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Abstract 
 

Ad hoc network normally has critical 
connectivity properties before partitioning. The 
timely recognition is important in order to perform 
some data or service replication. Several existing 
centralized or globalized algorithms declare an 
edge or a node as critical if their removal will 
separate the network into several components. We 
introduce several localized definitions of critical 
nodes and critical links, using topological or 
positional information. A node is critical if the 
subgraph of k-hop neighbours of node (without the 
node itself) is disconnected. We propose three 
definitions of critical links, based on verifying 
common k-hop neighbours, loop length, and 
critical status of link endpoints, respectively. The 
experiments with random unit graph model of ad 
hoc networks show high correspondence of local 
and global decisions. For instance, in experiments 
with 500 nodes in connected random unit graphs, 
over half of locally estimated critical nodes and 
links were indeed globally critical even for k=1 
(the accuracy increases to over 70% for k=2 and 
over 80% for k=3), for average number of 
neighbours ranging from 3 to 15.  The errors 
mostly occur when alternative routes exist but are 
relatively long, and therefore may not provide 
satisfactory service in applications. Therefore our 
localized protocols provide faster and often more 
reliable partition warnings for possible timely 
replication decisions. 
 
 

 
 

1. Introduction 
 

An ad hoc network is a collection of 
wireless mobile hosts forming a temporary 
network without the aid of any fixed 
infrastructure. They have potential application in 
civilian and military environments such as 
disaster relief, conference, wireless office, and 
battlefield.  Ad hoc sensor networks for 
monitoring environment are also being deployed. 

In an ad hoc network a message sent by a 
node reaches all its neighbouring nodes that are 
located at distances up to the transmission radius. 
A widely accepted basic graph-theoretical model 
for ad hoc networks is a unit graph model, 
defined in the following way. Two nodes A and B 
in the network are neighbours (thus joined by an 
edge) if and only if the Euclidean distance 
between their coordinates in the network is at 
most R, where R is the transmission radius which 
is equal for all nodes in the network.  Due to the 
limited transmission radius, the routes between 
two nodes are usually created through several 
hops.  

A node or link is critical if its removal 
will disconnect the graph into two (or more) 
separate components. Suppose we have a user E 
and a server L (see Figure 1.). When user E 
requests a service or data from L, the request 
follows the path ECBAIJL. In this example, nodes 
A, B and J, and link AB, are critical, since removal 
(or movement) of any of them will partition the 
network. Node E may initiate some actions, such 
as replicating data from L in its own memory, or 



  

look for alternative service in different part of 
network, before it is too late.  

 
Figure 1. U h representation of multi-hop 
wireless ne

 
DFS (depth first search algorithm) was 

used to detect critical links in [DBS, T, GC]. It is a 
centralized algorithm, and can be also 
implemented in globalized distributed manner. A 
centralized algorithm requires that a node should 
be aware of global topology. In practice, this 
method is inefficient and involves a quadratic (in 
number of nodes) communication overhead in 
order to update link information when nodes are 
moving, or when nodes change their status from 
active to sleeping and vice versa. In a globalized 
distributed implementation, DFS can be performed 
in the network without global knowledge at any 
node, but with memorization at nodes. In [GC] 
once critical links in an ad hoc network are 
detected, two ways are proposed to delay or avoid 
their failure: changing the trajectory of one or both 
nodes forming the critical link and bringing 
another node to reinforce the link. Increased 
delivery rates were reported due to prolonged 
network connectivity. However, the 
communication overhead due to running DFS for 
detecting critical links was not measured. In this 
article, we propose to apply localized algorithms 
instead of globalized ones for partition detection. 
Localized algorithms are distributed in nature and 
resemble greedy algorithms, where simple local 
behaviour achieves a desired global objective. In a 
localized algorithm for detection of critical links 
each node makes a decision to determine critical 
nodes or links based only on limited local 
knowledge.  

The purpose of this article is to show that, with 
high probability, possible partition can be detected 
by localized algorithms, therefore greatly reducing 
communication overhead and the speed of 

detecting, allowing network to replicate data or 
service in time if needed.  The paper is organized 
as follows. We describe the existing work on 
critical links and node detection in Section 2. In 
Section 3 we propose and evaluate localized 
algorithms for detection of critical links/nodes and 
compare our localized algorithms with the known 
glob  algorithm. Finally, we conclude our work 
in Se tion 4. 
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2. Literature Review 

Critical nodes and links are only 
idered for a connected graph (or separately 
nit grap
twork 
each connected component of a graph). A 
 A is critical if its removal will disconnect the 
h into two components. A straightforward 
rithm for detecting critical nodes may 
ider, for each node A, the subgraph obtained 
ts removal and removal of all its adjacent 
s, and testing whether this subgraph is 
ected. If it is not connected, the 
sponding node A is a critical node. As a 
equence, node that has only one neighbour is 
ritical (e.g. node N in Fig. 1). 

A faster global algorithm for detecting 
al nodes was described by Duque-Anton, 
aux, and Semal [DBS], Tarjan [T], and 

al and Caffery [GC] who used DFS. It is a 
alized algorithm which can be also 
emented in globalized distributed manner. 
le executing DFS on an undirected graph, we 
 at an arbitrarily chosen node which becomes 
oot. We keep traversing fresh edges and mark 
s as “visited”; on the way we keep pushing 
s into a stack data structure. This process is 
inued until we reach a node which is only 
ected to already visited nodes. At this point 
eep backtracking up to a vertex which has 
s connecting them to nodes which have 
rto not been visited. With a little thought it 
be seen that such a node will always be a 
al node of the graph. Alongside the 

tification of the critical node, it is easy to pop 
ownstream nodes from the stack into a set 
h corresponds to a bi-connected component. 
e the above steps can be executed during DFS 
e same pass, identification of critical nodes 
 only linear time.  

Critical links can de defined in several 
. One possible definition is that a link AB is 



  

critical if both endpoints A and B are critical 
nodes. However, two critical nodes may have 
alternate path between them. For example, in Fig. 
4, nodes O and Q are critical, but alternate path 
between them exits via node P. It is therefore 
better to define critical link as the link connecting 
two critical nodes so that, when this link is 
eliminated from the graph, the graph becomes 
disconnected. 

In [GC], once critical links in an ad hoc 
network are detected, two ways are proposed to 
delay or avoid their failure: changing the trajectory 
of one or both nodes forming the critical link and 
bringing another node to reinforce the link. 
Increased delivery rates were reported due to 
prolonged network connectivity. However, the 
communication overhead due to running DFS for 
detecting critical links was not measured. 
Karumanchi, Muralidharan, and Prakash [KMP], 
Li, and Rus [LR], Vahadat and Becker [VB], Park 
and Corson [PC] attempt to improve the 
communication without avoiding or delaying 
partitioning (’post-partitioning’ approaches). 

Hara [H] proposed three replica allocation 
methods to improve data accessibility by 
replicating data items on mobile hosts. The first 
method is to make a lot of replicas at each node, 
while the two others begin with a step in which 
each mobile host periodically broadcasts its host 
identifier and information on access frequencies to 
data items. After all mobile hosts complete their 
broadcasts, every host knows its connected mobile 
hosts. This partition detection method clearly 
requires a lot of communication overhead. 

Wang and Li [WL1, WL2] proposed a 
mechanism to allow servers in an ad hoc network 
to detect the future partitions and to replicate them 
in each predicted partition. However, this solution 
uses a strong centralized approach to detect 
partitions (their algorithm captures the network 
mobility information using pattern recognition 
technique in the velocity space, so that the time 
and location of network partitioning can be 
predicted) and its applicability as such may be 
questionable. 

Hauspie, Simplot and Carle [HSC] proposed to 
evaluate stability of a path from a source to 
destination by a function that depends on disjoint 
path between them, and the hop distance of each 
of these paths. When the function reaches a 
threshold, data or service replication is performed. 

The protocol has a significant communication 
overhead for evaluating the function. 

Koskinen [K] examined critical transmission 
ranges for biconnectivity and triconnectivity of ad 
hoc networks. He experimentally established an 
asymptotic behaviour that these types of critical 
links can be determined by a function which is 
square root of the ratio of area and linear function 
of number of nodes (coefficients of that function 
are parameters to be determined). 

Hajiaghayi, Immorlica, and Mirrokni 
[HIM] considered the problem of assigning 
transmission power to nodes so that the sum of 
powers is minimized and the network is k-
connected. They use energy cost dα for 
transmission between two nodes at distance d (α 
is a constant between 2 and 6) and the algorithms 
are globalized. To guarantee k-connectivity, 
[BHM] uses a solution where most nodes need to 
have 3k or more neighbors, by enforcing minimal 
angle between two selected neighbors. 

Shah, Chen, and Nahrstedt [SCN] aimed 
at enhancing data access in an ad hoc network by 
detecting partitions in it. They propose a data 
replication mechanism based on partition 
detection for allowing one node to access the data 
from another node even if the connection is 
physically broken. Each node of a connected 
group knows the behavior of other members in a 
group, because each node embeds a positioning 
system (GPS) by successive measures computes 
its velocity, and spreads that information to the 
other nodes. Due to this information, it is possible 
to predict when a node will leave its group. The 
‘node-to-leave’ picks another node of the group to 
be a host of the data and performs a data 
replication on that node. The main advantage of 
this method is that each node knows exactly when 
the partition occurs (regular node movement is 
assumed, without sudden changes in direction). 
However, this method has two main 
disadvantages. First, a positioning system is 
needed. Second, the network is continuously and 
relatively highly loaded due to information 
exchange among nodes. While general ideas in 
[SCN] are good, the essential details are missing. 
The definition of group of nodes is not given, and 
one can even assume the whole connected 
network to be a group, since it also satisfies the 
vague definition given. The protocol for 
predicting link breakage, based on predicting 



  

future locations and connectivity of two nodes, is 
described in detail (a similar protocol was 
described earlier by Stojmenovic, Russell and 
Vukojevic [SRV]) but there is no description of 
any protocol to detect group partitioning; it was 
left up to a node to decide without giving details 
on how it is actually decided.   

Li and Rus [LR] propose an approach in which 
nodes actively modify their  
trajectories to transmit messages. They develop 
algorithm that minimize the trajectory 
modifications under two assumptions: the 
movements of all the nodes in the system are 
known and not known, respectively. 

In cooperative caching, discussed by Cao, Yin 
and Das [CYD], data from server are replicated on 
some nodes in ad hoc network so that access 
demands by other nodes can be satisfied by 
replicated files rather than original files, which 
should reduce traffic in the network or even 
provide service if the server becomes disconnected 
in the meanwhile. The described methods include 
caching data paths toward replicated copy by 
current node, or making another copy of data at 
the node, plus some hybrid method based on some 
criteria. 

 
3 Localized algorithms for partition 

detection 
 

Distributed and dynamic nature of the ad-
hoc networks requires the design of localized 
algorithms to address scalability, robustness and 
energy efficiency issues. Localized algorithms that 
we have developed discover all critical nodes and 
links very quickly. However, these algorithms may 
detect some nodes and links as critical although 
they may not be globally critical. This is 
unavoidable since local knowledge only is used, 
therefore with such restriction it is impossible for a 
node to learn about alternate connections in 
different parts of the network. On the other hand, 
in applications, often long alternate paths do not 
provide satisfactory service, thus localized method 
may even provide more useful decision. Moreover, 
the partition detection is done faster and with 
much less communication overhead. 

We first define what is the local 
knowledge available to nodes and how nodes gain 
it. We use the notion of k-hop knowledge. Two 
nodes are considered to be k-hop neighbours if and 

only if the shortest route between them has k or 
less hops. Awareness of itself only is represented 
as 0-hop knowledge. This may or may not include 
geographic position of the node. Localized 
algorithms that use position information can only 
be applied on nodes that are equipped with GPS 
or find their relative coordinates by measuring 
signal strengths or time delays in mutual 
communication. Nodes collect k-hop knowledge 
by sending ‘hello’ messages to its neighbours 
containing the graph of their (k-1)-hop 
neighbours. Thus 1-hop knowledge is a list of 
direct neighbours, with or without their 
geographic positions.  We refer to these cases as 
being topological and positional information, and 
corresponding knowledge as being k-hop 
topological or k-hop positional information, 
respectively. The 2-hop topological information is 
obtained by transmitting lists of 1-hop neighbours, 
and the subgraph of 2-hop neighbours therefore 
includes existing links between 1-hop neighbours, 
and between a 1-hop and a 2-hop neighbours, but 
not possible links between 2-hop neighbours. On 
the other hand, 2-hop positional information 
includes such links and information, since node 
learns the position of 2-hop neighbours and may, 
based on distances between them and the unit 
graph used, decide whether or not they are 
neighbours. Generalizing this, k-hop topological 
information, and corresponding subgraph of k-hop 
neighbours, include all existing links between a k-
hop and a (k-1)-hop neighbours, but not 
information on whether or not two strictly k-hop 
neighbours (that is, two nodes which are k-hop but 
are not (k-1)-hop neighbours) are connected. 
Since the information about any node in the 
positional case includes its position, in case of k-
hop positional information, such information is 
additionally available. Therefore, localized 
algorithms with position information have more 
information than localized algorithms with 
topological information, and are consequently 
more accurate; they discover less falsely detected 
critical links and nodes. Furthermore, if a 
node/link is declared critical by a local algorithm 
that uses position information, it is also declared 
as critical by the localized algorithm that uses the 
corresponding topological information. The 
reason is that the graph may only have fewer 
edges and thus the partition detected by positional 



  

information cannot be ‘sealed’ by the 
corresponding topological information. 

We shall now describe our localized 
algorithms for detecting critical nodes and links. In 
each of topological and positional cases, we give 
one definition of critical nodes and three 
definitions of critical links. The three definitions 
are based on verifying common neighbours, loop 
length, and critical status of link endpoints, 
respectively. 
 
3.1 Localized algorithms for detection of 
critical nodes  
 

For each node A, consider subgraph of k-
hop neighbours of A, where A and all its incident 
edges are excluded. In case of positional 
information, two nodes in that graph are connected 
if they are connected in the original graph. In case 
of topological information, two nodes in that graph 
are connected if they are connected in the original 
unit graph, and at least one of them is (k-1)-hop 
neighbour of A.   

A node A is k-critical node if the 
corresponding subgraph of k-hop neighbours of A 
is disconnected. Based on information used, this is 
further specified as being topologically or 
positionally k-hop critical node. The 
corresponding algorithms are referred to as being 
k-top_critical_node and k-pos_critical_node 
algorithms.  

Clearly, if a node is globally critical, 
localized algorithm will detect it as such. Further,  
if a node is not declared as critical by k-
top_critical_node algorithm it is also not declared 
as critical by k-pos_critical_node algorithm. That 
is, if a node is declared as critical by k-
pos_critical_node algorithm it is also declared 
critical by k-top_critical_node algorithm. 

 
Figure 2.  Node A is 1-hop critical, node G is 
topologically 3-hop critical and positionally 2-
critical, node M is 1-hop critical 
 

We will now discuss particular cases and 
give some examples as illustration. For k=1, if 
topological information is used, no links between 
neighbours exist in the decision graph, therefore 
all nodes are declared critical with 1-
top_critical_node algorithm. This is obviously not 
very helpful.  

Figure 2 illustrates the localized 
definitions of critical nodes. 1-hop neighbours of 
A can be divided into two sets {B, C} and {E,F} 
(circled in Fig. 2) which are disconnected. 
Therefore A is positionally (and therefore 
topologically) 1-hop critical. Node A is not 2-hop 
critical since its 2-hop neighbour D will connect 
two sets. Node M is 1-hop critical since its 1-hop 
neighbours K and N are not connected. However, 
it is not 2-hop critical since its two hop 
neighbours K, N, and L create a connected 
subgraph (marked by  a rectangle in Fig. 2), both 
topologically and positionally. Node G is 
topologically 3-hop critical since its 3-hop 
neighbours are divided in two subgraphs with 
vertices {H, Z, D} and {J, Y, X, Q, P} (the two sets 
are enclosed by polygons in Fig. 2) which are 
disjoint. However, when position information is 
added, node G can recognize that X and D are in 
fact neighbors, and that two subgraphs are in fact 
connected, therefore X is not positionally 3-hop 
critical. 
 



  

3.2 Localized algorithm for detection of critical 
links based on common k-hop neighbours  
 

If topological information is used, the 
algorithm, referred to as k-link_top_critical 
algorithm, applies the following criterion. AB is a 
critical link if the sets of k-hop neighbours of A 
and B (assuming that the link AB does not exist) 
are disjoint. For k=1, this reduced to the following 
1-link_top_critical algorithm: AB is critical link if 
A and B have no common neighbours (that is, 
there is no node C so that both AC and BC are in 
the unit graph). 

If position information is used, the 
corresponding k-link_pos_critical algorithm is 
defined as follows. AB is a critical link if the sets 
of k-hop neighbours of A and B (assuming again 
that the link AB is removed first from the graph) 
are disjoint, and there are no two nodes, one from 
each set, which are neighbours. For k=1, the 
criterion is that A and B have no common 
neighbours that are within transmission range of 
each other (that is, neighbours).  

 
 

Figure 3.  Examples of critical links HI, AB, XY 
and KL 

 
Consider the example graph in Figure 3. It 

has only one globally critical link, HI. Localized 
algorithms will detect some more critical links. 
For example, 1-top_critical_link algorithm 
declares the link AB as critical, because nodes A 
and B have disjoint 1-hop neighbours (C and D). 
However, 1-pos_critical_link algorithm declares 
correctly that the link AB is not critical, because A 
and B may together agree that C and D are in fact 
neighbours, therefore there exists an alternative 
path from A to B which does contain the link AB. 
The link XY is declared as critical with both 2-
top_critical_link and 2-pos_critical_link 

algorithms. The 2 hop neighbours of X (H, G, I, 
circled in Fig. 3) and Y (D, C, B, E, enclosed in a 
quadrilateral in Fig. 3), are disjoint and there are 
no two nodes, one from each set, which are 
neighbours, hence the link is declared as critical. 
Nevertheless, the 3-top_critical_link scheme 
correctly declares the link XY as not being critical 
because the 3-hop neighbors of X (H, I, O, T, S,G, 
F) and Y (D, C, A, B, E, F) are not disjoint. If we 
examine the link KL with 3-top_critical_link 
algorithm, we declare it as critical, because the 3-
hop neighbors of K (O, P, M, T, S, I, H) and L (R, 
Q, N), both enclosed in quadrilaterals in Fig.3, are 
disjoint. On the other hand, 3-pos_critical_link 
algorithm correctly detects that the link KL is not 
critical. Even though the neighbors of K and L are 
disjoint, the algorithm detects that the link 
between M and N (which are 3-hop neighbors of 
K and L respectively) exists and declares the link 
KL as not being critical.  
 
3.3.  Localized algorithms for detection of 
critical links based on loop length  
 

 In this section, we introduce critical links 
definitions which are based on finding the length 
of shortest loop between two link endpoints. A 
link UV is k-loop_critical if the hop distance 
between U and V in the given graph, with only 
edge UV being eliminated, is >k. There are 
several possible implementations of this 
definition, since a common decision should be 
made between two nodes, link endpoints. In 
general, we can consider kU-hop neighborhood of 
U and kV-hop neighbourhood of V, kU +kV=k. If 
topological information is used, the algorithm is 
defined as follows. A link UV is (kU,kV)-
loop_top_critical if the sets of kU -hop neighbors 
of U and kV -hop neighbors of V are disjoint. It 
follows then that a link is k-link_top_critical if 
and only if it is (k,k)-loop_top_critical (or 2k-
loop_critical in a more general definition). 
Because of such equivalency, and expectation that 
kU = kV is reasonable to assume, we did not 
implement this definition. If positional 
information is used, the corresponding algorithm 
applies the following test. A link UV is (kU,kV)-
loop_pos_critical if the sets of kU -hop neighbors 
of U and kV -hop neighbors of V are disjoint, and 
there are no two nodes, one from each of these 
sets, that are neighbours. It follows then that a link 



  

is k-link_pos_critical if and only if it is (k,k)-
loop_pos_critical (that is, 2k-loop_critical). Note 
that our initial definition of a k-loop_critical link 
is equivalent to the new definition of (k,0)-
loop_critical link. 
 Figure 4 illustrates these definitions. For 
example, after applying 1- and 2-loop_top_critical 
algorithms on link AB, we declare the link as 
critical because from node A we can not reach the 
node B with 2 hops. However, the link will not be 
detected as critical with 2-loop_pos_critical 
algorithm, since 2-hop neighbour node D of A is 
neighbour of node B, based on their geographical 
positions. The 3-loop_top_critical algorithm 
detects the link XY as critical, but the 3-
loop_position_critical correctly detects the link as 
not being critical, since 3-hop neighbour F of node 
Y is a neighbour of X.  The link JK is the link 
where 3-loop_position_critical algorithm wrongly 
declares it as critical. The loop is too wide, and 
more hops are needed in order to correctly declare 
the link as not being critical. The 1-
loop_top_critical scheme is very week, which is 
illustrated on link MN. This scheme only detects 
the node O, which obviously does not form a loop 
from M to N, therefore, all the link is declared 
critical with 1-loop_top_critical algorithm. 
However, the 1-loop_pos_algorithm correctly 
declares the link MN as not being critical.  

 
Figure 4. Loop length based critical links AB, XY, 

MN and JK 
 
Localized algorithms for detection of critical links 
based on loop length, falsely declare many links as 
critical.  
 
 
 

3.4 Localized algorithms for detection of 
critical links based on critical nodes 
 

Perhaps the simplest definition of critical 
nodes is by using prior recognition of critical 
nodes, as follows.  A link AB is declared k-
pos_link-by-node_critical  (k-top_link-by-
node_critical) if both A and B are declared as k-
pos_critical nodes (k-top_critical nodes, 
respectively). The advantage of this definition 
over other two is that the implementation of it 
does not require two nodes to exchange their 
neighbourhood information beyond already 
exchanged one. Instead, they need to exchange 
merely their decisions about being critical nodes.  

Alternatively, each node may decide which 
of its links are k-hop critical by using its (k+1)-
hop information, which involved more 
communication overhead for collecting than the 
suggested decision exchange method. The 
communication overhead involved with detection 
of critical links via critical nodes is the smallest 
among the mentioned definitions and 
corresponding implementations. However, as 
already observed, this algorithm is not as accurate 
for detection of critical links as k-
top/pos_critical_link algorithm. Two critical 
nodes may be connected with more than one link. 
From Figure 4 we see that nodes O and Q are 
critical nodes and that they have a direct link 
between them, yet they also have a common 
neighbour P, which creates a path OPQ. 
Therefore, the link OQ is in fact not critical, 
which can be easily verified with 1-
top_critical_link algorithm. These cases are 
present in our simulations; hence, due to the 
inaccuracy of this algorithm, we did not perform 
the experiments for it.  

 
4. Performance evaluation 
   
 We have measured the accuracy of 
proposed localized critical nodes and links 
detection algorithms by comparing them with the 
corresponding globalized algorithm, that is, with 
the correct conclusion. We will describe here the 
experimental results obtained by experimenting 
with connected random unit graphs. The master 
thesis of the first author (in preparation) contains 
also data for random unit graphs which are 
allowed to be disconnected.  



  

We generate connected random unit 
graphs with n nodes and desired density (average 
number of neighbors) d using the following 
method. This method is selected since we wanted 
to estimate the performance also for very sparse 
networks. This was a time consuming process with 
alternative methods (e.g. generating each node at 
random, deciding proper transmission radius, 
testing connectivity at end).   

An approximate radius r is obtained from the 
formula d=(n-1)*r*r*π/(a*a). The first node is 
randomly generated (that is, its x- and y- 
coordinates are chosen at random) in a given 
square with edge length a. Each of following n-1 
nodes is generated repeatedly, at random, and 
tested whether it is within distance r to at least one 
of previously generated and accepted nodes, until 
the test is satisfied. Otherwise (when it is at 
distance >r to all previously accepted nodes), the 
node is rejected and another node generated and 
tested instead. 

After selecting n nodes with this procedure, a 
connected random unit graph is generated. 
However, its average degree q is not necessarily 
the desired one, d. We now find the exact average 
degree d of generated graph, by counting edges 
and compare it with desired value d.  If q<d, more 
edges need to be added, and graph remains 
connected. We sort all n*(n-1)/2 possible edges 
and desired radius R is the n*d/2-th edge in sorted 
list. Unit graph is then decided using this value of 
R  (that is, two nodes are neighbours if and only if 
the distance between them is at most R). If q=d 
then the graph remains unchanged. If q>d, this 
obtained random unit graph is too dense, and some 
edges need to be deleted by reducing transmission 
radius. We sort all n*(n-1)/2 possible edges in 
increasing order and find the n*d/2-th edge in the 
sorted list. We use this edge as the transmission 
radius R, and define the corresponding graph, 
which may not be connected. Dijkstra’s shortest 
path algorithm is used to check the connectivity of 
this graph. If the graph is not connected, it is 
ignored, and the procedure is repeated. If it is 
connected, which should happen with high 
probability with this procedure, the graph is 
accepted. 
 Our experiments are performed with 
n=100 and n=500 nodes for several densities, 
ranging from 3 to 15. In each case, the main 
measure considered is the detection ratio, which is 

the probability that a node or link declared as 
critical by considered localized algorithm is 
indeed critical when verified by global algorithm.  
We also measured the average number of critical 
nodes and links detected in the network. We 
detection ratios for n=500, which are overall 
somewhat better (by as much as 10%) than for 
n=100, which was counterintuitive but 
encouraging for the scalability of our approach. 

 
4.1 Localized algorithms for detection of 
critical nodes  
 

Tables 1 and 2 show the detection ratios 
for critical nodes, using k-node_top_critical and 
k-node_pos_critical algorithms, for k=1, 2 and 3, 
obtained after 20 simulations for different values 
of d for random connected unit graphs with n=500 
nodes. 

Detection ratios are generally over 50%, 
meaning that over half of locally estimated critical 
nodes were indeed globally critical even for k=1 
(the accuracy increases to over 70% for k=2 and 
over 80% for k=3), for average number of 
neighbours ranging from 3 to 15. As expected the 
k-node_pos_critical algorithm performs better 
than the k-node_top_critical algorithm. 

   

Average degree 
of neighbours 

(d) 

Detection Ratio 
2-hop algorithms 

(%) 

Detection Ratio 
3-hop algorithms 

(%) 
15 50.0 71.4 
11 

64.2 79.5 
10 73.0 90.2 
9 70.4 97.7 
8 73.3 88.7 
7 64.8 82.5 
6 67.9 83.6 
5 71.5 78.6 
4 73.5 91.5 
3 66.7 86.5 

Table 1. Detection ratios for k-node_top_critical 
algorithm on connected graphs with 500 nodes 
 
 



  

 

Average 
degree of 

neighbours 
(d) 

Detection Ratio 
1-hop algorithm 

(%) 

Detection Ratio 
2-hop algorithms 

(%) 

Detection Ratio 
3-hop algorithms

(%) 

15 50.0 71.4 83.3 
11 64.2 82.9 94.4 
10 70.8 85.2 97.9 
9 55.3 74.6 96.8 
8 52.1 75.9 90.9 
7 64.8 82.5 90.4 
6 61.5 78.9 86.2 
5 49.3 76.1 85.1 
4 51.3 80.4 92.5 
3 56.1 69.6 86.5 

Table 2. Detection ratios for k-node_pos_critical 
algorithm on connected graphs with 500 nodes. 
 

Tables 3 and 4 present the average 
numbers of detected critical nodes for each 
algorithm. The third column shows the average 
number of critical nodes detected by global 
algorithms. The fourth and fifth columns show the 
number of critical nodes detected by local 
algorithms for k=2 and 3. 

 
Average 

number of 
neighbours 

(d) 

Average 
number of 
critical nodes 

(global alg) 

Average 
Number of 

critical nodes 
(2-hop alg) 

Average Number 
of critical nodes 

(3-hop alg) 

15 3.0 6.2 4.2 
11 6.8 10.6 7.8 
10 9.2 12.6 10.2 
9 8.8 12.5 9.1
8 11.0 15.0 12.4
7 9.4 14.5 11.4
6 11.2 16.5 13.4
5 14.3 20.0 18.2
4 17.2 23.4 18.8
3 19.2 28.8 22.2

 
Table 3. Average numbers of detected critical 
nodes by k-node_top_critical and global 
algorithms 
 
 
 
 
 
 
 
 
 
 
 
 

Average 
number of 
neighbours 

(d) 

Average 
number of 

critical 
nodes 

(global alg)

Average 
Number of 

critical 
nodes 

(1-hop alg) 

Average 
Number of 

critical 
nodes 

(2-hop alg) 

Average 
Number of 

critical nodes
(3-hop alg) 

15 3.0 6.0 4.2 3.6 
11 6.8 10.6 8.2 7.2 
10 9.2 13.0 10.8 9.4 
9 8.8 15.9 11.8 9.0 
8 11.0 21.1 14.5 12.1 
7 9.4 14.5 11.4 10.4 
6 11.2 18.2 14.2 13.0 
5 14.3 29.0 18.8 16.8 
4 17.2 33.5 21.4 18.6
3 19.2 34.2 27.6 22.2

 
Table 4. Average numbers of detected critical 
nodes by k-node_pos_critical and global 
algorithms 
 

 
It can be observed that there are not many 

critical nodes in graphs, especially for graphs with 
medium density and dense graphs. Localized 
algorithms do not declare too many nodes as 
critical that are in fact not globally critical.  
 
4.2 Localized algorithms for detection of 
critical links  
 

Tables 5 and 6 show the detection ratios 
obtained after 20 simulations on k-
link_top_critical and k-link_pos_critical 
algorithms, for connected random unit graphs 
with n=500 nodes.  

   

Number 
of Nodes

(n) 

Average 
degree of 
neighbours

(d) 

Detection 
Ratio 
1-hop 

algorithm(%) 

Detection 
Ratio 
2-hop 

algorithms (%)

Detection Ratio
3-hop 

algorithms (%)

100 15 31.3 50.0 71.4 
100 11 39.1 64.2 79.5 
100 10 50.5 73.0 90.2 
100 9 43.8 71.2 100. 
100 8 41.7 78.1 90.9 
100 7 44.0 67.7 84.6 
100 6 49.0 72.9 85.0 
100 5 45.9 72.0 80.7 
100 4 47.6 76.9 93.0 
100 3 48.9 67.4 86.7 

Table 5. Detection ratios for k-link_top_critical 
algorithm on connected graphs with 500 nodes 



  

 
Table 6. Detection ratios for k-link_pos_critical 
algorithm on connected graphs with 500 nodes 
 

From these tables we conclude that the 
localized algorithms give excellent results. In 
particular, 3-hops localized algorithms have the 
accuracy greater than 80% for any d, while 2-hop 
localized algorithms have accuracy greater than 
70% in most cases. Even 1-hop localized 
algorithms declare correctly more than 50% of 
links. 

The average number of critical links 
detected by local k-link_top_critical/ k-
link_pos_critical algorithms and the number of 
critical links detected by global algorithm are 
recorded in Tables 7 and 8, respectively.  

 
Average 

number of 
neighbours 

(d) 

Average 
Number of 

links 

Average 
number of 

critical 
links 

(global alg) 

Average 
Number of 

critical 
links 

(1-hop alg) 

Average 
Number of 

critical 
links 

(2-hop alg)

Average 
Number of 

critical 
links 

(3-hop alg)
15 5420 1.5 4.8 3.0 2.1 
11 4523 3.4 8.7 5.3 3.9 
10 4306 4.6 9.1 6.3 5.1 
9 4039 4.2 9.6 5.9 4.2 
8 3785 5.0 12.0 6.4 5.5 
7 3365 4.4 10.0 6.5 5.2 
6 3015 5.1 10.4 7.0 6.1 
5 2785 6.7 14.6 9.3 8.3 
4 2555 8.0 16.8 10.4 8.6 
3 2115 9.1 18.6 13.5 10.5 

 
Table 7. Average number of detected critical links 
by k-link_top_critical and global algorithms 
 
 
 
 

 Average 
degree of 

neighbours (d) 

Detection Ratio 
1-hop algorithm 

(%) 

Detection Ratio 
2-hop algorithms 

(%) 

Detection Ratio
3-hop algorithms

(%) 
15 50.0 71.4 83.3 
11 64.2 82.9 94.4 
10 70.8 85.2 97.9 
9 57.5 76.4 100. 
8 55.6 76.9 92.6 
7 67.7 84.6 93.6 
6 64.6 81.0 86.4 
5 52.8 77.9 89.3 
4 56.3 83.3 97.6 
3 57.2 71.7 86.7 

 
 

Average 
number of 
neighbours

(d) 

Average 
Number of 

links 
 

Average 
number of 

critical 
links 

(global alg) 

Average 
Number of 

critical 
links 

(1-hop alg) 

Average 
Number of 

critical 
links 

(2-hop alg)

Average 
Number of 

critical 
links 

(3-hop alg)
15 5420 1.5 3.0 2.1 1.8 
11 4523 3.4 5.3 4.1 3.6 
10 4306 4.6 6.5 5.4 4.7 
9 4039 4.2 7.3 5.5 4.2 
8 3785 5.0 9.0 6.5 5.4 
7 3365 4.4 6.5 5.2 4.7 
6 3015 5.1 7.9 6.3 5.9 
5 2785 6.7 12.7 8.6 7.5 
4 2555 8.0 14.2 9.6 8.2 
3 2115 9.1 15.9 12.7 10.5 

 
Table 8. Average number of detected critical links 
by k-link_pos_critical and global algorithms 

 
From the tables we conclude that local 

algorithms for detection of critical nodes have 
approximately the same accuracy as the local 
algorithms for detection of critical links. This 
behavior is well expected because if a link is 
declared as critical, then the two nodes making 
this link are also declared critical. So, we can 
expect to have at least two times more critical 
nodes than links. Some critical nodes are not a 
part of a critical link. The number of these nodes 
is not high. For example, no critical nodes that are 
not part of a critical link was found for d between 
10 and 15.  

We will now give some insight in order to 
explain obtained result. Figure 5 shows one of 
obtained random connected unit graphs with 500 
nodes, using our described procedure. The 
average density is high, d=15. The main problem 
that lowers the detection ratio of localized 
algorithms can be associated with creation of ring 
structures shown in Figure 5. Ring structures 
(those producing some critical nodes or links are 
marked by ‘R’ in Fig. 5) are very common in 
these graphs and they are the focal problem in 
detection of critical links/nodes with local 
algorithms. The critical links detected by 1-
top_critical_link algorithm are drown in black in 
Fig. 5. Critical nodes detected by 1-
top_critical_node algorithm are drawn in green in 



  

Fig. 5. Rings are often too wide to be detected by 
3 hops and most of the nodes/links that are part of 
a specific ring are then declared as critical.  These 
rings can be detected if we increase the hop count, 
but then the nature of local algorithms is lost.  
 

 
Figure 5. Ad-hoc network for d=15 
 
4. Conclusion 
 

We described several localized protocols 
for fast and mostly accurate detection of critical 
links and nodes in ad hoc networks. Existing 
algorithms for detection of critical links and nodes 
have a high complexity and require knowledge of 
the topology of a network. This paper showed that 
the localized criteria could successfully be used in 
order to detect critical links/nodes. Our 
experiments show that the localized algorithms are 
reasonably accurate on strongly connected graphs. 
Errors recorded for localized algorithms come 
from the ring structures that are created in graph 
generation. These rings are too wide and more 
hops are needed in order to correctly detect if a 
link or node is critical.  

 
In an upcoming companion article, we 

applied, with suitable modifications and additional 
criteria, the proposed localized algorithms for 
detection of critical links and nodes for service 
replication. In this scenario, a particular route 
between a client and a server node is monitored 
for the presence of critical links or nodes. If such 

node or link is detected, an alternate service in the 
network is searched, or service is replicated. 

The proposed localized partition detection 
schemes may be applied in sensor network 
scenarios. Sensors that detect their criticality or 
existence of critical links may report to 
monitoring center, asking for deployment of 
additional sensors in the area, or wakening up 
some nearby sleeping sensors. We intend to 
consider this application of localized partition 
detection for designing sensor activity scheduling 
protocols. 
 We have considered unit graph model in 
our experiments. However, our protocols based on 
topological knowledge are graph based protocols, 
and can be applied for ad hoc networks with non-
uniform transmission radii. Protocols based on 
positional information require to know also 
transmission radii of nodes in local 
neighbourhood in addition to their positions. 

We originally expected to observe much 
more significant impact of density on the 
detection ratios. We expected that critical 
densities for connectivity will also somehow 
represent significant changes in detection ratios. 
However, our experimental results did not 
indicate any relation. This could be due in part to 
performing experiments only for connected unit 
graphs. It is certainly important to further study 
the relation of connectivity probability and 
detection ratios.  

We are currently designing localized 
algorithms for deciding, at each node, whether or 
not graph is k-connected. Another interesting 
problems is to assign, in localized manner (as 
opposed to globalized solution [HIM]), 
transmission radii to each node so that the 
network is k-connected with high probability.  
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