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Abstract
In an ad-hoc network, client-server based application can encounter some problems due to the dy-

namic topology. One of these problems is when the network splits, leading the server and the client to
be physically unreachable from each other. Predicting those partitions could be a very useful feature
that can be provided to applications. Indeed, being aware ofa future disconnection in the network can
help to ensure a better quality of service by adapting the client and/or the server behavior. Algorithms
already exists to do this, but they are based on trajectory interpolation which need position information to
be provided by a positioning system. This paper propose an original link robustness evaluation method
based on the notion of disjoint paths set that allow efficientpartition detection without using any kind of
positioning system. After showing that the use of disjoint path is relevant for detecting network parti-
tions, we propose a distributed algorithm that collects disjoint paths available between the server and the
client and thus show that our partition detection metric canbe used in a real network. Moreover, those
set of disjoint paths could be used in multipath routing protocols.

1 Introduction

Wireless networks such as Bluetooth [3] or WiFi (Wireless Ethernet IEEE 802.11b) [2] can grant users data
access regardless of their location without wired connection.

Nowadays, those networks are mostly used by directly communicating with a base station linked to
a wired network and internet. Another application of such technologies are networks based neither on a
base station nor any kind of fixed infrastructure. Those networks are useful when no wired link is available
such as in disaster recovery or more generally when a fast deployment is necessary. In those applications,
mobile computers, or nodes, will communicate by routing messages through the network by multi-hopping
protocols [19, 21, 23]. These networks are called MANET for Mobile Ad-hoc NETworks [1].

In that context, client-server based application can encounter some problems due to the dynamic topol-
ogy. One of these problems is when the network splits, leading the server and the client to be physically
unreachable from each other. If connection breaks are real failure in a wired environment, in ad-hoc net-
works, we must consider it as a normal network behavior because it can occur after a node has moved or a
user has turned his device off.
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Figure 1: Network partition caused by topology changes

In the case of node movement (Figure 1), it can be useful to predict partitioning and notify applications.
Indeed, being aware of a future disconnection in the networkcan help to ensure a better quality of service
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by adapting the client and/or the server behavior. Algorithms already exists to do this but they are based
on trajectory interpolation which need position information to be provided by a positioning system. As
those systems are often expensive and bulky [4], it may be relevant to provide algorithms that can be used
in a “standard” ad-hoc network (i.e. with objects that only have a wireless communication devicebut no
positioning system and without centralized infrastructure). In this paper, we propose a metric that can be
used to detect partitions based on a multiple disjoint pathsset and a distributed algorithm that collects this
set using an original directed flooding protocol. The first part of this work has already been presented in
[9].

The paper is organized as follows. First, we describe the existing work on partition detection in section
2. Then, section 3 propose and evaluate two metrics based on disjoint paths. Section 4 describe and evaluate
our distributed algorithm. Finally we conclude our work in Section 5.

2 Related works

2.1 Partition detection

In [16], Parket al. proposed TORA, an adaptive routing protocol for ad-hoc networks. In this protocol,
the authors use a method to detect network partitions after they occur. The aim of this detection for their
routing algorithm is to find the nodes that are no more reachable and thus, erase the deprecated routes that
lead to them. In this paper, we do not focus on detecting partition after its occurrence butbefore, so that
applications can react by modifying their behavior while the nodes are still connected. Detecting network
partition before they happen give some time to seamlessly react by finding a new route and/or adapt the
application behavior.

In [20], Shahet al. aimed at enhancing data access in an ad-hoc network by detecting partitions before it
happens. In their scenario, a noden1, needs data that are stored in another node (say noden2). For allowing
n1 to access the data even if its connection withn2 physically breaks, they propose a data replication
mechanism based on partition detection. Every node embeds apositioning system (such as GPS) and by
successive measures computes its velocity. Regularly, it spreads those information to the other nodes.
Thus, each node of a connected group knows the behavior of theother members of this group. So, they
canpredict when a node storing a particular data will leave the group before it effectively does it. At this
point, the owner of the data elects a node of the group to be another host of the data and replicates it on
this node. The main advantage of this method is that each nodeknows exactlywhen the partition occurs
if node movements are almost regular (no brutal direction changes). On the other hand, this method has
two main disadvantages. First, they need a positioning system, often expensive and bulky. Second, the
network has a continuous and relatively high load of the network due to the exchange of position and speed
information. Moreover, as the trajectory of nodes are interpolated, it involves some computation that would
not be insignificant in the case of small devices such as mobile phones.

Wanget al. proposed a roughly similar partition prediction in [25], although their solution is more
centralized. It is based on an extension of theReference Point Group Mobility (RPGM) by Honget al. [10].
They extend this model to handle the velocity of the nodes andthus regroup the node according to their
position and speed. For achieving this, each node sends its position and velocity to a server. Then, this
server runs a sequential clustering algorithm from the fieldof pattern recognition [8] to regroup the nodes.
Then, as the server knows the groups position and velocity, it can inform nodes of a future partition. Their
method has the same problems than those in [20] with one more disadvantage for the need of a centralized
server.

Although those algorithms are giving good results, their inputs are depending on expensive and bulky
hardware (GPS) or/and on a node that can be reached by the others. It would be preferable to use a method
working on every kind of mobile node equipped with wireless device. So, we want to focus our work on
a totally distributed network that does not use any positioning system. Indeed, it then can be applied on
every ad-hoc network regardless of the hardware or softwareprovided by the nodes. We think that disjoint
paths set can also lead to efficient network partition detection as they have good robustness properties. A
set of disjoint paths is a set of paths that have no common nodes except the source and the destination. So
if a direct link (also called a one hop link) between two nodesbreaks, it can discard one and only one path.
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Thus, all the other paths are not affected by the failure and the nodes can go on communicating. Moreover,
finding disjoint paths set can help developing QoS multipathrouting protocols [7, 12, 13, 14].

2.2 Disjoint paths computation

In [15], Haaset al. propose a distributed algorithm to compute a disjoint pathsset. They computes them
iteratively by merging previous paths and an incoming pathsthat containsbackward links (i.e. links that
goes from destination to source, see Figure 2). When a node receives a new path, it check it against the
paths it already knows. If a link belongs to both paths, oneforward (i.e. from source to destination) and
the otherbackward (i.e. from destination to source), two new disjoint paths can be generated by removing
the common link and replace it as shown in Figure 2.b where theBC link is the forward one and CB the
backward one.
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Figure 2: Iterative computing of disjoint paths using backward links

But in the context of our experiments, those kind of path are not used to be generated by standard
route request methods and so only a few paths are generated. Actually, route request protocol used by most
routing protocols are usingblind flooding protocols [17, 24]. A sequence number is used to prevent packets
to be broadcast twice or more by each node. The problem of thisprotocol is that backward links can’t be
generated in a single flood. Indeed, if we look at Figure 2.a.,when the first path (ABCE) is generated, node
B and C will store the sequence number associated with the route request. If another instance of the route
request reaches the node C, it will discard the request because it has already forwarded one with the same
sequence number. So, the path ACBDE can’t be generated by using a single flood. Thus, to use this method,
we need to send multiple route requests. But sending severalroute requests has two main problems, the
time needed to compute the disjoint paths set and the high number of generated packets. A good disjoint
paths computation protocol will then be a protocol that slightly increase the number of packets forward in
order to generate the highest disjoint paths number but keepan acceptable network congestion.

In [7], Das et al. used a flooding protocol no more based on sequence numbers buton the path the
packet is currently following. Here is the protocol’s algorithm. Lets andd be the source and the destination
node respectively. The packet contains a hop count which is decremented at each hop and a route record
that store the current path followed by the packet. When a node receives a route request, it performs the
following steps :

1. If the node is the destination, a route reply packet is returned to the source along the selected route,
as given in the route record that now contains the complete path information betweens andd.

2. If maximum hop = 0, the route request packet is discarded.

3. If this node’s id1 is already listed in the route record in the request, the route request packet is
discarded to avoid looping.

4. The node’s id is appended to the route record of the requestpacket and this request is rebroadcast.

As the node discards the packet only if there were too many hops or if the path is looping, the protocol
is more likely to generate a lot of paths. Indeed, a node can rebroadcast a request more than once. Thus, all
loop free paths whose length are less than the hop number usedfor sending the request are found by this

1the node’s identity which is a unique number associated withthat node
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method as only path length and test of previous node in it can avoid rebroadcast. The main problem is that
the number of generated packet is very high. Actually, it is clear to see that the complexity of the number
of forward for each node isO(dn) wheren is the number of hops from the source node andd is the density
of the network. Thus, this protocol can be used only in small density and short distance (in hop count).

Leeet al. extend the blind flooding protocol in [12]. They still using sequence numbers but the decision
of a node to forward a packet or not is no more based only on thissequence number. When receiving a
packet, a node runs the following algorithm :

1. If the node is the destination, a route reply packet is returned to the source.

2. If a packet with the same sequence number has already been received from the same neighbor, the
packet is discarded.

3. The node’s id is appended to the route record and the request packet is forwarded.

Here, the complexity of the number of forward for each node will beO(d). We think that we can lower
this while generating disjoint paths using an original flooding method.

In the next section, we present how disjoint paths can be usedto detect network partition.

3 Link robustness metrics

We consider the following scenario as the application field of our work. One node of the network is consider
as a provider of a given service. Thus, it is acting as server with potentially several clients. Another node
is using the service provided by this server, and is the client. We want to give to the client node a method
that is able to detect when the server node will be unreachable even by multi-hops routing. To detect this
partition, we introduce the notion of link robustness and wepropose two metrics based on multiple disjoint
paths set to evaluate it. We call link between two nodes the set of paths allowing them to communicate.
This link robustness can be seen as its capacity to maintain communication between the two nodes. We
will say that a link is strong if the physical disconnection risk is weak.

3.1 Preliminaries

Our evaluation methods are based on neighborhood and paths notions that are to be defined. We use
G(V,E) as a graph representing the ad hoc network whereV represents the set of wireless mobile hosts
andE represents the set of edges. Letv andw be two nodes. A pathp betweenv andw is a series of nodes
o1, o2, . . . , on such aso1 = v, on = w and for alli ∈ J1, nJ, oi+1 ∈ N(oi). Let p̃ =

⋃n

i=1{oi}, we denote
by |p| the number of hops in the path (|p| = n − 1). The set of all paths betweenv andw is denoted by
P (v, w).

It is straightforward that each path is not interesting for communications. For instance, extra-long paths
or paths with loops are not interesting. Moreover, it is wellknown that optimal paths in terms of numbers of
hops are few, weak and sensible to topological modifications[22]. That is why in this paper, for two given
nodesv andw, we will consider a subset ofP (v, w) which will be calledsub-optimal loop-free paths.

Let v andw be two nodes, andp ∈ P (v, w). p will be called anoptimal path if and only if∀p′ ∈
P (v, w) |p′| ≥ |p|. If p is optimal,|p| is calleddistance betweenv andw and is denoted byd(v, w).
Notice that an optimal path is also a loop-free path2. At last,p is calledk-sub-optimal (k ≥ 0) if and only
if p is loop-free and|p| < d(v, w) + k. k represents the number of hops added to an optimal path. We
denote bySOPk(v, w) the set ofk-sub-optimal paths betweenv andw.

DefiningSOPk is motivated by the need of loop-free paths betweenv andw. Indeed, since optimal
paths are few and weak, we need to take account of some other paths near the optimality in number of
hops. The set ofLoop-Free-Paths (denoted byLFP (v, w)) can then be determined by

LFP (v, w) = lim
k→∞

SOPk(v, w) (1)

2A pathp ∈ P (v, w) is calledloop-free if and only if ∀i, j ∈ J1, nK, oi = oj ⇒ i = j.
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For a network of size|V |, the longest loop-free path is at most of size|V |−1. So, we haveLFP (v, w) =
SOP|V |−1(v, w). We think that there exists a maximal value ofk above whichSOPk does not change sig-
nificantly in our evaluation. Decreasingk will help us to efficiently compute the metric. Indeed, a fewer
k would reduce the network congestion produced by a distributed algorithm computing a set of disjoint
paths. Moreover, it is not desirable to store a lot of paths oneach node of an ad hoc network.

3.2 Link robustness

Our evaluation method is based on the following idea. The more paths there is between two nodes, the
stronger is the path allowing them to communicate. Indeed, if a path breaks, the nodes can go on commu-
nicating if and only if it stills being a valid path between them. Figure 3 shows two possible cases.
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Figure 3: Topology examples

In, Figure 3.a, the nodes have got three paths. If one of them breaks, the nodes can go on communicat-
ing. On the other hand, Figure 3.b, it exists only one path connecting node 1 and node 2. If it breaks, the
communication will be physically interrupted. In Figure 3 we only consider disjoint paths that seems to
be a good robustness criteria as evoked by Haas [15]. Actually, even if it exists hundreds of paths between
two nodes, if all of them use the same intermediate node, a simple failure of this node would invalidate all
those paths.

For two nodesv andw and a given constantk, the set of parts ofSOPk(u, v) (2SOPk(u,v)) containing
only disjoint path containing only disjointed paths is denoted byDSPk(v, w) (Disjoint Sub-optimal Paths)
and is defined by :

DSPk(v, w) =
{

S ∈ 2SOPk(v,w) | ∀p, p′ ∈ S p̃ ∩ p̃′ 6= {v, w} ⇒ p = p′
}

. (2)

Thus, if a node disappear, one and only one paths will break. By this fact, as it stills more than one
available disjoint path, one can break without physically breaking the connection. Using this notion of
disjoint path, we will propose two link evaluation methods.

We considerk as a fixed system parameter for the definition of our metrics sothat the notations remain
light.

The first one is only based on the number of disjoint paths available. Indeed, if we have only one paths
whereas there were more before, it is strongly possible thatthis one disappears too, resulting to a physical
disconnection. This first metric is denotedLR1 (for Link Robustness) and is defined by :

LR1(u, v) = max
A∈DSPk(u,v)

{|A|} . (3)

For the second one, we aimed at refining the measure given byLR1. We can actually notice that the
longer is a path, the weaker it is. Thus, all paths do not evenly contribute to the link robustness. Then,
We evaluate the probability that at least one path composingthe link remains available. The set of disjoint
paths that gives the best probability that a path survives gives us our second metric denotedLR2 :
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LR2(v, w) = max
A∈DSPk(u,v)







1−
∏

p∈DSPk(v,w)

Pb(p)







, (4)

wherePb(p) is the probability thatp breaks. The rough calculation ofPb(p) is given by the probability
that each direct connection composing the path breaks. Ifp = (o1, o2, . . . , on), we define :

Pb(p) = 1−
∏

1≤i<n

µ(oi, oi+1), (5)

whereµ(x, y) represents the probability that the direct connection between the nodesx andy remains
available. This probability has to be evaluated too. For now, we will consider thatµ is a constant.

3.3 Experiments

The aim of this section is to propose and evaluate the metrics. So, we compute our robustness using the
global knowledge of the network and generating disjoint paths using a depth first search algorithm. The
distributed algorithm used to compute the disjoint paths set will be discussed in Section 4.

To evaluate the metrics, we did the following experiments :

1. a random graph is generated in a rectangular area,

2. we randomly choose a server node and one of its neighbors asthe client node3,

3. nodes move according to the random way-point model [11]. Each node choose a random destination
and goes for it. When he reaches it, he waits for a random time,choose another destination and so
on,

4. periodically, we compute the link robustness given by thetwo methods,

5. when a partition occurs, we go back to step 2 until we reached 300 partitions.

We did our experiments at densities of 4, 6 and 8 nodes by communication area. With higher densi-
ties, the network is almost always connected so the physicaldisconnection is not an important problem.
With smaller density, the opposite problem occurs, the network is too unstable to predict anything. We
used speeds of 1, 1.5 and 2 meters per second which corresponds to different walking speeds. Nodes
communication range are set to 10 meters.

Figure 4 and 5 show the evolution of the value computed by bothmethods. The density used was 8
nodes by communication area. Nodes’ speed was 2 meters per second which is a fast walk speed leading
to sudden disconnections.

We can observe that robustness values computed by both methods falls just before the physical dis-
connection. What is observed at this density and this speed is almost the same with other speeds and
densities.

To detect if a partition occur, we introduce the notion of threshold. If the metric falls under a given
value (called threshold) during a given amount of time (about 1 second in our experiments), we raise a
“warning” flag. The relevance of this warning flag will dependon the efficiency of the metric (i.e. the
number of disconnections it predicted) and on the average time between the prediction and the effective
disconnection. If this time is too important, the application would always need to change its behavior
according to the warning flag. If this time is too short, the application would not have enough time to
changes its behavior and some QoS criterion potentially used by application would not be respected.

So, to achieve evaluating the metrics, we have computed their efficiency and the time spent in alert for
a range of thresholds. Figures 6 to 11 show the results for thetwo metrics. Figures 6 to 9 show how the
speed influences on those metrics whereas Figures 10 and 11 show the density’s one.

3We this, we are sure that the nodes are connected at the start of the simulation
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Figure 4: Evolution of the link robustness value for the firstmetric
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Figure 6: Evaluation of the first metric at 0.5 m/s with density 6
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Figure 7: Evaluation of the first metric at 2.0 m/s with density 6
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Figure 8: Evaluation of the second metric at 0.5 m/s with density 6
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Figure 9: Evaluation of the second metric at 2.0 m/s with density 6
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Figure 10: Evaluation of the first metric at 2.0 m/s with density 8
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Figure 11: Evaluation of the second metric at 2.0 m/s with density 8
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General observations For both metrics, we can say about speed influence that the faster the nodes move,
the worse is the prediction. Indeed, if nodes move faster, the topology is less stable so it is harder to have a
good prediction. Concerning the influence of the density, asit grows, the stability of the link grows because
the number of disjoint paths is potentially higher. This canbe observed in Figures 10 and 11.

Metrics comparisons Bypassing the general observations, we can say that the firstmetric, that only takes
care about disjoint paths, produces far better results. Actually, the gap between the efficiency and the alert
time is far more important in the first metric. If we want 90 % ofefficiency, in the first metric we can take a
threshold of 1 and we will only spent 30 to 50 % of connection time in alert depending on the density and
on the speed of the nodes. To reach the same efficiency with thesecond metric, we would need to spend
more than 80 % of the total connection time in alert which is not acceptable and tends to always raise an
alert flag. Figure 12 shows in an even better way thatLR1 has a better efficiency/alert time ratio thanLR2

using a density of 6 nodes by communication area and 0.5 m/s speed. This can be explained by the fact
that this metric is not as stable as the first one and so, topology modification could cause great fluctuation
of its value.

4 Disjoint paths computation

After having shown by our experiments that disjoint paths set provides interesting information which allow
efficient partition prediction, we need to find a distributedprotocol which computesLR1. The main prob-
lem of the definition ofLR1 is that it is rather impossible to compute its exact value as we need to know all
possible disjoint paths leading to the server. For instance, if we consider a client/server link with distance
5, the number of optimal paths (i.e. k = 0) grows up quickly with the density (see Figure 13).
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Figure 13: Average number of optimal paths with 5 hops distance

It is clear that finding all paths and compute the subset whichmaximizesLR1 requires a lot of network
load, memory and CPU time. We must then find an algorithm that gives us an approximative value ofLR1

at low cost in term of network congestion. Moreover, finding disjoint paths set can help developing QoS
multipath routing protocols [7, 12, 13, 14].

4.1 Protocol description

Our protocol is based on a blind flooding and improved by two mechanism. The blind flooding has two
main problems for our purpose. First, as we said in section 2,it does not generate a lot of disjoint paths
because each node forwards the packet once and only once. Second, it floods all the network, even nodes
that are not involved. Thus, if we increase the number of forward per node in order to generate more paths,
it will jam the whole network.

For the first problem,Lee et al. send aboutd packets per node (whered is the density). The result of
this is an increase of the number of paths found but also a highoverhead. Our protocol works bycontrolling
the maximum of forward per node using multiple sequence numbers.
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To solve the second problem, we used hops information to allow only the nodes which are susceptible
of being in a path to forward the packet. As a result our request is directed towards the destination node
and does not overhead the whole network.

Our method works in two steps. First, the client sends a disjoint paths set request to the server. This
request can be done using a efficient broadcast [6, 18] or a message sent by a routing protocol [5]. When
the server receives the request, he sends a reply back. The reply packet contains the following information :

• the id of the server,

• the id of the client,

• the distance between the server and the client (in hop count). This distance is the one acquired from
the request packet,

• the number of hops,

• the current sequence number, used to restrict the rebroadcast of the packet (as in the blind flooding
protocol),

• a set of sequence numbers, initially filled by the server,

• the path followed by the packet.

Let d(c, s) be the distance between the client and the server,h the number of hops followed by the
packet andd(c, u) the distance between the client and the nodeu. Every nodeu receiving this reply runs
the following algorithm :

1. if the node has already forward a packet with the same sequence number, the packet is discarded,

2. if h + d(c, u) > d(c, s) + k (wherek is a protocol’s parameter), the packet is discarded,

3. if the number of hops done by packet is equals to half the distance between the server and client,
the node selects a random sequence number in the sequence numbers set included in the packet and
rebroadcast the packet using this sequence number else the packet is rebroadcast according to the
blind flooding algorithm.

The first rule of the protocol is similar to the blind flooding.The second one is used totarget the client
with the broadcast as shown in figure 14 where thick black lines are the radio link involved by the reply.
As we can see, only a few part of the network is disturbed by ourprotocol.

For this rule, we need to know the distance between every nodeand the client node. This can be done
in several ways. The simplest is to used an optimized broadcast for the request. Each node forwarding the
request stores its distance from the client. But it can also be achieved using periodic hello messages (the
ones used by a routing protocol for example). The third rule is used to generate a bit more packets and thus,
more paths. As the server sets how many sequence numbers to use, it can control the overhead generated
by the reply. This overhead can also be controlled by changing thek value. Ifk is big, there will be more
paths and they will be longer. But, on the other hand, there will be more node that will forward the reply
and thus, more overhead.

With our sequence number change policy and our limited rebroadcast, we are able to compute an almost
large disjoint paths set by generating a small overhead. That is what we show in the next section.

4.2 Experiments

Our experiments were done at several densities using a 200 nodes graph in a 600 meters by 400 meters
rectangular area. The nodes’ range is adjusted to have the correct density. As in section 3.3, the nodes are
following the random way point model. We evaluated one of thetwo protocols depicted in section 2.2, the
one given in [12], and ours. The reason why we do not report theevaluation of the protocol given in [7]
is because as we said above, the complexity of this protocol is aboutO(dn) forward per node. Thus, we
were unable to reach the end of the simulation for density up to five node per communication area. To have
accurate results, we proceed as the following :
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Figure 14: Directed broadcast

1. a random graph is generated,

2. two nodes are selected for being the client and the server.We choose them so that they are at a
distance of 5 hops and that there is at least 3 disjoint paths between them (checked by a DFS). If no
nodes verifying those conditions are found, a new graph is generated and so on,

3. we simulate the two protocols and store the number of forward of every node and the number of
disjoint paths found by each protocols,

4. above steps are repeated for 100 different graphs and the results are averaged.

Thek parameter was set to 5 in our protocol and the number of sequence numbers included in the reply
packet was equal to the density. Figures 15, 16 and 16 reportsthe results of our experiments.

Figure 15, reports the number of disjoint paths found by eachprotocol. As we can see, ours find more
than the one depicted in [12].

Figure 16 shows the average number of forward for each node. This represents the amount of overhead
in the network. We can notice that what we said in section 2.2 concerning the complexity ofLee et al.’s
protocol is confirmed by the graph. Indeed, the plot of the number of forward per node is roughly asymp-
totic to thef(d) = d line. Thanks to our directed broadcast, this number is far beyond for our protocol.
Depending on the number of disjoint path we want, we can tune our protocol and thus generate more or
less overhead by modifying thek value.

Finally, figure 17 shows the average number of forward per node needed to find disjoint paths. Our
experiments shows that our protocol is a real improvement infinding multiple disjoint paths set as the
overhead generated is rather small and the number of paths found high.
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Figure 15: Disjoint paths found

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 5  10  15  20

A
ve

ra
ge

 n
um

be
r 

of
 fo

rw
ar

d 
pe

r 
no

de

Density

Our protocol
Lee’s protocol

f(d) = (d)

Figure 16: Average number of forward per node
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Figure 17: Average number of forward per node over number of disjoint paths found
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5 Conclusion

This paper propose two things. At first, we show through our experiments that multiple disjoint paths set
can be used to detection network partition between two nodes. Although the prediction could be more
accurate, it is a first step to detect the partition without using any kind of infrastructure. This partition
detection must rely on an efficient distributed algorithm which can gather as much disjoint paths as possible
without jamming the network. We presented such protocol in the second part of the paper and compared
it with the ones depicted in the literature. Our experimentsshows that our protocol can efficiently find
disjoint paths by involving only a small overhead.
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