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Motivated by our earlier work on change-point analysis we prove a number of limit theorems for increments of renewal counting processes, or the corresponding first passage times. The starting point of the increments are deterministic as well as random, the typical example being the first stopping time to detect a change-point of some (continuously) observed process.
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Introduction

The motivation for this paper comes from our work on the change-point analysis for renewal counting processes {N (t), t ≥ 0}; cf. [START_REF] Gut | Truncated sequential change-point detection based on renewal counting processes[END_REF][START_REF] Gut | A two-step sequential procedure for detecting an epidemic change[END_REF][START_REF] Gut | Stopped Random Walks[END_REF]. In [START_REF] Gut | A two-step sequential procedure for detecting an epidemic change[END_REF], for example, the sequential monitoring for detecting an "epidemic change" was designed such that first a stopping time τ 1 (say) was introduced to detect a possible outbreak of the epidemic and then, based on the increments N (τ 1 + t) -N (t) of the observed renewal process, a second stopping time τ 2 was introduced to find out whether or not the process has returned to its "normal behaviour". Or, as in Gut andSteinebach (2002, 2009), it may be necessary that, after the monitoring has stopped and a "change" has been signalled, some (unknown) parameters have to be estimated for further statistical inference (cf., e.g., Section 7 in [START_REF] Gut | Truncated sequential change-point detection based on renewal counting processes II[END_REF]), again based on the increments N (τ 1 + t) -N (t) of the stopped renewal process. Now, it is well-known that the limiting behaviour of the increments of a stopped process may be different from the limiting behaviour of the original process. [START_REF] Hanson | On the law of large numbers[END_REF], 1983a[START_REF] Hanson | Some more results on the increments of the Wiener process[END_REF], for example, derived a number of powerful strong laws for the increments of a Wiener process with applications to partial sums of i.i.d. random variables. In [START_REF] Steinebach | Limit theorems for lag processes[END_REF] the latter results have been extended to general "lag processes" by making use of a strong invariance principle for the corresponding process.

The aim of this note is to discuss some further asymptotics for the increments of stopped renewal processes {N (t), t ≥ 0} or, equivalently, for their corresponding first passage times {ν(t), t ≥ 0}.

Blackwell's renewal theorem, which we present and extend in the following section, can also be considered as a result for the increments of renewal (counting) processes, or first passage time processes, respectively. Departing from this view point we provide additional results, such as weak laws, strong laws and uniform integrability for such quantities at fixed as well as at random times for such increments.

Blackwell's Theorem

Let X, X 1 , X 2 , . . . be i.i.d. non-negative random variables with finite mean µ, set S n = n k=1 X k , n ≥ 1, and let Allan Gut and Josef Steinebach denote the renewal function. Blackwell's theorem [START_REF] Blackwell | A renewal theorem[END_REF] (see also [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 2.4.2) states that

U (t + h) -U (t) h → 1 µ as t → ∞
for non-arithmetic renewal processes. For the extension to random walks, see [START_REF] Spitzer | A Tauberian theorem and its probability interpretation[END_REF] (also [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 3.6.3), where the renewal function is replaced by

V (t) = ∞ n=0 P ( max 1≤k≤n S k ≤ t), t ≥ 0.
Introducing the counting process

N (t) = max{n : S n ≤ t}, t ≥ 0,
Blackwell's result is equivalent to the statement

E N (t + h) -N (t) h → 1 µ as t → ∞, in view of the fact that {N (t) > n} = {S n ≤ t}.
Letting ν(t) = min{n : S n > t}, t ≥ 0, denote the first passage times of the summation process, Spitzer's result (cf. also [START_REF] Blackwell | Extension of a renewal theorem[END_REF]) is, in the same vein, equivalent to the statement

E ν(t + h) -ν(t) h → 1 µ as t → ∞,
in view of the fact that {ν(t) > n} = { max 1≤k≤n S k ≤ t}.

As indicated at the end of the introduction, Blackwell's theorem (and its extension to random walks) thus provides information about the asymptotic expected size of the increments of renewal counting)processes, or first passage time processes, respectively.

A Weak Law and a Central Limit Theorem

In this section we discuss some weak laws for the increments of a renewal counting process-more precisely for the increments of the first passage times, namely, a weak law of large numbers under the assumption that the mean µ exists and is positive, and a central limit theorem (CLT), if, in addition, the variance σ 2 is finite and positive. In both cases the increment may depart from a fixed as well as a random time, more precisely from a stopping time with respect to the family of first passage times.

Technically, this means that these stopping times are measurable with respect to the (canonical) filtration G = {G t , t ≥ 0}, where G t = σ{ν(s), s ≤ t}.

However, before we turn to our results we need the following piece of notation.

Definition 3.1 Let {X(t), t ≥ 0} be a stochastic process and {y(t), t ≥ 0} a sequence of positive reals.

(a) We say that

X(t) = O p (y(t)) as t → ∞,
if, for every ε > 0, there exist c > 0 and t 0 > 0, such that

P (|X(t)| > cy(t)) ≤ ε for all t > t 0 . (b) We say that X(t) = o p (y(t)) as t → ∞, if X(t) y(t) p → 0 as t → ∞. 2 Theorem 3.1 Let X, X 1 , X 2 , . . . be i.i.d. random variables, such that 0 < µ = EX < ∞. Fur- ther, set S n = n k=1 X k , n ≥ 1, and let ν(t) = min{n : S n > t}, t ≥ 0,
denote the first passage times of the summation process.

(i) Then, ν(t + h(t)) -ν(t) h(t) p → 1 µ as t → ∞,
for any family {h(t), t ≥ 0} of positive reals such that h(t) → ∞ as t → ∞.

(ii) Suppose, in addition, that {τ (t), t ≥ 0} is a family of G-measurable, positive, integer-valued stopping times, such that

τ (t) p → ∞, but τ (t) = O p (t) as t → ∞. Then, ν(τ (t) + h(t)) -ν(τ (t)) h(t) p → 1 µ as t → ∞. Proof. (i) For the increments ν(t + h) -ν(t) (t, h > 0) we have, with R t = X ν(t) -t, ν(t + h) -ν(t) = min{k ≥ 1 : R t + X ν(t)+1 + • • • + X ν(t)+k > h}, if R t ≤ h ; 0, if R t > h .
Since 0 ≤ R t ≤ X ν(t) for the residual life-time R t , we immediately obtain the upper estimate

ν(t + h) -ν(t) ≤ ν 1,t (h) d = ν(h), where ν 1,t (h) = min{k ≥ 1 : X ν(t)+1 + • • • + X ν(t)+k > h}. (3.1)
So, from the law of large numbers for {ν(t), t ≥ 0}, we obviously have, for any ε > 0,

P ν(t + h) -ν(t) > h 1 µ + ε ≤ P ν(h) > h 1 µ + ε → 0 if h = h(t) → ∞. (3.2) 
It therefore remains to show that, for 0 < ε < 1/µ, also

P ν(t + h) -ν(t) < h 1 µ -ε → 0 if h = h(t) → ∞. (3.3) 
Observe that, on the set {R t ≤ r} with 0 < r < h, we have by a similar estimation as above,

ν(t + h) -ν(t) ≥ ν 1,t (h -r) d = ν(h -r),
with ν 1,t as in (3.1). Hence

P ν(t + h) -ν(t) < h 1 µ -ε ≤ P ν(t + h) -ν(t) < h 1 µ -ε , R t ≤ r + P R t > r ≤ P ν(h -r) < h 1 µ -ε + P R t > r . (3.4) 
Next, we choose a family {r(t), t ≥ 0} of positive reals such that r(t) → ∞, but r(t)/h(t) → 0, as t → ∞, e.g., r(t) = h(t).

Since h(t)r(t) ∼ h(t) as t → ∞, it follows, once again from the law of large numbers for {ν(t), t ≥ 0}, that

P ν(h(t) -r(t)) < h(t) 1 µ -ε → 0 as t → ∞.
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Finally, since R t = O p (1) as t → ∞ (cf. [START_REF] Gut | Stopped Random Walks[END_REF], Theorem 3.10.3),

P R t > r(t) → 0 as t → ∞. (3.5) 
A combination of (3.4) and (3.5) completes the proof of (3.3), and this, together with (3.2), proves part (i).

(ii) By the same estimation as in (3.2) we have

P ν(τ (t) + h) -ν(τ (t)) > h 1 µ + ε ≤ P ν 1,τ (t) (h) > h 1 µ + ε → 0 if h = h(t) → ∞.
(3.6) Note that, since τ (t) is a G-measurable, positive, integer-valued stopping time, one can easily check that the sets of random variables X 1 , . . . , X ν(τ (t)) and X ν(τ (t))+1 , X ν(τ (t))+2 , . . . are independent for any fixed t > 0, which, in turn, implies that ν 1,τ (t) (h) d = ν(h). So, by decomposing as in (3.4), we obtain

P ν(τ (t) + h) -ν(τ (t)) < h 1 µ -ε ≤ P ν(τ (t) + h) -ν(τ (t)) < h 1 µ -ε , R τ (t) ≤ r + P R τ (t) > r ≤ P ν(h -r) < h 1 µ -ε + P R τ (t) > r . (3.7) 
By choosing r(t) as in the first part of the proof we have

R τ (t) = o p (r(τ (t)) = o p (r(t)) as t → ∞, (3.8) 
since

τ (t) p → ∞, but τ (t) = O p (t)
, so that a combination of (3.7) and (3.8) proves that

P ν(τ (t) + h) -ν(τ (t)) < h 1 µ -ε → 0 if h = h(t) → ∞, (3.9) 
which, together with (3.6) completes the proof of part (ii). 2 A particular case is obtained by the choice h(t) = t 1/r , r > 0, which yields the following weak Chow type law (cf. [START_REF] Chow | Delayed sums and Borel summability of independent, identically distributed random variables[END_REF]). For an almost sure version we refer to Remark 4.3 ahead. Corollary 3.1 Let r > 0, and suppose that the appropriate conditions of Theorem 3.1 are satisfied. Then, for λ > 0,

ν(t + λt 1/r ) -ν(t) λt 1/r p → 1 µ as t → ∞, and ν(τ (t) + λt 1/r ) -ν(τ (t)) λt 1/r p → 1 µ as t → ∞.
The following central limit theorem for the increments can be obtained by similar arguments as follows.

Theorem 3.2 Let {ν(t), t ≥ 0} be as in Theorem 3.1, suppose, in addition, that 0 < σ 2 = Var X < ∞, and let {h(t), t ≥ 0} be a family of positive reals such that h

(t) → ∞ as t → ∞. (i) Then ν(t + h(t)) -ν(t) -h(t)/µ h(t) σ 2 µ -3 d → N (0, 1) as t → ∞,
where N (0, 1) denotes a standard normal random variable.

(ii) Suppose, in addition, that {τ (t), t ≥ 0} is a family of G-measurable, positive, integer-valued stopping times, such that

τ (t) p → ∞, but τ (t) = O p (t) as t → ∞.
Then also ν(τ

(t) + h(t)) -ν(τ (t)) -h(t)/µ h(t) σ 2 µ -3 d → N (0, 1) as t → ∞,
with N (0, 1) as above.
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Proof. (i) We wish to show that, for any x ∈ R,

P ν(t + h(t)) -ν(t) -h(t)/µ h(t) σ 2 µ -3 ≤ x → Φ(x) as t → ∞,
where Φ denotes the standard normal distribution function.

Set

h 1 = h 1 (x) = h/µ + x h σ 2 /µ 3 .
Then, by the same estimates as in part (i) of the proof of Theorem 3.1,

P ν(t + h(t)) -ν(t) ≤ h 1 ≥ P ν(h) ≤ h 1 → Φ(x) as t → ∞,
in view of the central limit theorem for {ν(t), t ≥ 0}.

Moreover, for 0 < r < h,

P ν(t + h) -ν(t) ≤ h 1 ≤ P ν(t + h) -ν(t) ≤ h 1 , R t ≤ r + P R t > r ≤ P ν(h -r) ≤ h 1 + P R t > r . Now, if r = r(t) → ∞, but r = o( √ h), with h = h(t), then h 1 = (h -r)/µ + x (h -r) σ 2 /µ 3 + r/µ + O r/ √ h , = (h -r)/µ + x (h -r) σ 2 /µ 3 + o √ h -r ,
so that an application of the CLT for {ν(t), t ≥ 0} also yields

P ν(h -r) ≤ h 1 → Φ(x) as t → ∞.
This, in combination with P (R t > r(t)) → 0 as t → ∞, completes the proof of part (i).

(ii) The second part is proved by analogous arguments as in the proof of (ii) of Theorem 3.1. 2

Strong Laws

The first subsection provides a Kolmogorov type strong law analog of the results of the previous section. In the second subsection we prove a Marcinkiewicz-Zygmund type law.

The proofs in the first subsection are based on strong approximation, which necessitates moment assumptions of some order strictly greater than two. The remaining results do not exploit this method which implies that the results are stronger in the sense that optimal moment conditions are assumed. The price we pay is that less general functions h are considered.

A Kolmogorov strong law

Theorem 4.1 Let X, X 1 , X 2 , . . . be i.i.d. random variables, such that E|X| r < ∞ for some r > 2, and let µ > 0 and σ 2 denote mean and variance, respectively, of the summands. Further, set S n = n k=1 X k , n ≥ 1, and let ν(t) = min{n : S n > t}, t ≥ 0, denote the first passage times of the summation process. → 0 as t → ∞.

(i)
For h(t) = λt, with λ > 0, this implies that = O(t) as t → ∞, it follows as above, with λ > 0, that ν(τ (t) + λt)ν(τ (t))λt/µ t 1/r a.s.

ν(t + λt) -(t + λt)/µ t 1/r = ν(t + λt) -(t + λt)/µ (t + λt) 1/r • (t + λt)
→ 0 as t → ∞.

We summarize the results of this subsection as follows:

Theorem 4.2 Let X, X 1 , X 2 , . . . be i.i.d. random variables, such that E|X| r < ∞ for some 1 ≤ r < 2, and suppose that E X = µ > 0. Further, set S n = n k=1 X k , n ≥ 1, and let ν(t) = min{n : S n > t}, t ≥ 0, denote the first passage times of the summation process.

(i) Then, for λ > 0, ν(t + λt)ν(t)λt/µ t 1/r a.s.

→ 0 as t → ∞.

(ii) Suppose, in addition, that {τ (t), t ≥ 0} is a family of non-negative random variables such that τ (t) a.s.

→ ∞, but τ (t) a.s.

= O(t) as t → ∞.

Then, for λ > 0, ν(τ (t) + λt)ν(τ (t))λt/µ t 1/r a.s.

→ 0 as t → ∞.

Remark 4.1 Recall that for the case r = 1 we rediscover Theorem 4.1 under a weaker moment assumption, but for a more restricted class of functions h.

  Allan Gut and Josef Steinebach Proof. Set η = σµ -3/2 . Via the strong approximation of {ν(t), t ≥ 0} by a Wiener process (cf., e.g.[START_REF] Csörgő | Invariance principles for renewal processes[END_REF]), and since t + h(t) ∼ t as t → ∞, we have

	ν(t + h(t)) -ν(t) -h(t)/µ	a.s. = η{W (t + h(t)) -W (t)} + o(t 1/r ) as t → ∞.
	Now, according to Csörgő and Révész (1981), Theorem 1.2.1,
		W (t + h(t)) -W (t)	a.s. = O h(t){log(t/h(t)) + log log t}	as t → ∞,
	so that (i) is immediate from a combination of the latter assertions and our assumptions on the family {h(t), t ≥ 0}. Note that, in view of our conditions, {log(t/h(t)) + log log t}/h(t) → 0 as t → ∞. Assertion (ii) follows by a corresponding argument. 2
	4.2 A Marcinkiewicz-Zygmund strong law
	The Marcinkiewicz-Zygmund strong law for first passage times (Gut (1974), Theorem 2.8.a, Gut (2009), Theorem 3.4.4) tells us that if E|X| r < ∞, 1 ≤ r < 2, then
			t 1/r ν(t) -t/µ	a.s.
	Then,	ν(t + h(t)) -ν(t) h(t)	a.s. →	1 µ	as t → ∞,
	for any family {h(t), t ≥ 0} of positive reals such that h(t) ↑ ∞, h(t)/t ↓ 0, and t 1/r = O(h(t)) as t → ∞. (ii) Suppose, in addition, that {τ (t), t ≥ 0} is a family of non-negative random variables, such that τ (t) a.s. but τ (t) a.s. → ∞, Then, ν(τ (t) + h(t)) -ν(τ (t)) h(t) a.s. → 1 µ as t → ∞.

= O(t) as t → ∞.
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Remark 4. [START_REF] Blackwell | Extension of a renewal theorem[END_REF] The "obvious" case in (ii) is, of course, τ (t)/t a.s.

→ θ as t → ∞ for some θ ∈ (0, ∞).

Remark 4.3 By the same arguments as above it can easily be checked that, if E|X| r < ∞ for some 1 ≤ r < 2 and EX = µ > 0, then also

for any λ > 0, and, moreover, that

if, in addition, {τ (t), t ≥ 0} is a family of non-negative random variables such that, for some

→ θ as t → ∞. The conclusions of the latter assertions may be interpreted as first passage time analogs of Chow's strong law [START_REF] Chow | Delayed sums and Borel summability of independent, identically distributed random variables[END_REF])for delayed sums with fixed and random times, respectively. The same remark also applies to Theorem 4.1, where (as remarked earlier in the paper) the windows are more general, the price of which is paid by the stronger moment assumption, which is necessary in order for the strong invariance principle to apply). 2

Uniform Integrability, Convergence of Moments

In this section we turn our attention to uniform integrability and moment convergence. We begin by quoting Gut (2009), Theorem 3.3.1, according to which, if 0 < µ = EX < ∞, then for all t ≥ 0 and p ≥ 1,

Next we observe that, by monotonicity and subadditivity (cf. [START_REF] Gut | Stopped Random Walks[END_REF], p. 58),

where {ν k (1), k ≥ 1} are i.i.d. random variables distributed as ν(1), so that, for h(t) ≥ 1,

which, in turn, shows that, for some t 0 > 0, the sequence

is dominated by the uniformly integrable sequence

and, hence, is uniformly integrable.

Moreover, in view of Theorem 3.1, we have
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A similar argument holds with t being replaced by a G-measurable stopping time τ (t), since the sets of random variables X 1 , . . . , X ν(τ (t)) and X ν(τ (t))+1 , X ν(τ (t))+2 , . . . are independent for any fixed t > 0 (cf. the proof of Theorem 3.1(ii)), so that

A combination of the latter assertions results in the estimates

which, once again, is finite iff E(X -) p < ∞, and since

p , t ≥ t 0 , the desired uniform integrability follows. Invoking Theorem 3.1 again, finally, tells us that

The following result emerges.

Theorem 5.1 (i) Let {h(t), t ≥ 0} be a family of positive reals such that h(t) → ∞ as t → ∞. If E(X -) p < ∞ for some p ≥ 1 and 0 < µ = EX < ∞, then, for some t 0 > 0, 

For p = 1 we obtain the following extension of the Blackwell-Spitzer result.

Corollary 5.1 Under the conditions of Theorems 3.1 and 5.1,

Note that no assumption concerning the random walk being arithmetic or non-arithmetic is made.