume effect, the bending strength here is:  

(2)0.11·35.4 = 1.08·35.4 = 38.2 MPa. According to Table 5, the maximal bending strength is 

thus reached at a = 240 mm, at M/Vh = 2. 

 

 

4  Bracing behaviour for small values of a/h 

 

Generally, the shear strength in combination with the volume effect determines the load 

carrying capacity for beams loaded close to the support. However, this bearing capacity may 

be reduced further when the compression strength perpendicular to the grain is made 

determining as well. As mentioned in Table 1, at a = 80 mm, failure by compression 

perpendicular to the grain starts to be determining for the strength at the chosen dimensions 

of the bearing plate at the support. Compression perpendicular to the grain shows no volume 

effect. The by the volume effect increasing shearing strength is cut-off for values of “a” 
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smaller than 80 mm. This cut-off also applies for bearing by one or two dowel joints. It is 

shown for many cases, for instance in van der Put and Leijten (2000) that the spreading 

model also applies for a load on a beam by a dowel.  

The compression strength of the inclined bracing of Fig. 9 follows from the bearing strength, 

discussed in van der Put (2008).  

This bearing strength is: 

s, s

c

c, c,90

f3H / cos L / cos 3H L
k c 0.5 1.1 0.5

2s / cos 2s f

φ

φ

σ φ+ φ +
= = + = ⋅ + =
σ φ

  (20) 

thus it is the same as for not inclined bracing.  

The equality: s, c ,/φ φσ σ  
s c,90
f / f=  follows from the maximum stress criterion perpendicular to 

the grain, that is a safe lower bound of the strength for not too high angles φ because it does 

not contain the influence of hardening.  

With L = 60 mm and s = 50 mm of the loading plates and H = 80 mm, is: 

c

3 80 60
k 1.1 0.5 2.1

2 50

⋅ +

= ⋅ + =

⋅

  (21) 

Thus 
c,90
f 7.3 / 2.1 3.5= =  MPa as mean value of Table 3 of Series A and B, at the 

determining value of a = 80 mm. This is comparable with the c,90f  values by van der Put 

(2008).  

Fig. 9: Bearing or bracing mechanism. 

Abb. 9: Tragfähigkeits- oder Befestigungsmechanismus. 
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Fig. 10: No overlap of bearing plates at a = 80 mm. 

Abb. 10: Kein Überlappen von Auflageplatten bei a = 80 mm. 

 

Because in this investigation the 
c,90

σ  stresses decrease when “a” increases from a = 80 to 

a = 240 mm, exactly the same way as the shear strength 
v
f , the shear strength is 

determining and not the compression strength perpendicular to the grain of the bracing 

action. This should be the case up to the situation of Fig. 10, because for smaller values of a 

< 80 mm, not the whole load R/2 is transmitted by shear. Thus half the length of the central 

bearing plate should be: 
⋅

= ⋅ = ⋅ ⋅ =

v

s

f h
l 0.67 0.67 7.0 80 / 7.3 50 mm

f
, as is applied. Here 

v
f  

= 7 MPa is the shear strength at a = 80 mm, the mean value at a = 80 mm in Table 4. In 

general, for the bearing length applies: l = 0.64·h.  

For a middle support two times this value it thus applies,  

l = 1.27·h.  (22)  

Because the spreading for combined shear failure is not higher than for compression failure 

in this case, this rule should also apply for design values of the strengths.  

 

 

5  Biaxial failure criterion  

 

The design rules for bearing blocks (van der Put 2008) are based on flow and hardening in 

triaxial conditions by the confined dilatation. This confinement often depends on the friction 

between wood and the steel bearing plate and not on structural means. Maybe therefore 
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these rules are not used for the verification of combined stresses at the supports and loading 

points of beams. Current failure criteria in design codes, such as Eurocode 5 for combined 

stresses are based on test results of biaxial and uniaxial tests. For combined stresses in 

beams, the tensor-polynomial failure criterion by van der Put (1993) then should be applied. 

It follows from van der Put (1993) that the bending compression strength along the grain 

increases by compression perpendicular up to a maximum and then decreases when 

compression perpendicular to grain is further increased. For this reason, there still is no 

decrease of the bending compression strength when the compression perpendicular is about 

half of the uniaxial compression strength c,90f /2 (in the weakest plane). As long as the multi-

axial stress approach is not used, the compression stress perpendicular to the grain at a 

middle support should safely be limited to c,90f / 2  in order to maintain the ultimate 

compression stress of the bending strength of the beam. For end-supports, c,90f  should 

apply. This leads to l/h = 1.33 for end-supports and 2l/h = 5.33 for the middle support, which 

is fully unrealistic. This means that, by applying much smaller values or l/h in practice and in 

the Codes, the triaxial compression strength and hardening discussed above have already 

been accepted.  

 

 

6  Conclusion 

 

- The elastic-plastic beam theory is extended for the influence of shear force (Fig.1), 

providing the means to give the definition of the combined bending-shear strength.  

- Based on this extended beam theory, the apparent contradictory LVL test results (Leicester 

and Young 1991) of the shear- and bending strengths of beams and continuous beams and 

tests on two span beams (Vermeijden 1968) are precisely explained.  

- It appears that the linear secant modulus theory of elasticity is not able to explain the 

strength data by Leicester and Young (1991) and Vermeijden (1968), nor is it able to give the 

correct stress distribution in two span beams. It underestimates the bearing capacity of the 

tested beams by Vermeijden (1968) by a factor of 2/3. The bending failure of Series “A” 

occurred in the field although the bending moment at the middle support is 1.6 times higher 

than the field moment, according to the theory of elasticity. Thus it is shown that there is a 

moment redistribution by plastic flow by a strong visible shear flow between loading point and 

middle support.  

- Flow in compression perpendicular to the grain in the oblique bracing direction, at low 
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values of M/Vh, also causes flow in shear deformation at the middle support. The shear 

angle strongly reduces the rotation angle by bending. This strongly reduces the moment at 

this support and causes failure to start in the field, although according to the theory of 

elasticity the field moment is lower by a factor of 1.6 than the moment at the middle support 

(see Table 1). 

- Thus the ultimate moment distribution of continuous beams does not follow the theory of 

elasticity, but the theory of plasticity showing equal field and support moments. For low 

values of M/Vh this is due to a shear flow mechanism over the length of the beam, by equal 

opposite shear forces and moments at the ends.  

- The shear strength can be explained from the regression line of many tests of shear in 

bending, shear in torsion and block shear. This regression line can be transformed to a 

power law form, representing the volume effect according to the Weibull weakest link theory. 

It gives a precise fit of the available data showing the load carrying capacity to be determined 

by the shear strength in all cases (of M/Vh <.3)  

- According to the extended beam theory, there is a critical value of the shear slenderness 

M/Vh (the relative moment-shear force ratio), where the maximal ultimate moment is 

reached, and at the same time as the ultimate shear force is determining. Above this critical 

value, bending alone is determining with the same maximal ultimate moment. Below this 

critical value, the rotation capacity, and thus also the ultimate bending moment, is reduced by 

the shear force, which is then decisive for failure (see Fig. 1).  

- This critical value for the shear slenderness ratio is about M/Vh = 3 to 4.5, depending on 

the wood quality. This follows from the data by Leicester and Young (1991) while the data by 

Vermeijden (1968) suggest the possibility of an even lower critical value of M/Vh ≈ 2 for lower 

quality grades.  

- For values of M/Vh ≤ 1, there is a linear bending stress distribution over the depth of the 

beam and no plastic flow in bending: 
m m

fσ <  ; 
m,t m,c

σ = σ , or 1α = . The point where 

m c
f f=  and 

v v
f f '=  and 1α =  occurs at M/Vh = 1 in the series by Vermeijden (1968) and is 

1.5 for the high quality laminated veneer lumber by Leicester and Young (1991). 

- As continuation on the theoretical explanation of the bearing strengths of locally loaded 

blocks (van der Put 2008), the bracing model of beams loaded close to the supports (van der 

Put 1991) is extended and verified by tests by Vermeijden (1968).  

- Because the shear strength should be determining and not the compression strength 

perpendicular to the grain by the bracing action, the cut-off of the shear strength should not 

be earlier than in the situation of Fig. 10, when the entire load is transmitted by shear. 
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Therefore, the length of the bearing plate should be: l = 0.64·h at end supports and l = 1.27·h 

at central supports. This prescription is a simple rule for a design standard.  

- For combined stresses, the failure criterion used in the Codes, is based on biaxial and 

uniaxial tests. It follows from van der Put (1993) that there is then no decrease of the bending 

compression strength when the compression perpendicular is about half of the uniaxial 

compression strength c,90f /2 (in the weakest plane). This is not followed by the empirical 

rules of the Codes meaning that the triaxial compression strength is already accepted and 

the local compression strength perpendicular to the grain can be based on Eq. (20).  
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Appendix 
Derivation of the power law 
 
Any function f(x) can always be written in a reduced variable x/x0   

f(x) = ( )1 0
f x / x   



EJWWP473_source 

 22

and can be given in the power of a function:  
1/n n

1 0 1 0
f(x) = f (x/x ) = [{f (x/x )} ]       and expanded into the row:  

f(x)  = 
0

f(x )  + 
  
x − x0

1!
.f '(x0 ) +

(x − x0 )2

2!
.f ''(x0 ) + .......  

giving:  

{ } { }
n n

1/ n 1/ n 10

1 1 1

0 0

x x 1 x. .f (x) f (1) f (1) f '(1) ..... f (1)
x n x

−

⎡ ⎤ ⎛ ⎞−
= + + = ⎜ ⎟⎢ ⎥
⎣ ⎦ ⎝ ⎠

      

when: 1/n 1/n-1

1 1 1
(f (1))  = (f (1)) f '(1)/n⋅       or: 

1 1
n = f '(1)/f (1) ,  

where: 
1 1 0 0

f '(1) = [ f (x/x )/ (x/x )]∂ ∂     for 
0

x x=       and   
1 0
f (1) f(x )= .  

Thus:  
  
f(x) = f(x0 ).

x
x0

   
      

   
      

n

     with   
  
n =

f1 '(1)
f1(1)

=
f '(x0 )
f(x0 )

             (A.1) 

It can be seen from this derivation of the power law, Eq. (A.1), using only the first two 
expanded terms, that the equation only applies in a limited range of x around 

0
x . 

 
 
 
 
 
 
Figure Captions: 

 
Fig. 1    Bending and shear stresses. 
Abb. 1   Biege- und Scherspannungen. 
 
Fig. 2    Test specimen for the bending strength, L/h = 18, sample size 50, 
 

m
f 77.8=  MPa with 

v
σ = 3,.2 MPa (< 

s
f , no shear failures). 

Abb. 2   Proben für die Biegefestigkeit, L/h = 18, Probenanzahl 50, 
               

m
f 77.8=  MPa  mit 

v
σ = 3,2 MPa (< 

s
f , keine Scherbrüche). 

 
Fig. 3    Test specimen for the shear strength, L/h = 6, sample size 70, 
 

m
64.8σ =  MPa and 

v
f 5.4=  MPa (only shear failures). 

Abb. 3   Proben für die Scherfestigkeit, L/h = 6, Probenanzahl 70, 
               

m
64.8σ =  MPa und 

v
f 5.4=  MPa (nur Scherbrüche). 

 
Fig. 4    Australian test specimen for the shear strength, L/h = 6, sample size 14,  
 

m
f 50.0=  MPa with 

v
σ = 7.6 MPa (2 specimens failed in shear). 

Abb. 4   Australische Proben für Scherfestigkeit, L/h = 6, Probenanzahl 14, 
               

m
f 50.0=  MPa mit 

v
σ = 7,6 MPa ( Bei 2 Proben Brüche unter Scherlast). 

 
Fig. 5    Series A, a = 8, 12, 16 and 24 cm; L/h = 11.6, sample size 4x5 = 20  
 bxh = 59x78 mm2. 

Abb. 5   Prüfreihe A, a = 8, 12, 16 und 24 cm; L/h = 11,6, Probenanzahl 4x5 = 20  
 bxh = 59x78 mm2. 
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Fig. 6    Series B, a = 8, 12, 14, 16, 24 cm; L/h = 10.3, sample size 5x4 = 20  
 bxh = 59x78 mm2. 
Abb. 6  Prüfreihe B, a = 8, 12, 14, 16, 24 cm; L/h = 10,3,  

Probengröße 5x4 = 20; bxh = 59x78 mm2. 
 
Fig. 7    Equal field and support moments 

P B
M M=  of Series B. 

Abb. 7   Gleiche Feld- und Auflagenmomente 
P B

M M=  von Prüfreihe B. 

 
Fig. 8     Equal field and support moments 

P B
M M=  of Series A. 

Abb. 8   Gleiche Feld und Auflagenmomente 
P B

M M=  von Prüfreihe A. 

 
Fig. 9     Bearing or bracing mechanism. 
Abb. 9   Tragfähigkeits- oder Befestigungsmechanismus. 
 
  
Fig. 10   Overlap of bearing plates at a = 80 mm. 
Abb. 10  Kein Überlappen bei Auflageplatten bei a = 80 mm. 
 
 
 
 
 
 

 

 
 
 
 
 

 
 
 

 
 

 


