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Abstract

The concentration properties of one random variable may be governed by the
values of another random variable which is concentrated and more easily ana-
lyzed. We present a general concentration inequality to handle such cases and
apply it to the eigenvalues of the Gram matrix for a sample of independent
vectors distributed in the unit ball of a Hilbert space. For large samples the
deviation of the eigenvalues from their mean is shown to scale with the largest
eigenvalue.

Keywords: Concentration inequalities, random matrices

1. Introduction

For all of the following we assume that Ω =
∏n

1 Ωi is some product space
with product probability µ = ⊗n

1µk and that F : Ω → R is some bounded
measurable function. We write EF =

∫
Fdµ. If x ∈ Ω, k ∈ {1, ..., n} and

y ∈ Ωk we use xy,k to denote the vector obtained from x by replacing the k-th
component with y, and we define a function DF : Ω → R by

DF (x) =
∑

k

(
F (x) − inf

y∈Ωk

F (xy,k)
)2

.

The function DF is a local measure of the sensitivity of F to modifications of
its individual arguments. It is shown in (Maurer, 2006) that uniform bounds on
DF lead to exponential tail inequalities for F , and that the upwards deviation
bounds so obtained improve over the results obtained from Talagrand’s convex
distance inequality in many cases. If the function DF is bounded by a constant
multiple of F itself other concentration properties can be deduced, as in the
following result taken from Maurer (2006).

Theorem 1. Suppose that a > 0 and that

DF ≤ aF. (1)
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Then for t > 0

Pr {F − E [F ] ≥ t} ≤ exp
( −t2

2aE [F ] + at

)
,

and, if a ≥ 1 and F − infk F ≤ 1 ∀k, then

Pr {E [F ] − F ≥ t} ≤ exp
( −t2

2aE [F ]

)
.

These results were derived from the entropy method, a technique which has
been developed and refined by Ledoux, Bobkov, Massart, Boucheron, Lugosi,
Rio, Bousquet and others ( see Ledoux (1996), Massart (2000), Boucheron et al
(2003), etc). The entropy method is rooted in the tensorization property of the
entropy and seems to be evolving into a general toolbox to derive concentration
inequalities. Recently Boucheron et al (2009) demonstrated that Theorem 1
above can be used to derive a version of Talagrand’s convex distance inequality.
The authors also weakened the condition a ≥ 1 to a ≥ 1/3 in the lower tail
bound above. Following them we will call a function F weakly self-bounded, if
it satisfies condition (1) above.

In some situations it is not possible to prove weak self-boundedness of F , but
there is another function G which is weakly-self bounded, and DF is bounded
by a constant multiple of G. In this situation one may use the following result,
which is the principal contribution of this paper.

Theorem 2. Suppose that F, G : Ω → R and a ≥ 1 such that
(i) 0 ≤ F ≤ G
(ii) DF ≤ aG
(iii) DG ≤ aG
Then, for t > 0,

Pr {F − EF > t} ≤ exp
( −t2

4aEG + 3at/2

)
.

and, if in addition F (x) − F (xy,k) ≤ 1, for all k,and for all y ∈ Ωk, then

Pr {EF − F > t} ≤ exp
( −t2

4aEG + at

)
.

The proof of Theorem 2 also uses the entropy method and the tools developed
by Boucheron et al (2003) and Maurer (2006).

In many applications in learning theory concentration inequalities are used
to estimate the expectation of a random variable from the observation of a single
sample vector, when the underlying distribution is unknown. In such cases one
might use the following corollary, which results from combining Theorem 1 with
Theorem 2.
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Corollary 3. Under the conditions of Theorem 2, if G (x) − G (xy,k) ≤ 1 for
all k, y ∈ Ωk, we have for δ ∈ (0, 1):

Pr
{
F − EF ≤

√
4aG ln 2/δ + 3a ln 2/δ

}
≥ 1 − δ,

and, if in addition F (x) − F (xy,k) ≤ 1 for all k, and for all y ∈ Ωk, then

Pr
{

EF − F ≤
√

4aG ln 2/δ +
5
2
a ln 2/δ

}
≥ 1 − δ.

To exemplify the utility of these results, let X = (X1, ..., Xn) be a vector
of independent random variables with values in the unit ball B of some Hilbert
space H, let A (X) be the Gramian A (X)ij = 〈Xi, Xj 〉 and λd = λd (X) the d-th
eigenvalue of A (X) in descending order, counting eigenvalues according to their
multiplicity. We will prove the following concentration property of the random
variable λd.

Theorem 4. For t > 0

Pr {λd − Eλd > t} ≤ exp
( −t2

16Eλmax + 6t

)

and

Pr {Eλd − λd > t} ≤ exp
( −t2

16Eλmax + 4t

)

Since X is distributed in the unit ball, the trace of A (X) can be at most n,
but λmax can be much smaller, so the above bound can be considerably better
than what we get if the bounded difference inequality (McDiarmid, 1998) is
applied to the eigenvalues of the Gramian, as done by Shawe-Taylor et al (2005).

Let Ĉ (X) be the random operator on H defined by

〈
Ĉ (X) y, z

〉
=

1
n

n∑

i=1

〈y, Xi〉 〈Xi, z〉 for y, z ∈ H.

Ĉ is sometimes called the (non-centered) empirical covariance operator. It de-
scribes the inertial moments of the empirical distribution (1/n)

∑n
i=1 δXi about

the origin. The nonzero eigenvalues µd of Ĉ satisfy µd = λd/n, as will be
shown in Lemma 10 below. As with the more general Theorem 2, we obtain the
following, purely empirical bound:

Corollary 5. Let δ ∈ (0, 1). Then

Pr

{
Eµd ≥ µd −

√
16µmax ln 2/δ

n
− 12 ln 2/δ

n

}
≥ 1 − δ

3
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and

Pr

{
Eµd ≤ µd +

√
16µmax ln 2/δ

n
+

10 ln 2/δ

n

}
≥ 1 − δ.

For large n the size of the confidence interval for our estimation of Eµd by
µd scales with the observed value of √

µmax, or, equivalently, with the largest
singular value of the data-matrix X.

2. Proofs

We first introduce some additional notation and state some useful auxiliary
results. Then we prove Theorem 2 and Corollary 3, and finally we apply these
results to the concentration of eigenvalues. Questions of measurability will be
ignored throughout.

Let F be a bounded random variable, β ∈ R\ {0}. The Helmholtz energy is
the real number

HF (β) =
1
β

ln EeβF .

By l’Hospital’s rule the function HF is continuously extended to R by defining
HF (0) = EF . The thermal expectation at inverse temperature β is defined by

EβF f =
EfeβF

EeβF
for f : Ω → R.

To lighten notation we will not explicitely denote the dependence of HF and
EβF on the underlying measure µ. We will also make repeated use of the real
function g defined by

g (t) =
{

(e−t + t − 1) /t2 for t 6= 0
1/2 for t = 0 . (2)

The function g is positive, nonincreasing, and for t ≤ 0 and a > 0 we have

ag (t)
1 − atg (t)

≤ max {1, a}
2

. (3)

The following lemma is proved in (Maurer, 2006, Lemma 11).

Lemma 6. For β > 0 and any F : Ω → R
(i)

ln E
[
eβ(F −E[F ])

]
≤ β

2

∫ β

0

EγF [DF ] dγ. (4)

(ii) If F − infk F ≤ 1 for all k, then

ln E
[
eβ(EF −F )

]
≤ βg (−β)

∫ β

0

E−γF [DF ] dγ. (5)

4
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Our proofs rely on the following decoupling technique: If µ and ν are two
probability measures and ν is absolutely continuous w.r.t. µ then it is easy to
show that

Eνf ≤ KL (dν, dµ) + ln Eµef ,

where KL (., .) is the Kullback-Leibler divergence or relative entropy KL (dν, dµ) =
Eν ln (dν/dµ). A straightforward computation gives

KL

(
eβF dµ

EµeβF
, dµ

)
= βEβF F − ln EeβF = β2H ′

F (β) ,

so we obtain the following

Lemma 7. We have for any f : Ω → R

EβF [f ] ≤ β2H ′
F (β) + ln E

[
ef

]
. (6)

We also need two technical optimization inequalities.

Lemma 8. For t ≥ 0 we have

inf
β∈[0,1)

−βt +
β2 (2 − β)

(1 − β)2
≤ −t2

8 + 3t

Proof. Consider the polynomial

p (s) = 3s2 − 3s − s3 + 1.

Then p (1) = 0, p′ (1) = 0 and p′′ (s) ≤ 0 for all s ≥ 1. It follows that p (s) ≤ 0
for all s ≥ 1. Now define

h (β, t) =
β2 (2 − β)
(1 − β)2

− βt +
t2

8 + 3t
.

It suffices to show that infβ∈[0,1) h (β, t) ≤ 0 for all t ≥ 0. Write s =
√

1 + t/2,
so that s ≥ 1. Then

inf
β∈[0,1)

h (β, t) = inf
β∈[0,1)

h
(
β, 2

(
s2 − 1

))
≤ h

(
1 − 1

s
, 2

(
s2 − 1

))

=

(
s2 − 1

)

s (1 + 3s2)
p (s) ≤ 0.

�

Lemma 9. Let C and b denote two positive real numbers, t > 0. Then

inf
β∈[0,1/b)

(
−βt +

Cβ2

1 − bβ

)
≤ −t2

2 (2C + bt)
. (7)

5
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The proof of this lemma can be found in (Maurer, 2006, Lemma 12).

Proof of Theorem 2. We first claim that for β ∈ (0, 2/a)

ln E
[
eβG

]
≤ βEG

1 − aβ/2
, (8)

a fact which we will need for both tailbounds. Using Lemma 6 (i) and the weak
self-boundedness assumption (iii) we have for β > 0 that

ln E
[
eβ(G−E[G])

]
≤ aβ

2

∫ β

0

EγG [G] dγ =
aβ

2
ln EeβG,

where the last identity follows from the fact that EγG [G] = (d/dγ) ln EeγG.
Thus

ln E
[
eβG

]
≤ aβ

2
ln EeβG + βEG,

and rearranging this inequality for β ∈ (0, 2/a) establishes the claim.
Now we prove the upwards deviation bound. For β ∈ (0, 2/a) by Lemma 7

for any function f : Ω → R,

∫ β

0

EγF [f ]dγ ≤
∫ β

0

γ2H ′
F (γ) dγ + β ln E

[
ef

]

= β ln E
[
eβF

]
− 2

∫ β

0

ln E
[
eγF

]
dγ + β ln E

[
ef

]

≤ β ln E
[
eβF

]
+ β ln E

[
ef

]

= β ln E
[
eβ(F −E[F ])

]
+ β2E [F ] + β ln E

[
ef

]
.

In the second line we used integration by parts and in the third line the fact
that ln E

[
eγF

]
≥ 0 if γ ≥ 0, since F ≥ 0. So, replacing f by βG we get by

Lemma 6 (i) and DF ≤ aG

ln E
[
eβ(F −E[F ])

]
≤ a

2

∫ β

0

EγF [βG] dγ

≤ aβ

2
ln E

[
eβ(F −E[F ])

]
+

aβ2

2
E [F ] +

aβ

2
ln E

[
eβG

]
.

Substitution of (8) and subtracting (aβ/2) ln E
[
eβ(F −E[F ])

]
gives

(
1 − aβ

2

)
ln E

[
eβ(F −E[F ])

]
≤ aβ2

2
E [F ] +

a

2
β2E [G]
1 − aβ/2

≤ β2 a

2
E [G]

(
1 +

1
1 − aβ/2

)
,

6
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where we used EF ≤ EG for the second inequality. Dividing by 1 − aβ/2 we
obtain

ln E
[
eβ(F −E[F ])

]
≤ a

2
E [G]

β2 (2 − aβ/2)
(1 − aβ/2)2

.

Now we make use of Lemma 8 for t > 0

inf
β∈[0,2/a)

a

2
E [G]

β2 (2 − aβ/2)

(1 − aβ/2)2
− βt

=
2
a

E [G] inf
β∈[0,1)

[
β2 (2 − β)
(1 − β)2

− β

(
t

E [G]

)]

≤ −t2

4aE [G] + 3at/2
.

From Markov’s inequality we now conclude that for t > 0

Pr {F − EF > t} ≤ inf
β∈(0,2/a)

Eeβ(F −EF )−βt ≤ exp
( −t2

4aE [G] + 3at/2

)
.

To prove the lower tailbound let again β ∈ (0, 2/a). Using Lemma 6 (ii) and
DF ≤ aG we get

ln Eeβ(EF −F ) ≤ βg (−β)
∫ β

0

E−γF [DF ] dγ ≤ ag (−β)
∫ β

0

E−γF [βG] dγ. (9)

Since F is nonnegative, ln Ee−γF is nonincreasing and
∫ β

0
ln Ee−γF dγ ≥ β ln Ee−βF .

From integration by parts (using H ′
F (−γ) = − (d/dγ)HF (−γ)) we therefore

find that
∫ β

0

γ2H ′
F (−γ) dγ = β ln Ee−βF − 2

∫ β

0

ln Ee−γF dγ ≤ −β ln Ee−βF ,

By the decoupling lemma 7 it follows that

∫ β

0

E−γF [βG] dγ ≤
∫ β

0

(
γ2H ′

F (−γ) + ln EeβG
)
dγ ≤ −β ln Ee−βF + β ln EeβG.

Resubstitution of this result in (9) gives

ln Eeβ(EF −F ) ≤ ag (−β)
(

−β ln Ee−βF + β ln EeβG
)

= −aβg (−β) ln Eeβ(EF −F ) + ag (−β)
(
β2EF + β ln EeβG

)
.

Now add aβg (−β) ln Eeβ(EF −F ) to both sides, factor out ln Eeβ(EF −F ) and re-
arrange to get

ln Eeβ(EF −F ) ≤ ag (−β)
1 + aβg (−β)

(
β2EF + β ln EeβG

)
≤ a

2
(
β2EF + β ln EeβG

)
,

7
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where we used (3). But for β ∈ (0, 2/a) we can substitute inequality (8) and
use assumption (i) to get

ln Eeβ(EF −F ) ≤ a

2

(
β2EF +

β2E [G]
1 − aβ/2

)
≤ aE [G]

2

(
2β2 − aβ3/2

1 − aβ/2

)

≤ aE [G]
β2

1 − aβ/2
.

Now Lemma 9 gives us

inf
β∈(0,2/a)

(
−βt + aE [G]

β2

1 − aβ/2

)
≤ −t2

4aE [G] + at
.

Conclude with Markov’s inequality as before �

Proof of Corollary 3. Equating the two deviation probabilities in Theo-
rem 2 to δ/2 gives

Pr
{

F − EF > 2
√

EG
√

a ln 2/δ +
3a ln 2/δ

2

}
< δ/2, (10)

and, if F (x) − F (xy,k) for all k, y ∈ Ωk, then

Pr
{

EF − F > 2
√

EG
√

a ln 2/δ + a ln 2/δ
}

< δ/2. (11)

It follows from Theorem 1 that under the conditions of the corollary also

Pr
{

EG − G >
√

2aEG ln 2/δ
}

< δ/2,

from which we derive

Pr
{√

EG >
√

G +
√

2a ln 2/δ
}

< δ/2.

If we use a union bound to substitute this inequality in (10) and (11) and observe
that

√
2 < 3/2, we obtain the conclusions �

To apply our result to the eigenvalues of Gramian matrices and the re-
lated inertial operators we first further clarify the relationship between these
objects. Suppose that x = (x1, ..., xn) ∈ Hn is some configuration of vectors.
The Gramian matrix A (x) and the inertial operator Ĉ (x) have already been
introduced. We define an operator T (x) ∈ L (H) by the formula

T (x) v =
n∑

i=1

〈v, xi 〉 xi for v ∈ H,

so that Ĉ (x) = (1/n)T (x). Notice that T (x) has rank at most n. If S is a
finite-rank operator (or matrix) acting on a Hilbert space we use σ (S) to denote
the set of eigenvalues of S.

8
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Lemma 10. σ (A (x)) ⊆ σ (T (x)) and σ (T (x)) \ {0} ⊆ σ (A (x)).

Proof. If λ is any eigenvalue of A (x) let γ ∈ Rn be a corresponding eigenvector
and set e =

∑
γixi to obtain

T (x) e =
∑

i

∑

j

γj 〈xj , xi〉 xi =
∑

i

(A (x)γ)i xi = λ
∑

i

γixi = λe,

so λ is an eigenvalue of T (x), which shows that σ (A (x)) ⊆ σ (T (x)).
Observe, that we also showed that if γ ∈ ker (A (x)), then

∑
γixi ∈ ker (T (x)).

Now if λ is a nonzero eigenvalue of T (x) let e be a corresponding eigenvector.
Since λ is nonzero we must have e ∈ [x], so e =

∑
γixi, with γ 6= 0, and, by the

above, also γ /∈ ker (A (x)). We have
(
A (x)2 γ

)
j

=
∑

i

(A (x)γ)i 〈xi, xj 〉 = 〈T (x) e, xj 〉 = λ 〈e, xj 〉 = λA (x) γ,

so λ is also an eigenvalue of A (x) with nonzero eigenvector A (x) γ �

Note that, whenever dim (H) > n and the xi are independent, zero is an
eigenvalue of T (x), but not of A (x) so that σ (A (x)) ⊂ σ (T (x)) is a proper in-
clusion. To prove Theorem 4 and Corollary 5 we will use the following technical
result:

Proposition 11. Let B be the unit ball in some separable real Hilbert-space H.
For x ∈ Bn define λd (x) to be the d-th eigenvalue (in descending order) of the
Gramian Aij (x) = 〈xi, xj 〉 . Then ∀x ∈ Bn, k ∈ {1, ..., n} we have

λd (x) − inf
y∈B

λd (xy,k) ≤ 2 and Dλd (x) ≤ 4λmax (x) .

Proof. Fix x ∈ Bn and some integer k ∈ {1, ..., n}. We first claim that

inf
y∈B

λd (xy,k) = λd (x0,k) .

The l.h.s. is clearly less than or equal the r.h.s. so we just have to show the
reverse inequality. By Lemma 10 λd (x) is also the d-th eigenvalue of T (x). Now
let y ∈ B be arbitrary and let Qy be the operator defined by Qyv = 〈v, y〉 y, for
v ∈ H. Then

T (xy,k) = T (x0,k) + Qy.

By Weyls monotonicity theorem (see Horn and Johnson, 1985, Corollary 4.3.3)
the d-th eigenvalue of T (x0,k) can only increase by adding the positive operator
Qy. Since the nonzero eigenvalues of T (x) are the same as those of A (x) we
have λd (x0,k) ≤ λd (xy,k), which proves the claim.

Now let V be the span of the d dominant eigenvectors v1, ..., vd of A (x),
and let W be the span of the d − 1 dominant eigenvectors of A (x0,k). Then

9
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dimW ⊥ + dimV = n + 1, so W ⊥ ∩ V 6= {0} and we can choose a unit vector
u ∈ W ⊥ ∩ V . We now use the variational characterization of the eigenvalues
(Theorem 4.2.11 in Horn and Johnson (1985)): Since u ∈ V we have λd (x) ≤
〈A (x) u, u〉, and since u ∈ W ⊥ we have 〈A (x0,k)u, u〉 ≤ λd (x0,k). Thus, using
the definition of the Gramian, polarization and Cauchy-Schwarz,

λd (x) − λd (x0,k) ≤ 〈A (x) u, u〉 − 〈A (x0,k)u, u〉 =

∥∥∥∥∥
∑

i

uixi

∥∥∥∥∥

2

−

∥∥∥∥∥∥
∑

i6=k

uixi

∥∥∥∥∥∥

2

=

〈
ukxk,

∑

i

uixi +
∑

i6=k

uixi

〉

≤ |uk |




∥∥∥∥∥
∑

i

uixi

∥∥∥∥∥ +

∥∥∥∥∥∥
∑

i6=k

uixi

∥∥∥∥∥∥




= |uk |
(

〈A (x)u, u〉1/2 + 〈A (x0,k)u, u〉1/2
)

≤ 2 |uk| 〈A (x)u, u〉1/2 ≤ 2 |uk| λ1/2
max,

which implies the first conclusion. The second conclusion is obtained by squaring
and summing over k �

Proof of Theorem 4 and Corollary 5. Set F = λd (X) /2, G = λmax (X) /2.
Clearly 0 ≤ F ≤ G. By the previous proposition F (x) − infy F (xy,k) ≤ 1,
DF ≤ λmax = 2G and DG ≤ 2G, so that Theorem 2 and Corollary 3 can be
applied with a = 2. Theorem 4 and Corollary 5 follow �

The author wishes to thank the anonymous referee for many valuable com-
ments and suggestions.
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