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Short Title: Characterization of two SPTLC1 mutations in HSAN-I 
Communicated by <Please don’t enter> 

 

ABSTRACT: Hereditary sensory and autonomic neuropathy type I (HSAN-I) is an axonal peripheral 
neuropathy leading to progressive distal sensory loss and severe ulcerations. Mutations in SPTLC1 
and SPTLC2, encoding the two subunits of serine palmitoyltransferase (SPT), the enzyme 
catalyzing the first and rate-limiting step in the de novo synthesis of sphingolipids, have been 
reported to cause HSAN-I. Here, we demonstrate that the SPTLC1 mutations p.S331F and 
p.A352V result in a reduction of SPT activity in vitro and are associated with increased levels of 
the deoxysphingoid bases 1-deoxy-sphinganine and 1-deoxymethyl-sphinganine in patients’ 
plasma samples. Stably expressing p.S331F-SPTLC1 HEK293T cell lines likewise show 
accumulation of deoxysphingoid bases, but this accumulation is not observed in HEK293T cells 
overexpressing p.A352V-SPTLC1. These results confirm that the increased formation of 
deoxysphingoid bases is a key feature for HSAN-I as it is associated with all pathogenic SPTLC1 
and SPTLC2 mutations reported so far, but also warrant for caution in the interpretation of in vitro 
data.  ©2011 Wiley-Liss, Inc. 
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INTRODUCTION 

Inherited peripheral neuropathies are common neurodegenerative disorders of the peripheral nervous system. 

They are genetically and clinically heterogeneous, but based on the predominant involvement of motor or sensory 

neurons, they fall into three main subclasses: hereditary motor and sensory neuropathies (HMSN), hereditary 

motor neuropathies (HMN) and hereditary sensory and autonomic neuropathies (HSAN). The clinical spectrum of 

HSAN is wide and led to the further subdivision into six subtypes (Dyck et al., 1993). Patients with hereditary 

sensory and autonomic neuropathy type I (HSAN-I; MIM 162400) present with progressive loss of pain and 

temperature sensation in the limbs, variable distal muscle weakness and limited autonomic dysfunction. Typically, 

first symptoms appear between the second and third decade of life. The loss of sensation leads to painless injuries 

complicated by ulcerations and osteomyelitis, often necessitating amputation (Auer-Grumbach et al., 2003). 

HSAN-I has a dominant mode of inheritance and is associated with mutations in SPTLC1 (MIM 605712) (Bejaoui 

et al., 2001; Dawkins et al., 2001; Rotthier et al., 2009) and SPTLC2 (MIM 605713) (Rotthier et al., 2010), two 

subunits of the enzyme serine palmitoyltransferase (SPT). SPT is located at the outer membrane of the 

endoplasmic reticulum (ER), where it catalyzes the pyridoxal-5’-phosphate (PLP) dependent condensation of L-

serine with palmitoyl-CoA. This is the first and rate-limiting step in the de novo biosynthesis of sphingolipids 

(Hanada, 2003). Sphingolipids, having both a structural and a signaling function, are essential for all eukaryotic 

cells. Mutations in various enzymes of the sphingolipid metabolism are associated with neurodegenerative diseases 

(Kolter and Sandhoff, 2006), highlighting the importance of these ubiquitous components in neuronal functioning.  

A common feature of the HSAN-I associated mutations in SPTLC1 and SPTLC2 is a reduction of the canonical 

enzymatic activity, but the effect on total sphingolipid levels remains controversial
 
(Bejaoui et al., 2001; Dawkins 

et al., 2001; Dedov et al., 2004; Hornemann et al., 2007). Furthermore, the mutations cause a shift in the substrate 

specificity of SPT, enabling the mutant enzyme to metabolize, besides serine, also alanine and glycine. This results 

in the formation of the two atypical deoxysphingoid bases (DSB) 1-deoxy-sphinganine (1-deoxy-SA) and 1-

deoxymethyl-sphinganine (1-deoxymethyl-SA) (Zitomer et al., 2009; Gable et al., 2010; Penno et al., 2010). Both 

metabolites can be converted to 1-deoxy(methyl)-ceramide and 1-deoxy(methyl)-sphingosine (1-deoxy(methyl)-

SO) but because they lack an essential hydroxyl group, conversion to more complex sphingolipids like glyco- or 

phosphosphingolipids and phosphorylation are hampered, resulting in the accumulation of these intermediate 

metabolites in the cell. Importantly, it was previously shown that DSBs have pronounced neurotoxic effects on 

neurite formation in cultured sensory neurons (Penno et al., 2010).  

Recently, we performed a systematic screening of the known HSAN genes in a large cohort of HSAN patients 

and identified two novel SPTLC1 mutations, p.S331F and p.A352V (Rotthier et al., 2009), bringing the total 

number of SPTLC1 mutations to six (the others being p.C133W, p.C133Y, p.C133R and p.V144D) (Bejaoui et al., 

2001; Dawkins et al., 2001; Rautenstrauss et al., 2009). The p.S331F mutation occurred de novo in a patient with a 

severe congenital phenotype, the p.A352V mutation was detected in an isolated patient with a typical HSAN-I 

phenotype. Further evaluation of the pathogenicity of this latter variant is warranted because of the absence of 

DNA of family members for segregation analysis, the limited evolutionary conservation of the targeted amino acid 

and the similar chemical properties of alanine and valine. 

In the present study, we report the identification of the p.S331F mutation in a patient with severe and early-

onset HSAN-I. Furthermore, functional characterization of both the p.S331F and p.A352V mutations was 

undertaken to a) identify differences between the p.S331F and previously described SPTLC1 mutant proteins that 

could explain the severe phenotype associated with the p.S331F mutation and b) assess the pathogenicity of the 

p.A352V mutation. 
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MATERIALS AND METHODS 

Subjects 

Patient II.2 (MGZ-48522; Fig. 1a) has been described in Huehne et al., 2008. Patients CMT-791.01 and CMT-

186.05 have been described in Rotthier et al., 2009. 

Mutation analysis 

After DNA extraction from EDTA blood using the Flexigene kit (Qiagen, Hilden, Germany), standard PCR and 

direct sequencing with ABI PRISM 3100 Avant (Big Dye v1.1, Applied Biosystems, Foster City, USA) covering 

all 15 coding exons and the flanking regions of the SPTLC1 gene (GenBank: NM_178324.1) was performed. 

Primer sequences are available upon request. Nucleotide numbering reflects cDNA numbering with +1 

corresponding to the A of the ATG translation initiation codon in the reference sequence. The initiation codon is 

codon 1. 

Cloning  

The SPTLC1 cDNA was amplified and cloned into the Gateway® entry vector pDONR221 (Invitrogen, 

Carlsbad, USA) using the primers SPTLC1_attb1 and SPTLC1_attb2. The SPTLC1 mutations p.C133W, p.S331F 

and p.A352V were introduced by site-directed mutagenesis, using the primers listed in supplementary Table 1. The 

constructs were recombined in the destination vector pEF5/FRT/V5-DEST (Invitrogen), fusing the cDNA with a 

C-terminal V5-tag. Additionally, C-terminally EGFP-tagged constructs were constructed and recombined in the 

destination vector pLenti6/V5-DEST (Invitrogen). All constructs were validated by sequencing.  

Stable expression of SPTLC1 constructs in HEK293T cells 

Stable cell lines expressing wild type (wt) or mutant SPTLC1 were generated via calcium phosphate based 

transfection of the Flp-in host cell line HEK293T following manufacturer’s instructions (Invitrogen). The Flp-in 

system ensures the stable insertion of a single copy of the transgene at a specific location. In this way, moderate 

and equal expression of the different transgenes is obtained.  

Lymphoblastoid cell lines  

Lymphoblastoid cell lines were generated as described previously in Rotthier et al., 2010. 

Cell culture material and conditions  

HEK293T Flp-in cells were cultivated in DMEM supplemented with 10% fetal bovine serum, 2 mM L-

glutamine and 100 µg/ml penicillin/streptomycin. SH-SY5Y neuronal cells were
 
cultured in MEM supplemented 

with 10% fetal bovine serum, 2 mM glutamine, 1% non-essential amino acids and 100 µg/ml 

penicillin/streptomycin. Lymphoblastoid cell lines were cultured in RPMI1640 medium supplemented with 10% 

fetal bovine serum, 2 mM L-glutamine, 1mM sodium pyruvate and 200 units/ml penicillin/streptomycin. All cells 

were cultivated at 37°C and 5% CO2. All cell culture media and supplements were from Invitrogen. 

In vitro SPT activity  

SPT activity was measured using the radioactivity-based assay described by Rütti et al., 2009.  

Fumonisin B1 block assay, lipid extraction and hydrolysis and LC-MS  

These assays were performed as described in Penno et al., 2010. 

Structure modelling 

The structure of human SPT was modelled using the high-resolution crystal structure of the Sphingomonas 

paucimobilis SPT homodimer (PDB code: 2JG2; Yard et al., 2007) as a template. The two subunits of 

heterodimeric human SPT exhibit a sequence similarity of respectively 47% and 50% to the bacterial template. 

Model building was performed using Modeller 6.2 (Sanchez and Sali, 2000) and included also the PLP cofactor 

covalently bound as an aldimine to K379 of SPTLC2. The resulting model was refined by energy minimization 
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with Sybyl7.3 (Tripos Inc., St-Louis, USA). Model validation with WHATCHECK (Hooft et al., 1996) revealed a 

correct local geometry and no steric clashes. Rasmol (Sayle and Milner-White, 1995) was used for structure 

analysis and visualization. 

Statistics  

The two-tailed unpaired Student’s t-test and the ANOVA with post hoc correction were used for statistical 

analysis. Error bars (standard deviation) and p-values (Student’s t-test) were calculated based on three independent 

experiments.  

 

RESULTS 

Identification of the SPTLC1 mutation p.S331F in a HSAN-I patient  

Mutation analysis of the complete coding region of the SPTLC1 gene in patient MGZ-48522 (II.2 in Fig. 1a), 

with a severe and early-onset HSAN with additional juvenile cataract and retinal detachment, led to the 

identification of the heterozygous missense mutation c.992C>T (p.S331F). This mutation is absent in the parents 

(Fig 1a) as well as in 300 control individuals. Mutations in PMP22, MPZ, GJB1, EGR2, MFN2, NTRK1 and NGF 

had been previously excluded (Huehne et al., 2008). The identification of the p.S331F mutation in this patient 

provides additional genetic evidence for the pathogenicity of this variant, that was previously identified in patient 

CMT-791.01 with an atypically severe HSAN-I phenotype (Rotthier et al., 2009). The c.1055C>T (p.A352V) 

mutation was previously described in patient CMT-186.05 with a typical HSAN-I phenotype (Rotthier et al., 

2009).  

 

 

Figure 1. De novo p.S331F mutation in a HSAN-I patient and structural model of human SPT. (A) Pedigree of the 

HSAN-I patient MGZ-48522 carrying the de novo c.992C>T mutation (p.S331F) in SPTLC1, with sequence trace 

files of the mutation. Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG 

translation initiation codon in the reference sequence. The initiation codon is codon 1. (B) Structure model of the 

human SPT heterodimer (PDB ID: 2JGT) with the subunits represented in red and blue. The amino acids 

highlighted in yellow, p.S331 and p.A352, are subject of study in this report. The amino acids highlighted in green, 

p.C133 and p.V144, are also mutated in HSAN-I. The cofactor PLP is indicated in orange. 
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p.S331F and p.A352V mutant proteins have a reduced SPT activity  

Complementary to genetic evidence, proof of the pathogenicity of a sequence variant can be inferred from its 

effect on protein function. Therefore, functional characterization of the p.S331F and p.A352V mutant proteins in 

stably transfected HEK293T cells was undertaken. Equal expression of the mutant proteins in HEK293 cells was 

confirmed by Western Blot analysis (Suppl Fig 1). First, we investigated the effect of the p.S331F and p.A352V 

mutations on the canonical SPT activity using two different methods. In a first assay, in vitro SPT activity was 

determined in cell lysates by measuring the incorporation of 
14

C labeled L-serine into lipids. SPT activity in wt 

SPTLC1 expressing cells was slightly different from control cells, however this difference was not observed in an 

alternative assay (see below). The previously characterized p.C133W mutant caused a more than 50% reduction in 

SPT activity which is in agreement with earlier reports (Bejaoui et al., 2002; Hornemann et al., 2007; Hornemann 

et al., 2009). SPT activity was reduced to a similar extent in cells expressing the mutant proteins p.S331F (35-55% 

reduction) and p.A352V (60-65% reduction) (Fig 2a).  

In an alternative assay, growing cells were treated with Fuminosin B1 to block the sphingolipid pathway 

downstream of SPT. This results in a time dependent accumulation of SA. Since SPT catalyzes the rate-limiting 

step in the sphingolipid biosynthesis pathway, the amount of SA accumulating over time reflects canonical SPT 

activity. No difference in SPT activity was observed between wt SPTLC1 and control cells whereas the stable 

expression of the mutants resulted in a significant reduction of SA accumulation (Fig 2b). This confirms that, like 

the p.C133W mutant, the p.S331F and p.A352V mutations in SPTLC1 lead to a reduced SPT activity.  

Like wt SPTLC1 protein, the two mutant forms of SPTLC1 colocalized with the ER marker calreticulin in SH-

SY5Y neuroblastoma cells (Suppl Fig 2), rendering it unlikely that mislocalization of the mutant protein causes the 

loss in SPT activity. 

 

 

 

Figure 2. SPT activity in cells stably expressing SPTLC1 mutant proteins. (A) Radioactive SPT activity assay. 

Total cell lysate was incubated with L-serine, Palmitoyl-CoA, PLP and L-[U-
14

C] serine. After 60 min, lipids were 

extracted and the incorporation of radioactive serine was determined as a measure for SPT activity. (B) Fumonisin 

B1 block assay. SPT activity in HEK293T cells stably expressing wt or mutant SPTLC1 was analyzed by 

measuring SA accumulation after treatment with Fumonisin B1. For both experiments, EGFP expressing cells 

served as control. Data is represented as a mean with error bars representing standard deviations. Standard 

deviation was calculated based on six (A) and three (B) independent experiments. CPM: counts per minute; SA: 

sphinganine; *: p-value < 0.01; ***: p-value < 0.005. 

Accumulation of 1-deoxysphingoid bases in p.S331F but not in p.A352V expressing HEK cells 

To assess the effect of the observed reduction in SPT activity on total sphingolipid levels, we subsequently 

compared the sphingoid base profile of HEK293T cells expressing wt or mutant SPTLC1. We subjected the 

extracted total lipid fraction to a combined acid-base hydrolysis reaction; the resulting free sphingoid bases, which 

reflect the total amount of extracted sphingolipids, were analyzed by LC-MS. For both the HEK293T cell lines 

expressing the transgenic proteins and the lymphoblast cell lines of patients and controls, no significant differences 

in total SO levels between mutant and control cell lines could be observed (Fig 3a and 3b), indicating that despite 

of a reduced canonical SPT activity, total sphingolipid levels are not altered. 
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We furthermore analyzed the DSBs 1-deoxy-SA/1-deoxy-SO and 1-deoxymethyl-SA/1-deoxymethyl-SO, 

which have been shown to accumulate in cells expressing the previously characterized HSAN-I mutants and reflect 

the ability of the mutant proteins to use respectively alanine and glycine instead of serine as a substrate for the 

enzymatic reaction (Penno et al., 2010; Rotthier et al., 2010). In the HEK293T cells stably expressing wt SPTLC1, 

the amount of 1-deoxy-SA was similar to control cells; 1-deoxy-SO was below the detection limit in these cell 

lines (Fig 3c). Expression of the p.C133W mutant resulted in highly elevated 1-deoxy-SA and 1-deoxy-SO 

formation compared to wt SPTLC1 expressing cells, in accordance with previous observations (Penno et al., 

2010). The p.S331F mutant also showed significantly higher levels of 1-deoxy-SA and 1-deoxy-SO compared to 

wt SPTLC1 expressing cells (p-value < 0.001). However, there was no statistical difference between the levels in 

the p.S331F expressing cells and in the p.C133W expressing cells. In the p.A352V expressing cells, the level of 1-

deoxy-SA was similar to the level measured in wt cells; 1-deoxy-SO was above the detection limit, but low.  

1-deoxysphingoid bases are elevated in biosamples of p.S331F and p.A352V patients  

Interestingly, analysis of plasma samples from all three patients described in this study (the two p.S331F 

patients and the p.A352V patient) showed significantly elevated plasma levels of 1-deoxy-SA and 1-deoxy-SO 

when compared to unaffected family members of MGZ-48522 (II.2 in Fig 1a) or unrelated healthy controls (Fig 

3e). In addition, levels of 1-deoxymethyl-SA and 1-deoxymethyl-SO were increased in the p.S331F patients’ 

plasma samples, but were not detected in the plasma of the p.A352V patient. This indicates that the p.S331F 

mutant protein, but not the p.A352V mutant protein, is able to metabolise not only alanine, but also glycine as an 

alternative substrate.  

Highly elevated DSB levels were also observed in lymphoblast cells of the p.S331F patient CMT-791.01 (Fig 

3d). Unfortunately, no lymphoblast cell lines were available from the patient carrying the p.A352V mutation or 

from the p.S331F patient MGZ-48522. Levels of 1-deoxymethyl-SA and 1-deoxymethyl-SO were below the 

detection limit in HEK293T cells and in lymphoblast cell lines (data not shown). 

Taken together, our data show that p.S331F and p.A352V mutant SPTLC1 are associated with a reduction of 

SPT activity in vitro without affecting total sphingolipid levels. Furthermore, both mutations are associated with 

elevated DSB levels in patients’ plasma samples. For the p.S331F mutation, this finding corroborates the 

accumulation of DSBs found in two in vitro assays. For the p.A352V mutation, the result challenges the unaltered 

DSB formation observed in vitro.  

DISCUSSION 

Recently, we identified two novel HSAN associated sequence variants in SPTLC1, namely p.S331F and 

p.A352V (Rotthier et al., 2009). These variants are located far downstream of the 12 amino acid region clustering 

all other previously reported SPTLC1 mutations (p.C133W, p.C133Y, p.C133R and p.V144D). Structural 

information based on a model for human SPT (Fig 1b) indicates that the C133 and V144 residues are located close 

to the SPTLC1:SPTLC2 dimer interface, while the S331 and the A352 amino acids are located more distally. This 

could imply that the pathomechanism is different for these two groups of mutations. Moreover, both the p.S331F 

and the p.A352V mutation were detected in a single patient (de novo or isolated case), providing limited genetic 

evidence for their pathogenicity and calling for a more in-depth analysis of their effect on protein function. 

We now were able to identify a second unrelated HSAN-I patient with the p.S331F mutation (MGZ-48552; II.2 

in Fig 1a), which strengthens the genetic evidence that this variant is causative. Both patients carrying the p.S331F 

mutation show an unusually severe phenotype with early onset insensitivity to pain and pronounced motor 

impairment (Table 1) and non-typical HSAN-I features. In addition to the classical symptoms, the new patient 

described in this study presented with juvenile cataract and retinal detachment whereas the previously reported 

p.S331F patient showed severe growth and mental retardation, vocal cord paralysis and gastro-oesophageal reflux. 

Whether these features are related to the p.S331F mutation is uncertain since most of them are atypical for HSAN-

I, although some have been associated with other inherited peripheral neuropathies (Indo et al., 1996; Kok et al., 

2003; Aboussouan et al., 2007; Claeys et al., 2009). 
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Figure 3. Levels of sphingosine and DSBs. (A,B) Levels of SO are measured after an acid and base hydrolysis 

assay on the extracted lipids in A. HEK293T cells and B. lymphoblast cells. (B) SO levels in a lymphoblast cell 

line of patient CMT-791.01 carrying the p.S331F mutation are compared to the levels in the unaffected parents 

(Cnt1 and Cnt2) and unrelated healthy controls (Cnt3 and Cnt4). (C,D) Levels of 1-deoxy-SA and 1-deoxy-SO are 

measured after an acid and base hydrolysis of the extracted lipids in C. HEK293T cells and D. lymphoblast cells. 

The levels in lymphoblast cell lines of patient CMT-791.01 with the p.S331F mutation are compared to the levels 

in the unaffected parents (Cnt1 and Cnt2) and unrelated healthy controls (Cnt3 and Cnt4). (E) DSB levels in 

plasma samples of p.S331F patient CMT-791.01, p.S331F patient MGZ-48522 and his unaffected family members 

(father, mother and brother), p.A352V patient CMT-186.05 and of three unrelated and healthy control individuals 

(Cnt5, Cnt6 and Cnt7). For each assay, a representative experiment is shown. Data is represented as a mean with 

error bars representing standard deviations. Standard deviation was calculated based on three independent 

experiments. SA: sphinganine; SO: sphingosine. 
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To explain the more severe phenotype in p.S331F patients, we compared the effect of the p.S331F mutation and 

the most intensively studied mutation associated with a typical HSAN-I phenotype, p.C133W, on SPT enzyme 

properties. Our results show that the p.S331F mutation lowers canonical SPT activity without reducing total 

sphingolipid levels in HEK293T cells or patient lymphoblast cells. In addition, the DSB levels were highly 

elevated compared to wt cells, but not significantly different from the level observed in p.C133W expressing cells. 

In this context, it is important to mention that we were likewise unable to observe a correlation between DSB 

levels and the clinical phenotype in our previous study on HSAN-I causing SPTLC2 mutations (Rotthier et al., 

2010). This might imply that DSB levels are not correlated to the severity of the disease, but that other factors, 

such as genetic modifiers, modulate the clinical phenotype. Alternatively, the S331 amino acid might be involved 

in other, yet unidentified functions of the SPT complex that are changed upon mutation. As is apparent from the 

model of the human SPT structure (Fig. 1b), the S331 amino acid residue is located on the surface of the protein, 

rendering it possible that this residue is involved in the interaction with other proteins, such as the recently 

identified small stimulatory subunits of SPT (ssSPT) (Han et al., 2009) and ORM-like proteins (Breslow et al., 

2010; Han et al., 2010). However, information on functional domains of the mammalian SPTLC1 subunit is still 

lacking, limiting the conclusions that can be drawn from the model.  

The biochemical evidence reported so far indicates that all pathogenic mutants in SPTLC1 and SPTLC2 are 

consistently associated with a reduction in the canonical SPT activity and an increased formation of DSB (Eichler 

et al., 2009; Penno et al., 2010; Rotthier et al., 2010) (for overview: see Table 1). This is reinforced by the case of 

the p.G387A variant in SPTLC1. This variant was initially thought to cause HSAN-I in twin sisters (Verhoeven et 

al., 2004), but does not decrease SPT activity (Hornemann et al., 2009) nor increase DSB generation (unpublished 

data). It turned out to be a rare, benign SNP as it was found in homozygous state in a healthy individual 

(Hornemann et al., 2009). We used the information above to assess the impact of the p.A352V variant. Although 

the patient presents with a typical HSAN-I phenotype and despite the absence of the mutation from 300 control 

individuals, segregation analysis of the p.A352V mutation is lacking, the evolutionary conservation of the targeted 

amino acid is limited and the chemical properties of alanine and valine are similar, justifying caution in the 

interpretation of the genetic data. The biochemical experiments performed in this study strengthen the 

pathogenicity of this variant: it reduces SPT activity in vitro and is associated with accumulation of DSBs in 

plasma of the patient, but yet does not cause DSB accumulation in stably expressing HEK cells. A similar effect is 

seen for the p.V144D variant: it shows a clearly reduced SPT activity in vitro and significantly elevated DSB 

levels in plasma (Penno et al., 2010), but only slightly elevated DSB formation in stably expressing HEK cells 

(unpublished data). The reason for this discrepancy in DSB accumulation between stably transfected cells and 

plasma samples is unclear. One possibility is that the effect of the p.A352V and p.V144D mutations on the 

biochemical properties of SPT is more subtle than that of the other SPTLC1 and SPTLC2 mutations, leading to a 

slower rate of DSB formation. In HEK cells, that are allowed to produce DSBs over approximately 72 hours, DSB 

levels might not have reached the limit of detection, while the DSB levels in plasma reflect the long term 

accumulation in patients. However, since the plasma samples are physiologically more relevant, we conclude that 

the p.A352V mutation is indeed disease associated. 

 These results demonstrate the importance of analyzing patient material in addition to performing experiments 

on cell lines overexpressing the mutant protein. Furthermore, the consistent presence of DSBs in plasma shows 

that this could be a valuable biomarker for HSAN-I.  

Analysis of plasma samples shows that the p.S331F mutation additionally increases the affinity of the SPT 

enzyme for glycine, an effect that was previously observed for the p.C133W mutation. The absence of increased 

levels of 1-deoxymethyl-SA in the plasma of patients with the mutation p.C133Y, p.V144D (Penno et al., 2010) or 

p.A352V (this study) indicates however that 1-deoxymethyl-SA is not essential for the pathogenesis of HSAN-I. 

Furthermore, the neurotoxic effect on primary sensory neurons was less pronounced with 1-deoxymethyl-SA than 

with 1-deoxy-SA (Penno et al., 2010). Nevertheless, a contributory role for 1-deoxymethyl-SA in the pathogenesis 

cannot be excluded at this point. 
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Table 1. Overview of all currently known SPTLC1 and SPTLC2 mutations and polymorphisms, the associated 

clinical features and biochemical characteristics. 

 Y: years; Adolesc: adolescent; Cong: congenital; SN: sensory neuropathy; DSB: deoxysphingoid bases; ↓: 

reduced; ↑: moderately elevated; ↑↑: highly elevated; -: unchanged 

 

The question of the causality in HSAN-I is subject of debate. The impact of reduced SPT activity on total 

sphingolipid levels remains controversial. Reports on decreased ceramide and sphingomyelin synthesis were 

published (Bejaoui et al., 2002; Gable et al., 2002), other studies reported increased levels of glucosylceramide 

(McCampbell et al., 2005), while yet other reports did not observe any changes in lipid composition (Dedov et al., 

2004; Hornemann et al., 2007). In this study, we showed that total sphingolipid levels are not significantly altered 

by the reduction in canonical SPT activity (Fig 3a,b). In addition, heterozygous SPTLC1 and SPTLC2 knockout 

mice, despite showing significantly reduced SPT activity (Hojjati et al., 2005), do not develop a neuropathy even 

at older age, rendering it unlikely that haploinsufficiency itself is sufficient to cause HSAN-I. Toxicity inherent to 

the mutant protein is also unlikely to be the causative factor, since double transgenic mice overexpressing both wt 

SPTLC1 and the p.C133W variant do not develop a neuropathy (Eichler et al., 2009). These observations 

strengthen the hypothesis that the accumulation of neurotoxic DSBs underlies the pathology in HSAN-I (Eichler et 

al., 2009; Penno et al., 2010). This is further supported by the observation that the exogenous addition of 1-deoxy-

SA but not of SA to cultured primary dorsal root ganglia is neurotoxic by impairing neurite outgrowth, probably 

secondary to disturbing cytoskeletal integrity (Penno et al., 2010). In this context, it is interesting to note that 

exogenous addition of 1-deoxy-SA was reported earlier to impair stress fiber formation by interfering with the Rho 

GTPase signaling cascade (Cuadros et al., 2000). Members of the Rho GTPase family regulate various processes 

involving actin and neurofilament dynamics, cell polarization, axonal stabilization and growth cone formation 

(Heasman and Ridley, 2008). Destabilization of axonal structures could be envisaged to cause the progressive 

axonal degeneration seen in HSAN-I patients. However, whether the endogenous generation of 1-deoxy-SA in 

neuronal cells has the same effect has not been investigated yet.  

 Disease characteristics 
Biochemical 

characteristics 
Ref 

Variant  Age at onset Clinical features SPT activity 
DSB 
formation 

 

SPTLC1 

p.C133W 
(c.399T>G) 

Adolesc – 
adult 

Predominant SN, ulceromutilations, 
lancinating pains 

↓ ↑↑ 

Bejaoui 2001& 2002; Dawkins 
2001; Dedov 2004; Gable 2002 ; 
Hornemann 2009; McCampbell 
2005; Penno 2010 

p.C133Y 
(c.398G>A) 

Adolesc – 
adult 

Predominant SN, ulceromutilations, 
lancinating pains ↓ ↑↑ 

Bejaoui 2001 & 2002; Dawkins 
2001; Gable 2002 ; Penno 2010 

p.C133R 
(c.397T>C) 

Adult Predominant SN ? ? Rautenstrauss 2009 

p.V144D 
(c.431T>A) 

Adolesc - 
adult 

Predominant SN, ulceromutilations, 
lancinating pains ↓ ↑  (plasma) 

Dawkins 2001; 
Gable 2002; Hornemann 2009; 
Penno 2010 

Cong (CMT-
791.01) 

Insensitivity to pain, ulcerations, motor 
involvement, severe growth and mental 
retardation, microcephaly, hypotonia, vocal 
cord paralysis, gastro-oesophageal reflux 

Rotthier 2009; this study 
p.S331F 
(c.992C>T) 

Early onset 
(MGZ-48522) 

Insensitvity to pain, ulcerations, motor 
impairment, juvenile cataract 

↓ ↑↑ 

this study 

p.A352V 
(c.1055C>T) 

16y 
Predominant SN, lancinating pains, no 
ulceromutilations ↓ ↑ (plasma) Rotthier 2009; this study 

p.G387A 
(c.1160G>C) 

Not disease associated - - 
Verhoeven 2004 ; Hornemann 
2009 

SPTLC2 

p.V359M 
(c.1075G>A) 

52y Predominant SN, ulceromutilations ↓ ↑↑ Rotthier 2010 

p.G382V 
(c.1145G>T) 

adult Predominant SN, ulceromutilations ↓ ↑↑ Rotthier 2010 

p.I504F 
(c.1510A>T) 

5y 
Sensory dysfunction, ulcerations and 
osteomyelitis, distal weakness, foot 
deformities, anhidrosis 

↓ ↑↑ Rotthier 2010 
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In conclusion, our results demonstrate that the SPTLC1 mutation p.S331F, which is associated with a severe 

HSAN-I phenotype, has the same effect on SPT activity and DSB formation as the previously characterized 

SPTLC1 mutations, suggesting that additional factors influence the disease course. Furthermore, we show that the 

p.A352V mutation, for which genetic evidence for pathogenicity is poor, is truly disease causing, as it is associated 

with a reduced SPT activity and elevated DSB levels in patient plasma. 
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SUPPLEMENTARY MATERIALS AND METHODS 

Lentiviral transduction of SH-SY5Y cells 

Lentivirus encoding wt or mutant SPTLC1-EGFP fusion constructs was produced in HEK293T cells by 

cotransfection of 10 µg pLenti-SPTLC1 expression construct together with 3 µg of pMD2-VSV and 6.5 µg of 

pCMV-R8.91 viral packaging vectors for lentivirus. The calcium transfection medium was replaced 8 h 

posttransfection with medium containing 10 mM sodium butyrate to enhance promoter activity. The following day 

the medium was replaced with complete MEM medium and lentiviral production was allowed to proceed for 24 h. 

The produced lentivirus was harvested by filtering the supernatant.  

Stable neuronal
 
cell lines (SH-SY5Y) were obtained by lentiviral transduction, according to the method 

described by Salmon
 
and Trono (Salmon and Trono, 2002). After infection, the cells were selected in complete 

MEM containing the selection agent blasticidin (3 µg/ml)
 
for 2-3 weeks. The whole population of selected cells

 

was pooled for further experiments.  

Western blot 

Cell lysates from stably expressing HEK293T cells were prepared in E1A lysis buffer (1% NP-40, 20 mM 

HEPES (pH 7.9), 250 mM NaCl, 20 mM β-glycerophosphate, 10 mM NaF, 1 mM sodium orthovanadate, 2 mM 

dithiothreitol, 1 mM EDTA and a protease inhibitor cocktail). Protein concentration was determined using the 

Bradford method (Biorad, Hercules, USA). Equal amounts of protein extracts were separated on 4-12% Bis-Tris 

NuPAGE gels (Invitrogen) and transferred to nitrocellulose membranes (Hybond
TM

-P, GE Healthcare, Uppsala, 

Sweden). After blocking in 5% milk powder in PBS-Tween (1x PBS supplemented with 0.1% Tween 20), blots 

were incubated with a primary polyclonal SPTLC1 antibody (1:2500; BD Biosciences, Franklin Lakes, USA) 

overnight at 4°C, washed with PBS-Tween and incubated for one hour with a secondary horseradish peroxidase 

conjugated anti-mouse antibody (1:10000; GE healthcare). After washing, blots were developed using the 

enhanced chemiluminescence Plus
TM

 detection system (GE healthcare).  

Immunocytochemistry and microscopy  

SH-SY5Y cells stably expressing EGFP-tagged wt or mutant SPTLC1 were fixed in 4% paraformaldehyde in 

PBS for 20 min, followed by a permeabilization step in 0.1% Triton X-100 in PBS for 3 min. After blocking with 

5% FBS and 0.5% BSA in PBS-Triton (1x PBS supplemented with 0.02% Triton) for 1 h, cells were incubated 

with primary monoclonal antibody recognizing the ER marker calreticulin (1:500; Abcam, Cambridge, UK) for 1 h 
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at room temperature. The primary antibody was detected using a secondary donkey anti-mouse IgG conjugated to 

Alexa Fluor 594 (1:200; Molecular Probes, Paisley, UK) for 1 h at room temperature, combined with Hoechst 

33342 (Invitrogen) for staining of the nuclei. After washing with PBS, cells were mounted in Vectashield medium 

(Vector Labs, Burlingame, USA). Cells were
 
microscopically examined and images were acquired on a Zeiss 

Axiovert 200 microscope with a microlens-enhanced dual spinning disc confocal system (UltraVIEW
 
ERS; 

PerkinElmer, Seer Green, UK), equipped with a 60X 1.4 NA-objective.  

 

SUPPLEMENTARY FIGURES 

Supplementary Figure S1. Expression of wt and mutant SPTLC1 in HEK293T cells. Western blot shows 

equal expression levels of endogenous SPTLC1 (lower band, 53 kDa) and V5-tagged SPTLC1 (upper band). 

Given the comparable intensity of the wt and mutant transgenic bands, it can be concluded that the mutations do 

not interfere with the expression of the protein. Moreover, this blot shows that the transgenes are expressed at a 

moderate level with an approximate 1 to 1 ratio of transgenic and endogenous SPTLC1, mimicking the situation in 

HSAN-I patients. 

 

 

 

Supplementary Figure S2. Confocal micrographs of SH-SY5Y cells expressing SPTLC1. Cells were 

transfected with either wt (upper row) or mutant EGFP-tagged SPTLC1 (middle and lower row; green in merge) 

and stained for endogenous calreticulin expression (red in merge) to study colocalization of wt and mutant protein 

with the ER. Scale bar = 10µm. The identical localization of V5-tagged and EGFP-tagged wild type SPTLC1 (data 

not shown) indicates that the EGFP-tag does not interfere with the localization of the protein. Wt EGFP-tagged 

SPTLC1 clearly colocalized with calreticulin, confirming that the EGFP-tag does not disturb the proper 

localization of the transgenic protein. Similarly to wt SPTLC1, both the p.S331F and the p.A352V mutants 

colocalized with calreticulin, showing that the mutations do not cause mislocalization of the mutant protein. 
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