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The concentration properties of one random variable may be governed by the values of another random variable which is concentrated and more easily analyzed. We present a general concentration inequality to handle such cases and apply it to the eigenvalues of the Gram matrix for a sample of independent vectors distributed in the unit ball of a Hilbert space. For large samples the deviation of the eigenvalues from their mean is shown to scale with the largest eigenvalue.

Introduction

For all of the following we assume that Ω = n 1 Ω i is some product space with product probability µ = ⊗ n 1 µ k and that F : Ω → R is some bounded measurable function. We write EF = F dµ. If x ∈ Ω, k ∈ {1, ..., n} and y ∈ Ω k we use x y,k to denote the vector obtained from x by replacing the k-th component with y, and we define a function DF : Ω → R by

DF (x) = k F (x) -inf y∈Ω k F (x y,k ) 2 .
The function DF is a local measure of the sensitivity of F to modifications of its individual arguments. It is shown in [START_REF] Maurer | Concentration inequalities for functions of independent variables[END_REF] that uniform bounds on DF lead to exponential tail inequalities for F , and that the upwards deviation bounds so obtained improve over the results obtained from Talagrand's convex distance inequality in many cases. If the function DF is bounded by a constant multiple of F itself other concentration properties can be deduced, as in the following result taken from [START_REF] Maurer | Concentration inequalities for functions of independent variables[END_REF].

Theorem 1. Suppose that a > 0 and that DF ≤ aF.

(1)
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Then for t > 0

Pr {F -E [F ] ≥ t} ≤ exp -t 2 2aE [F ] + at , and, if a ≥ 1 and F -inf k F ≤ 1 ∀k, then Pr {E [F ] -F ≥ t} ≤ exp -t 2 2aE [F ]
.

These results were derived from the entropy method, a technique which has been developed and refined by Ledoux, Bobkov, Massart, Boucheron, Lugosi, Rio, Bousquet and others ( see Ledoux (1996), [START_REF] Massart | Some applications of concentration inequalities to statistics[END_REF], Boucheron et al (2003), etc). The entropy method is rooted in the tensorization property of the entropy and seems to be evolving into a general toolbox to derive concentration inequalities. Recently [START_REF] Boucheron | On concentration of self-bounding functions[END_REF] demonstrated that Theorem 1 above can be used to derive a version of Talagrand's convex distance inequality. The authors also weakened the condition a ≥ 1 to a ≥ 1/3 in the lower tail bound above. Following them we will call a function F weakly self-bounded, if it satisfies condition (1) above.

In some situations it is not possible to prove weak self-boundedness of F , but there is another function G which is weakly-self bounded, and DF is bounded by a constant multiple of G. In this situation one may use the following result, which is the principal contribution of this paper.

Theorem 2. Suppose that F, G : Ω → R and a ≥ 1 such that (i)

0 ≤ F ≤ G (ii) DF ≤ aG (iii) DG ≤ aG Then, for t > 0, Pr {F -EF > t} ≤ exp -t 2 4aEG + 3at/2 .
and, if in addition F (x) -F (x y,k ) ≤ 1, for all k,and for all y ∈ Ω k , then

Pr {EF -F > t} ≤ exp -t 2 4aEG + at .
The proof of Theorem 2 also uses the entropy method and the tools developed by [START_REF] Boucheron | Concentration Inequalities using the entropy method[END_REF] and [START_REF] Maurer | Concentration inequalities for functions of independent variables[END_REF].

In many applications in learning theory concentration inequalities are used to estimate the expectation of a random variable from the observation of a single sample vector, when the underlying distribution is unknown. In such cases one might use the following corollary, which results from combining Theorem 1 with Theorem 2.
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Corollary 3. Under the conditions of Theorem 2, if G (x) -G (x y,k ) ≤ 1 for all k, y ∈ Ω k , we have for δ ∈ (0, 1): Pr F -EF ≤ 4aG ln 2/δ + 3a ln 2/δ ≥ 1 -δ,
and, if in addition F (x) -F (x y,k ) ≤ 1 for all k, and for all y ∈ Ω k , then

Pr EF -F ≤ 4aG ln 2/δ + 5 2 a ln 2/δ ≥ 1 -δ.
To exemplify the utility of these results, let X = (X 1 , ..., X n ) be a vector of independent random variables with values in the unit ball B of some Hilbert space H, let A (X) be the Gramian A (X) ij = X i , X j and λ d = λ d (X) the d-th eigenvalue of A (X) in descending order, counting eigenvalues according to their multiplicity. We will prove the following concentration property of the random variable λ d .

Theorem 4. For t > 0 Pr {λ d -Eλ d > t} ≤ exp -t 2 16Eλ max + 6t and Pr {Eλ d -λ d > t} ≤ exp -t 2 16Eλ max + 4t
Since X is distributed in the unit ball, the trace of A (X) can be at most n, but λ max can be much smaller, so the above bound can be considerably better than what we get if the bounded difference inequality [START_REF] Mcdiarmid | Concentration, in Probabilistic Methods of Algorithmic Discrete Mathematics[END_REF] is applied to the eigenvalues of the Gramian, as done by Shawe-Taylor et al (2005).

Let Ĉ (X) be the random operator on H defined by

Ĉ (X) y, z = 1 n n i=1 y, X i X i , z for y, z ∈ H.
Ĉ is sometimes called the (non-centered) empirical covariance operator. It describes the inertial moments of the empirical distribution (1/n) n i=1 δ Xi about the origin. The nonzero eigenvalues µ d of Ĉ satisfy µ d = λ d /n, as will be shown in Lemma 10 below. As with the more general Theorem 2, we obtain the following, purely empirical bound:

Corollary 5. Let δ ∈ (0, 1). Then Pr Eµ d ≥ µ d - 16µ max ln 2/δ n - 12 ln 2/δ n ≥ 1 -δ ACCEPTED MANUSCRIPT and Pr Eµ d ≤ µ d + 16µ max ln 2/δ n + 10 ln 2/δ n ≥ 1 -δ.
For large n the size of the confidence interval for our estimation of Eµ d by µ d scales with the observed value of √ µ max , or, equivalently, with the largest singular value of the data-matrix X.

Proofs

We first introduce some additional notation and state some useful auxiliary results. Then we prove Theorem 2 and Corollary 3, and finally we apply these results to the concentration of eigenvalues. Questions of measurability will be ignored throughout.

Let F be a bounded random variable, β ∈ R\ {0}. The Helmholtz energy is the real number

H F (β) = 1 β ln Ee βF .
By l'Hospital's rule the function H F is continuously extended to R by defining H F (0) = EF . The thermal expectation at inverse temperature β is defined by

E βF f = Ef e βF Ee βF for f : Ω → R.
To lighten notation we will not explicitely denote the dependence of H F and E βF on the underlying measure µ. We will also make repeated use of the real function g defined by g (t) = (e -t + t -1) /t 2 for t = 0 1/2 for t = 0 .

(2)

The function g is positive, nonincreasing, and for t ≤ 0 and a > 0 we have

ag (t) 1 -atg (t) ≤ max {1, a} 2 . ( 3 
)
The following lemma is proved in (Maurer, 2006, Lemma 11).

Lemma 6. For β > 0 and any

F : Ω → R (i) ln E e β(F -E[F ]) ≤ β 2 β 0 E γF [DF ] dγ. ( 4 
) (ii) If F -inf k F ≤ 1 for all k, then ln E e β(EF -F ) ≤ βg (-β) β 0 E -γF [DF ] dγ. (5) 
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Our proofs rely on the following decoupling technique: If µ and ν are two probability measures and ν is absolutely continuous w.r.t. µ then it is easy to show that

E ν f ≤ KL (dν, dµ) + ln E µ e f ,
where KL (., .) is the Kullback-Leibler divergence or relative entropy KL (dν, dµ) = E ν ln (dν/dµ). A straightforward computation gives

KL e βF dµ E µ e βF , dµ = βE βF F -ln Ee βF = β 2 H ′ F (β) ,
so we obtain the following Lemma 7. We have for any

f : Ω → R E βF [f ] ≤ β 2 H ′ F (β) + ln E e f . (6) 
We also need two technical optimization inequalities.

Lemma 8. For t ≥ 0 we have

inf β∈[0,1) -βt + β 2 (2 -β) (1 -β) 2 ≤ -t 2 8 + 3t
Proof. Consider the polynomial p (s) = 3s 2 -3ss 3 + 1.

Then p (1) = 0, p ′ (1) = 0 and p ′′ (s) ≤ 0 for all s ≥ 1. It follows that p (s) ≤ 0 for all s ≥ 1. Now define

h (β, t) = β 2 (2 -β) (1 -β) 2 -βt + t 2 8 + 3t
.

It suffices to show that inf β∈[0,1) h (β, t) ≤ 0 for all t ≥ 0. Write s = 1 + t/2, so that s ≥ 1. Then

inf β∈[0,1) h (β, t) = inf β∈[0,1) h β, 2 s 2 -1 ≤ h 1 - 1 s , 2 s 2 -1 = s 2 -1 s (1 + 3s 2 ) p (s) ≤ 0.
Lemma 9. Let C and b denote two positive real numbers, t > 0. Then

inf β∈[0,1/b) -βt + Cβ 2 1 -bβ ≤ -t 2 2 (2C + bt) . ( 7 
)
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The proof of this lemma can be found in (Maurer, 2006, Lemma 12).

Proof of Theorem 2. We first claim that for β ∈ (0, 2/a)

ln

E e βG ≤ βEG 1 -aβ/2 , (8) 
a fact which we will need for both tailbounds. Using Lemma 6 (i) and the weak self-boundedness assumption (iii) we have for β > 0 that

ln E e β(G-E[G]) ≤ aβ 2 β 0 E γG [G] dγ = aβ 2 ln Ee βG ,
where the last identity follows from the fact that E γG [G] = (d/dγ) ln Ee γG . Thus ln E e βG ≤ aβ 2 ln Ee βG + βEG, and rearranging this inequality for β ∈ (0, 2/a) establishes the claim. Now we prove the upwards deviation bound. For β ∈ (0, 2/a) by Lemma 7 for any function f : Ω → R,

β 0 E γF [f ] dγ ≤ β 0 γ 2 H ′ F (γ) dγ + β ln E e f = β ln E e βF -2 β 0 ln E e γF dγ + β ln E e f ≤ β ln E e βF + β ln E e f = β ln E e β(F -E[F ]) + β 2 E [F ] + β ln E e f .
In the second line we used integration by parts and in the third line the fact that ln E e γF ≥ 0 if γ ≥ 0, since F ≥ 0. So, replacing f by βG we get by Lemma 6 (i) and DF ≤ aG

ln E e β(F -E[F ]) ≤ a 2 β 0 E γF [βG] dγ ≤ aβ 2 ln E e β(F -E[F ]) + aβ 2 2 E [F ] + aβ 2 ln E e βG .
Substitution of (8) and subtracting (aβ/2) ln

E e β(F -E[F ]) gives 1 - aβ 2 ln E e β(F -E[F ]) ≤ aβ 2 2 E [F ] + a 2 β 2 E [G] 1 -aβ/2 ≤ β 2 a 2 E [G] 1 + 1 1 -aβ/2 ,
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where we used EF ≤ EG for the second inequality. Dividing by 1aβ/2 we obtain

ln E e β(F -E[F ]) ≤ a 2 E [G] β 2 (2 -aβ/2) (1 -aβ/2) 2 .
Now we make use of Lemma 8 for t > 0 inf

β∈[0,2/a) a 2 E [G] β 2 (2 -aβ/2) (1 -aβ/2) 2 -βt = 2 a E [G] inf β∈[0,1) β 2 (2 -β) (1 -β) 2 -β t E [G] ≤ -t 2 4aE [G] + 3at/2 .
From Markov's inequality we now conclude that for t > 0

Pr {F -EF > t} ≤ inf β∈(0,2/a) Ee β(F -EF )-βt ≤ exp -t 2 4aE [G] + 3at/2 .
To prove the lower tailbound let again β ∈ (0, 2/a). Using Lemma 6 (ii) and DF ≤ aG we get ln Ee β(EF -F ) ≤ βg (-β)

β 0 E -γF [DF ] dγ ≤ ag (-β) β 0 E -γF [βG] dγ. (9)
Since F is nonnegative, ln Ee -γF is nonincreasing and 

β(EF -F ) ≤ ag (-β) 1 + aβg (-β) β 2 EF + β ln Ee βG ≤ a 2 β 2 EF + β ln Ee βG , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
where we used (3). But for β ∈ (0, 2/a) we can substitute inequality (8) and use assumption (i) to get

ln Ee β(EF -F ) ≤ a 2 β 2 EF + β 2 E [G] 1 -aβ/2 ≤ aE [G] 2 2β 2 -aβ 3 /2 1 -aβ/2 ≤ aE [G] β 2 1 -aβ/2 . Now Lemma 9 gives us inf β∈(0,2/a) -βt + aE [G] β 2 1 -aβ/2 ≤ -t 2 4aE [G] + at .
Conclude with Markov's inequality as before

Proof of Corollary 3. Equating the two deviation probabilities in Theorem 2 to δ/2 gives Pr If we use a union bound to substitute this inequality in ( 10) and ( 11) and observe that √ 2 < 3/2, we obtain the conclusions To apply our result to the eigenvalues of Gramian matrices and the related inertial operators we first further clarify the relationship between these objects. Suppose that x = (x 1 , ..., x n ) ∈ H n is some configuration of vectors. The Gramian matrix A (x) and the inertial operator Ĉ (x) have already been introduced. We define an operator T (x) ∈ L (H) by the formula

F -EF > 2 √ EG a ln 2/δ + 3a ln 2/δ 2 < δ/2, (10) and 
T (x) v = n i=1
v, x i x i for v ∈ H, so that Ĉ (x) = (1/n) T (x). Notice that T (x) has rank at most n. If S is a finite-rank operator (or matrix) acting on a Hilbert space we use σ (S) to denote the set of eigenvalues of S.

β 0 ln 0 ln 0 E

 000 Ee -γF dγ ≥ β ln Ee -βF . From integration by parts (usingH ′ F (-γ) = -(d/dγ) H F (-γ)) we therefore find that β 0 γ 2 H ′ F (-γ) dγ = β ln Ee -βF -2 β Ee -γF dγ ≤ -β ln Ee -βF ,By the decoupling lemma 7 it follows thatβ -γF [βG] dγ ≤ β 0 γ 2 H ′ F (-γ) + ln Ee βG dγ ≤ -β ln Ee -βF + β ln Ee βG .Resubstitution of this result in (9) givesln Ee β(EF -F ) ≤ ag (-β) -β ln Ee -βF + β ln Ee βG = -aβg (-β) ln Ee β(EF -F ) + ag (-β) β 2 EF + β ln Ee βG .Now add aβg (-β) ln Ee β(EF -F ) to both sides, factor out ln Ee β(EF -F ) and rearrange to get ln Ee

  , if F (x) -F (x y,k ) for all k, y ∈ Ω k , then Pr EF -F > 2 √ EG a ln 2/δ + a ln 2/δ < δ/2. (11)It follows from Theorem 1 that under the conditions of the corollary also Pr EG -G > 2aEG ln 2/δ < δ/2, from which we derive Pr √ EG > √ G + 2a ln 2/δ < δ/2.

Preprint submitted to ElsevierDecember 26, 2009

ACCEPTED MANUSCRIPT

Lemma 10. σ (A (x)) ⊆ σ (T (x)) and σ (T (x)) \ {0} ⊆ σ (A (x)).

Proof. If λ is any eigenvalue of A (x) let γ ∈ R n be a corresponding eigenvector and set e = γ i x i to obtain

Observe, that we also showed that if γ ∈ ker (A (x)), then γ i x i ∈ ker (T (x)). Now if λ is a nonzero eigenvalue of T (x) let e be a corresponding eigenvector. Since λ is nonzero we must have e ∈ [x], so e = γ i x i , with γ = 0, and, by the above, also γ / ∈ ker (A (x)). We have

so λ is also an eigenvalue of A (x) with nonzero eigenvector A (x) γ

Note that, whenever dim (H) > n and the x i are independent, zero is an eigenvalue of T (x), but not of A (x) so that σ (A (x)) ⊂ σ (T (x)) is a proper inclusion. To prove Theorem 4 and Corollary 5 we will use the following technical result:

Proposition 11. Let B be the unit ball in some separable real Hilbert-space H. For x ∈ B n define λ d (x) to be the d-th eigenvalue (in descending order) of the Gramian A ij (x) = x i , x j . Then ∀x ∈ B n , k ∈ {1, ..., n} we have

Proof. Fix x ∈ B n and some integer k ∈ {1, ..., n}. We first claim that

The l.h.s. is clearly less than or equal the r.h.s. so we just have to show the reverse inequality. By Lemma 10 λ d (x) is also the d-th eigenvalue of T (x). Now let y ∈ B be arbitrary and let Q y be the operator defined by

By Weyls monotonicity theorem (see Horn and Johnson, 1985, Corollary 4.3.3) the d-th eigenvalue of T (x 0,k ) can only increase by adding the positive operator Q y . Since the nonzero eigenvalues of T (x) are the same as those of A (x) we have λ d (x 0,k ) ≤ λ d (x y,k ), which proves the claim. Now let V be the span of the d dominant eigenvectors v 1 , ..., v d of A (x), and let W be the span of the d -1 dominant eigenvectors of A (x 0,k ). Then

and we can choose a unit vector u ∈ W ⊥ ∩ V . We now use the variational characterization of the eigenvalues (Theorem 4.2.11 in [START_REF] Horn | Matrix Analysis[END_REF]): Since u ∈ V we have λ d (x) ≤ A (x) u, u , and since u ∈ W ⊥ we have A (x 0,k ) u, u ≤ λ d (x 0,k ). Thus, using the definition of the Gramian, polarization and Cauchy-Schwarz, The author wishes to thank the anonymous referee for many valuable comments and suggestions.