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The aim of this paper is to develop probabilistic studies, useful for applications, namely in what concerns the implementation and validation of subsequent statistical methods. More precisely, we establish new conditions on the stationarity and ergodicity of the GTARCH model and obtain an unique representation of its conditional volatility in terms of present and past observations. A minimal definition of a GTARCH process is then deduced.

Introduction

Let ε = (ε t , t ∈ Z) be a real stochastic process following a generalized threshold auto-regressive conditionally heteroscedastic model with orders p and q, gtarch(p, q), defined by [START_REF] Zakoian | Threshold heteroskedasticity models[END_REF] as

   ε t = σ t Z t σ t = α 0 + q i=1 α i ε + t-i - q i=1 β i ε - t-i + p j=1 γ j σ t-j (1.1)
where α 0 > 0, α i ≥ 0, β i ≥ 0 (i = 1, ..., q) , γ j ≥ 0 (j = 1, ..., p) are real constants, ε + t = ε t I {ε t ≥0} , ε - t = ε t I {ε t <0} and Z = (Z t , t ∈ Z) , called a generating process, is a sequence of independent and identically distributed real random variables, with zero mean and unit variance and such that Z t is independent of ε t-1 for each t ∈ Z, with ε t-1 denoting the σ-field generated by ε t-1 , ε t-2 , ... If γ j = 0, j = 1, ..., p, the gtarch(p, q) model is simply denoted tarch(q).

In this formulation, the conditional standard deviation of the process at time t given ε t-1 is a piecewise linear function of past observations depending, not necessarily symmetrically, on whether they are positive or negative. So, this class of nonlinear stochastic models has the advantage over garch ones [START_REF] Engle | Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation[END_REF][START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF] of taking account of the asymmetries, so often found in some real series. For instance, recent studies (He and Teräsvirta, ACCEPTED MANUSCRIPT 1999, [START_REF] Gonçalves | A mathematical approach to detect the Taylor property in TARCH processes[END_REF] show that tarch models are better able to capture the presence of Taylor's property (whose presence in many financial time series has been emphasized since [START_REF] Taylor | Modelling Financial Time Series[END_REF]) than arch ones. Some probabilistic results have been established for these models, in particular necessary and sufficient conditions of stationarity and ergodicity (Gonçalves andMendes-Lopes, 1994, 1996). More precisely, the strict stationarity and ergodicity of the general model (1.1) is expressed by a condition on the following sequence of random square matrices, (A t , t ∈ Z) , of p + 2q -2 order, written in block form:

A t =           α 1 Z + t -β 1 Z - t + γ 1 γ 2,p-1 γ p α 2,q-1 α q β 2,q-1 β q 1 0 0 0 0 0 0 0 I p-2 0 0 0 0 0 Z + t 0 0 0 0 0 0 0 0 0 I q-2 0 0 0 -Z - t 0 0 0 0 0 0 0 0 0 0 0 I q-2 0           where α 2,q-1 = (α 2 , ..., α q-1 ) if q ≥ 3, β 2,q-1 = β 2 , ..., β q-1 if q ≥ 3, γ 2,p-1 = γ 2 , ..., γ p-1 if p ≥ 3
, and I k is the identity matrix of order k (k ≥ 1). Moreover, the column beginning γ p (resp. α q and β q ) is only defined for p ≥ 2 (resp. q ≥ 2) as well as the row beginning by 1 (resp. Z + t and -Z - t ). As we assume that (Z t , t ∈ Z) are independent and identically distributed random variables, the random matrices (A t , t ∈ Z) are also independent and identically distributed.

Considering any norm on the set M p+2q-2 of the square matrices of order p + 2q -2, [START_REF] Gonçalves | Stationarity of GTARCH processes[END_REF] proved that there is an unique strictly stationary and ergodic solution of the gtarch model given in (1.1) if and only if the sequence 1 n log A 0 ...A -n n∈N converges almost surely (a.s.) to a strictly negative constant γ L . This limit is the non random Lyapounov exponent associated with the sequence of matrices (A t , t ∈ Z) , defined as

γ L = inf 1≤n<+∞ 1 n E (log A 0 ...A -n ) .
The condition E log + A 0 < +∞ and the subadditive ergodic Theorem [START_REF] Kingman | Subadditive processes[END_REF] (a.s.) . We note that this condition is independent of the chosen norm since M p+2q-2 is a finite dimensional space.

imply lim n 1 n log A 0 ...A -n = γ L ,
We point out that the proof of this necessary and sufficient condition of strict stationarity of model (1.1), as well as its ergodicity, uses the vectorial stochastic process of R p+2q-2 , X = (X t , t ∈ Z), defined by

X t = σ t , σ t-1 , ..., σ t-p+1 , ε + t-1 , ..., ε + t-q+1 , -ε - t-1 , ..., -ε - t-q+1 T
where T denotes the transpose. This process verifies the following auto-regressive equation X t+1 = A t X t + B, with B = (α 0 , 0, ..., 0) T ∈ R p+2q-2 , and the unique strictly stationary and ergodic solution of model (1.1) is the first component of the random vector that is solution of that equation, namely,

X t = B + lim k-→+∞ (a.s.) k i=1 A t-1 ...A t-i B, t ∈ Z.
(1.2)
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When we intend to obtain the stationary region of the model using the previous necessary and sufficient condition we are confronted with an analysis of great complexity, even for small values of p or q. This justifies the interest of checking alternative stationary conditions. In Section 2, we state conditions ensuring the existence of the strictly stationary and ergodic solution, directly expressed on the coefficients of the gtarch model defined in (1.1).

In Section 3 we establish an unique representation of the conditional standard deviation of a gtarch process as an infinite sum of functions of present and past observations. A minimal definition of these models is obtained as a consequence.

Whenever necessary we consider on the set M p+2q-2 the norm induced by the Euclidean norm, . 2 , on R p+2q-2 ,

∀M ∈ M p+2q-2 , M = sup Mx 2 x 2 , x ∈ R p+2q-2 , x = 0 .

GTARCH processes: strict stationarity and conditions on the coefficients

The following result establishes sufficient conditions for the existence of the strictly stationary and ergodic solution of model (1.1) previously mentioned. We denote the marginal probability law of the generating process Z = (Z t , t ∈ Z) by λ.

Theorem 2.1. Let ν = E Z + t .
1. The unique strictly stationary and ergodic solution of model (1.1) exists if

p j=1 γ j + ν q i=1 (α i + β i ) < 1.
2. We suppose that the support of λ is not bounded, with λ ({0}) = 0, and that all the coefficients α 0 , α i , β i (i = 1, ..., q) , γ j (j = 1, ..., p) are positive. The unique strictly stationary and ergodic solution of model (1.1) exists if

p j=1 γ j + ν q i=1 (α i + β i ) = 1.
Proof. Following the idea presented in [START_REF] Bougerol | Stationarity of GARCH processes and of some nonnegative time series[END_REF], let us consider the matrix

E (A 1 ). As E (Z t ) = 0 then -E Z - t = ν and we have now the identity det (zI -E (A 1 )) = z p+2q-2 1 - p j=1 γ j z -j -ν q i=1 (α i + β i ) z -i . Then, it follows from the inequality |a -b| ≥ ||a| -|b|| that if |z| > 1 |det (zI -E (A 1 ))| > 1 - p j=1 γ j z -j + ν q i=1 (α i + β i ) z -i . ACCEPTED MANUSCRIPT So, |det (zI -E (A 1 ))| > 1 - p j=1 γ j -ν q i=1 (α i + β i ) .
(2.1)

If p j=1 γ j + ν q i=1
(α i + β i ) < 1 we conclude, from this inequality and from the previous equality written for |z| = 1, that the spectral radius ρ of the matrix E (A 1 ) satisfies ρ < 1. But, as Kesten and Spitzer (1984, (1.4)) pointed out, it is always true that γ L ≤ log ρ. So, γ L < 0 and, by [START_REF] Gonçalves | Stationarity of GTARCH processes[END_REF], the gtarch model presented in (1.1) has a unique strictly stationary and ergodic solution.

If

p j=1 γ j + ν q i=1 (α i + β i ) = 1
, the right-hand side of (2.1) is zero and, as

det (I -E (A 1 )) = 1 - p j=1 γ j -ν q i=1
(α i + β i ) = 0, we conclude that the spectral radius ρ of the matrix E (A 1 ) is 1. On the other hand, almost surely, all the coefficients of the matrix A 2 A 1 are positive and A 1 has no zero column nor zero row. Under these conditions and taking into account that A 1 is not a.s. bounded, we deduce from Kesten and Spitzer (1984, Theorem 2) that the equality γ L ≤ log ρ doesn't hold. So, the top Lyapunov exponent γ L satisfies γ L < log ρ and the result follows.

We point out that the condition

p j=1 γ j + ν q i=1 (α i + β i ) < 1 is not a necessary
one for the existence of the strictly stationary solution of model (1.1). In fact, let us consider the gtarch(1, 1) model

ε t = σ t Z t σ t = α 0 + αε + t-1 -βε - t-1 + γσ t-1 .
We know that there is a strictly stationary solution for this model if and only if E (log A t ) < 0, where A t = αZ + t -βZ - t + γ. Moreover, using the inequality of Jensen, we have

E (log A t ) ≤ log γ + log α+β γ E Z + t + 1 . Let us consider α = β = γ = 0.
5 and suppose that the generator process, Z, has a Gaussian distribution. As

E Z + t = √ 2π
2π , from the last inequality we get E (log A t ) < 0 and, in consequence, the solution is strictly stationary and ergodic. Nevertheless, γ

+ E Z + t (α + β) ≃ 1.39 > 1.
A necessary condition for the existence of a strictly stationary solution of model (1.1) is now stated. As any weakly stationary gtarch model is also strictly stationary [START_REF] Gonçalves | The generalized threshold ARCH model: wide sense stationarity and asymptotic normality of the temporal aggregate[END_REF], we point out that this condition is also a necessary one for the existence of the widely stationary solution.

Theorem 2.2. If the gtarch model presented in (1.1) has a strictly stationary solution then p j=1 γ j < 1.
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Proof. Let A be the matrix which is obtained replacing Z + t and Z - t by 0 in the matrices A t . Since, for each k ∈ Z, A k ≥ A, we have A 0 ...A -n ≥ A n+1 . So, the top Lyapunov exponent associated with the sequence of matrices (A t , t ∈ Z) satisfies γ L ≥ log A . As A ≥ ρ (A) , where ρ (A) is the spectral radius of matrix A, and, by [START_REF] Gonçalves | Stationarity of GTARCH processes[END_REF], γ L < 0, we deduce that ρ (A) < 1. Moreover, we have det (zI

-A) = z p+2q-2 1 - p j=1 γ j z -j . We conclude that the continuous function f (x) = 1 - p j=1 γ j x j has no zeros when 0 ≤ x ≤ 1. Since f (0) = 1, this implies that f (1) = 1 - p j=1
γ j > 0, as required.

Structure of GTARCH processes

In this section we obtain a representation unique for the process ε = (ε t , t ∈ Z) defined in (1.1), in terms of its past, described by ε + t-i and ε - t-i , i ≥ 1, and the generator process Z. We also state a necessary and sufficient condition for the existence of a minimal representation of ε t . We begin by establishing a representation for σ k in terms of past values ε + k-i and ε - k-i , i ≥ 1. Let us define the following polynomials, whose coefficients are those present in the conditional standard deviation of the gtarch process ε:

A 1 (x) = α 1 x+...+α q x q , A 2 (x) = β 1 x+...+β q x q , B (x) = 1-γ 1 x-...-γ p x p .
To ensure that the model orders are in fact p and q, we suppose γ p = 0 and α q or β q non zero. We assume the strict stationarity of the gtarch process ε = (ε t , t ∈ Z) defined in (1.1) and that the matrices A t , t ∈ Z, satisfy the condition E log + A 0 < +∞. From Theorem 2.2 we have γ 1 + ... + γ p < 1 and so all the roots of B (x) = 0 are outside the unit circle, which implies 1

B (x) = +∞ j=0 d j x j , |x| ≤ 1,
where the coefficients d j decrease exponentially as j -→ +∞. Obviously,

A 1 (x) B(x) = +∞ j=1 c j x j , A 2 (x) B(x) = +∞ j=1 c j x j , |x| ≤ 1, with c 0 = α0 B(1) = α 0 +∞ j=0 d j , c j = α 1 d j-1 +...+α q d j-q , c j = β 1 d j-1 +...+β q d j-q ,
j ≥ 1, and c j and c j decreasing exponentially as j -→ +∞.

Theorem 3.1.

If E |log σ 0 | < +∞ then σ k = c 0 + +∞ i=1 c i ε + k-i - +∞ i=1 c i ε - k-i , for every k, (3.1)
with probability 1. If, in addition, Z + 0 and Z - 0 are non-degenerated random variables, the given representation is unique.

A C C E P T E D M A N U S C R I P T
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Proof. As E log + A 0 < +∞ and A 0 ≥ 1 we deduce that E log + Z + 0 and E log + Z - 0 are finite. Consequently, the same occurs to E log + ε + 0 and to E log + ε - 0 . Moreover, ε + t , 0 ≤ t < +∞ is a sequence of real random variables, identically distributed, as well as ε - t , 0 ≤ t < +∞ , since (ε t , 0 ≤ t < +∞) is strictly stationary. In consequence ( 1 ), the series

+∞ i=1 c i ε + t-i and +∞ i=1 c i ε - t-i are absolutely convergent with probability 1.
Considering the strictly stationary process ξ = (ξ k , k ∈ Z) such that

ξ k = α 0 + q i=1 α i ε + k-i - q i=1 β i ε - k-i let us show that σ k = +∞ m=0 d m ξ k-m . (3.2)
As E log + |ξ 0 | < +∞, this series is absolutely convergent with probability 1, taking into account the exponential decrease of d m , m ∈ N. On the other hand, from 1

B (x) = +∞ j=0 d j x j ⇐⇒ 1 = 1 -γ 1 x -... -γ p x p +∞ j=0 d j x j we deduce                1 = d 0 d 1 = γ 1 d 2 = d 1 γ 1 + γ 2 ... d p = d p-1 γ 1 + ... + d 1 γ p-1 + γ p d i = d i-1 γ 1 + ... + d i-p γ p , for i > p.
For j ≥ p, the following relation, proved in Appendix A, holds

ξ k + d 1 ξ k-1 + ... + d j ξ k-j = σ k - p i=1 d i+j-p γ p + ... + d j γ i σ k-i-j .
The left-hand side of this equality converges a.s., when j -→ +∞, to the right-hand side of (3.2). Moreover, using the exponential decrease of d j and the fact that E |log σ 0 | < +∞ we prove, in Appendix B, that

+∞ j=1 P p i=1 d i+j-p γ p + ... + d j γ i σ k-i-j > δ < +∞, ∀δ > 0.
From Borel-Cantelli Lemma, we obtain

σ k = c 0 + +∞ i=1 c i ε + k-i - +∞ i=1 c i ε - k-i , with probability 1. 1 If (ξ k , 0 ≤ k < +∞
) is a sequence of real random variables identically distributed such that E log + |ξ 0 | < +∞, then the series +∞ P k=0 ξ k z k converges, with probability 1, for any z in the region |z| < 1 (Lemma 2.2 of [START_REF] Berkes | GARCH processes: structure and estimation[END_REF].
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Now, let Z + 0 and Z - 0 be non degenerated variables. To establish the unicity of the representation obtained for σ k , let us consider, for some k,

σ k = c 0 + +∞ i=1 c i ε + k-i - +∞ i=1 c i ε - k-i (a.s.) and σ k = f 0 + +∞ i=1 f i ε + k-i - +∞ i=1 f i ε - k-i (a.s.) .
By contradiction, let m 1 > 0 and m 2 > 0 be the smallest integers such that c m1 = f m1 and c m2 = f m2 (we note that if c i = f i and c i = f i , ∀i > 0 then c 0 = f 0 ). By the definition of m 1 and m 2 , and taking into account that

ε k = σ k Z k , we obtain (f m1 -c m1 ) σ k-m1 Z + k-m1 + f m2 -c m2 ε - k-m2 = c 0 -f 0 + + +∞ i=m1+1 (c i -f i ) ε + k-i - +∞ i=m2+1 c i -f i ε - k-i . If m 1 ≤ m 2 (the conclusion is analogous if m 1 > m 2 ), we get Z + k-m1 = 1 (fm 1 -cm 1 )σk-m 1 c m2 -f m2 ε - k-m2 + (c 0 -f 0 ) + + 1 (fm 1 -cm 1 )σk-m 1 +∞ i=m1+1 (c i -f i ) ε + k-i - +∞ i=m2+1 c i -f i ε - k-i .
As σ k-m1 ≥ α 0 > 0, Z + k-m1 is well defined. As ε + j is Z j -measurable, as well as ε - j (Z j is the σ-field generated by Z j , Z j-1 , ...), the right-hand side of the last relation (and, consequently, Z + k-m1 ) is a real random variable measurable with respect to Z k-m1-1 . Taking into account that Z k , k ∈ Z, are independent, we conclude that Z + k-m1 is constant (a.s.).

Using the backward shift operator L, the representation (3.1) may be written as:

σ k = 1 B(L) α 0 + A 1 (L) ε + k -A 2 (L) ε - k = α0 B(1) + A1(L) B(L) ε + k -A2(L) B(L) ε - k . (3.3)
From this representation we deduce an unique representation of ε k in terms of its past, for each arbitrarily fixed generator process Z.

Let us now study the minimality of the definition (1.1) of the gtarch process, in the sense that there is no pair (p * , q * ) , such that p * < p or q * < q and

σ k = α * 0 + q * i=1 α * i ε + k-i - q * i=1 β * i ε - k-i + p * j=1 γ * j σ k-j (3.4) for some (not necessarily non negatives) α * 0 , α * i , β * i (i = 1, ..., q * ) , γ * j (j = 1, ..., p * ) .
Theorem 3.2. We suppose that E |log σ 0 | < +∞ and that the random variables Z + 0 and Z - 0 are non degenerated. The definition (1.1) is minimal if and only if the polynomials A 1 (x) and B(x) are coprimes or the polynomials A 2 (x) and B(x) are coprimes, (3.5) in the set of the polynomials with real coefficients.

Proof. We suppose that A 1 (x) and B(x) are coprimes or A 2 (x) and B(x) are coprimes and that there are (p * , q * ) , p * < p or q * < q, and α *

0 , α * i , β * i A C C E P T E D M A N U S C R I P T
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(i = 1, ..., q * ) , γ * j (j = 1, ..., p * ) such that (3.4) holds. From the strict stationarity we necessarily have

p * j=1 γ * j < 1. We define A * 1 (x) = α * 1 x + ... + α * q * x q * , A * 2 (x) = β * 1 x + ... + β * q * x q * and B * (x) = 1 -γ * 1 x -... -γ * p * x p * . This gives A * 1 (x) B * (x) = +∞ j=1 c j x j , A * 2 (x) B * (x) = +∞ j=1 c j x j
and so, from the unicity of the representation,

A 1 (x) B (x) = A * 1 (x) B * (x) , A 2 (x) B (x) = A * 2 (x) B * (x)
.

If A 1 (x) and B (x) are coprimes, we conclude that there is a polynomial P (x) such that A * 1 (x) = A 1 (x) P (x), B * (x) = B (x) P (x), with a similar conclusion if A 2 and B are coprimes. Then p * ≥ p, q * ≥ q, which is a contradiction.

Conversely, let us now suppose that the definition (1.1) is minimal but the condition (3.5) fails, that is, neither A 1 and B nor A 2 and B are coprimes. Introducing F A1 (x) = gcd (B (x) , A 1 (x)) and F A2 (x) = gcd (B (x) , A 2 (x)) it is always possible to write

B(x) = F A1 (x) F A2 (x) B 1 (x)
where B 1 (x) is a polynomial with a degree less than or equal to p -2. Similarly, we have

A 1 (x) = F A1 (x) A • 1 (x) , A 2 (x) = F A2 (x) A • 2 (x)
, where degree(A • i (x)) < q, i = 1, 2. If we introduce F (x) = lcm (F A1 (x) , F A2 (x)) , we have, from (3.3), with α 0 = α 0 F (1) B 1 (1) B (1) ,

σ k = 1 B (L) α 0 + A 1 (L) ε + k -A 2 (L) ε - k = α 0 F (1) B 1 (1) + A • 1 (L) F A2 (L) B 1 (L) ε + k - A • 2 (L) F A1 (L) B 1 (L) ε - k = α 0 F (1) B 1 (1) + A • 1 (L) F (L) FA 2 (L) F (L) B 1 (L) ε + k - A • 2 (L) F (L) FA 1 (L) F (L) B 1 (L) ε - k .
So, we have L) are polynomials whose degrees are less than those of B, A 1 and A 2 , respectively. This fact contradicts the hypothesis of minimal definition.

σ k = 1 F (L) B 1 (L) α 0 + A 1 (L) ε + k -A 2 (L) ε - k where F (L) B 1 (L) , A 1 (L) = A • 1 (L) F (L) FA 2 (L) and A 2 (L) = A • 2 (L) F (L) FA 1 (
Finally, under the hypotheses of the Theorem 3.2 and supposing that the polynomials A 1 (x) and B(x) are coprimes or the polynomials A 2 (x) and B(x)
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are coprimes, the unicity of the minimal definition of the conditional standard deviation of the process is assured because there is no α * 0 , α * i , β * i (i = 1, ..., q) , γ * j (j = 1, ..., p) = α 0 , α i , β i (i = 1, ..., q) , γ j (j = 1, ..., p)

such that σ k = α * 0 + q i=1 α * i ε + k-i - q i=1 β * i ε - k-i + p j=1 γ * j σ k-j .

Conclusions

The explicit finding of the regions of stationarity for the generalized threshold ARCH model by means of the necessary and sufficient condition referred in the Introduction is quite difficult, involving complex numerical studies even for small values of the orders p and q.

On the contrary, the conditions stated on Section 2 ensuring the existence of the strictly stationary and ergodic solution have a great simplicity, as they are directly expressed on the coefficients of the model. This is a really positive contribution in what concerns the practical applications of these models, particularly in statistical approaches.

Moreover, the results stated on Section 3 reinforce this contribution as we obtain an unique representation for the volatility, σ t , as a function of the present and past process values. Given the conditionally heteroscedastic nature of these models, this may have a great relevance in the forecasting phase. Finally, we point out that from this representation of the volatility process we deduce, in particular, a minimal representation for the process ε itself. 

A. Appendix A Denoting a 1 (L) = j i=0 d i L i and a 2 (L) = +∞ i=j+1 d i L i , with j ≥ p, we have 1 B(L) ξ k = a 1 (L) ξ k + a 2 (L) ξ k ⇔ σ k = j i=0 d i ξ k-i + a 2 (L) B (L) σ k . Now,

d

  let us study the series a 2 (L)B (L) = +∞ i=j+1 d i L i 1γ 1 L -...γ p L p = +∞ m=j+1 c m L m . We deduce that                    c j+1 = d j+1 c j+2 = d j+2d j+1 γ 1 c j+3 = d j+3d j+2 γ 1d j+1 γ 2 ... c j+p-1 = d j+p-1d j+p-2 γ 1d j+p-2 γ 2 -...d j+1 γ p-2 c j+p = d j+pd j+p-1 γ 1d j+p-2 γ 2 -...d j+1 γ p-1 c j+l = d j+ld j+l-1 γ 1d j+l-2 γ 2 -...d j+l-p γ p ,for l > p.ACCEPTED MANUSCRIPTTaking now into account that, for j > p,d j = d j-1 γ 1 + d j-2 γ 2 + ... + d j-p γ p , we obtain                    c j+1 = d j γ 1 + d j-1 γ 2 + ... + d j+1-p γ p c j+2 = d j γ 2 + ... + d j+2-p γ p c j+3 = d j γ 3 + ... + d j+3-p γ p ... c j+p-1 = d j γ p-1 + d j-1 γ p c j+p = d j γ p c j+l = 0, for l > p. So, c j+i = d j γ i + d j-1 γ i+1 + ... + d j+i-p γ p , i = 1, ..., p 0, i ≥ p + 1, and, in consequence, a 2 (L) B (L) σ k = +∞ m=j+1 c m L m σ k = j+p m=j+1 c m L m σ k = p i=1 c j+i σ k-j-i .Then, for j ≥ p,σ k = j i=0 d i ξ k-i + a 2 (L) B (L) σ k ⇔ ξ k + d 1 ξ k-1 + ... + d j ξ k-j = σ k -p i=1 d i+j-p γ p + ... + d j γ i σ k-i-j . i+j-p γ p + ... + d j γ i σ k-i-j > δ < +∞, ∀δ > 0.As d j ≥ 0, γ i ≥ 0 and σ k-i-j ≥ 0, we have, with c = γ p + ...+ γ 1 , p i=1 d i+j-p γ p + ... + d j γ i σ k-i-j ≤ c max(d 1+j-p , ..., d j ) p γ p + ... + d j γ i σ k-i-j > δ d1+j-p,...,dj) .Considering d j = O 1 α j , α > 1, and using the strict stationarity of σ k we obtain p i=1 P σ k-i-j > δ pc max(d1+j-p,...,dj)
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So, as we assume