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Abstract: Increasing information about future driving conditions in vehicles makes predictive
energy management realistic. This energy management strategy uses a dynamic programming
algorithm on a sliding window in order to minimize the hybrid vehicle fuel consumption. For real
time implementation, it is necessary to reduce computational time so as to embed this control
on an automotive calculator. This paper focuses on the influence of the prediction horizon and
battery capacity on CO2 emission in the case of a combined hybrid electric vehicle.
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1. INTRODUCTION

The hybrid vehicle is one of the possible solutions for
reducing greenhouse gas emission in passenger transporta-
tion. The opportunity for using different prime movers to
satisfy the power demand allows the supervisory control to
choose the energy flow that minimizes global greenhouse
gas emission. This optimization problem, often called en-
ergy management (Guzzella and Sciarretta (2007)), has
sparked the interest of researchers (Sciarretta and Guzzella
(2007)) and car manufacturers because it enhances fuel
economy without increasing the final cost of the vehicle.
When the entire mission is known, optimization algorithms
such as dynamic programming (Bertsekas (2005)) can find
the optimal power flow. Since however, in real-time imple-
mentation, the mission is unknown at the outset, dynamic
programming cannot be used.

The estimation of future driving conditions on a sliding
window will become possible with improvements in telem-
atics and new radar system, leading some authors (Back
et al. (2002), Koot et al. (2004)) to develop predictive en-
ergy management. This control strategy estimates future
power demand with a vehicle model and then uses dynamic
programming on this estimation. The strategy respects the
model predictive control (MPC) principle (Morari and Lee
(1999), Qin and Badgwell (2003)), initially developed for
low dynamical system dynamic systems such as the process
industries.

This paper proposes to study the influence of the predic-
tion horizon and battery capacity on fuel economy. While
it is logical that fuel consumption will decrease with an
increase in the prediction horizon, it is not straightforward
to determine to what extent this results in fuel econ-
omy. Battery capacity was studied for optimal sizing in

(Rousseau et al. (2008), Sundstrom et al. (2008)). In this
study, the purpose is to understand the influence of battery
capacity for a predictive strategy. An illustration on a
dual-mode power-split hybrid powertrain (Debert et al.
(2010)) is proposed. The hybrid transmission is composed
of a planetary gear sets arrangement and two electric
motors (Villeneuve (2004)).

The first section describes the hybrid vehicle and its
modeling with a focus on the battery model. The second
section is devoted to the predictive energy management
formulation. The third section presents some results and
interpretations.

2. THE HYBRID VEHICLE MODEL

2.1 The hybrid powertrain

The hybrid vehicle studied uses a complex transmission
composed of planetary gear sets and two electric motors
connected to a power battery Fig. 1. This transmission
has a dual-mode structure, with the first mode used for
low speed and the second mode for high speed. The dual-
mode structure enhances power passing through the high
efficiency mechanical path, thereby improving the global
efficiency of the powertrain (Debert et al. (2010)).

The predictive energy management strategy (Back et al.
(2002)) is based on a quasi-static vehicle model. This
model evaluates CO2 emission and the variation of battery
state of charge as a function of control inputs and vehicle
speed and acceleration.

2.2 Quasi-static model

From the vehicle speed and acceleration a longitudinal
dynamic model of the vehicle gives the wheel torque To
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and wheel speed wo (Guzzella and Sciarretta (2007)). Since
power losses in the kinematic chain are negligible, the
energy conservation gives

Pe + Tiwi + Towo = 0, (1)

where Ti and wi represent respectively the engine torque
and speed. Pe represents mechanical power provided or
recuperated by the two electric motors

Pe = Te1we1 + Te2we2 , (2)

with Te1 ,Te2 ,we1 ,we2 the torque and speed of electric
motor 1 and 2.

To realize drivers’ demands which are interpreted as a
wheel torque To for a given wheel speed wo, the system
has two degrees of freedom (1). This assertion is well
known for a combined hybrid configuration Sciarretta and
Guzzella (2007). The predictive energy management strat-
egy, discussed in the following section, makes the most of
these degrees of freedom for reducing CO2 emission. Since
To,wo are already known in (1), the energy management
can set two manipulated variables chosen among the three
variables Ti, wi, Pe. For reasons of representativity, the
commonly manipulated variable for internal combustion
engine torque Ti and the power Pe provided or recuperated
in the kinematic chain by the electrical path were chosen.
Thus the control vector is denoted

u =
[
Ti
Pe

]
(3)

Then the engine speed wi is calculated considering the
energy conservation in the kinematic chain (1)

wi = −Towo + Pe
Ti

. (4)

The engine fuel consumption is computed with a map
obtained from engine test bench and the CO2 emission
is deduced using the fuel properties.

Then the electrical path set points are also calculated using
the kinematic relations of the electric variable transmission
(5) and (6).
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(
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)
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)
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(5)

the coefficients A1, A2, B1, B2, C1, C2, D1, D2 are fixed by
the planetary gear set design (i.e. by the number of teeth
in each component).

Mode 1 :

(
Ti
To

)
= MT

1 ·
(
Te1
Te2

)
Mode 2 :
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)
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2 ·
(
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)
.

(6)

2.3 Battery model

The battery represents a reversible electrical energy stor-
age system; the amount of charge remaining in the battery
is the state of charge, expressed as a percentage of the
battery nominal capacity. Since the battery state of charge
is the unknown result of energy management control, this
variable has to be modeled as a dynamic system.

Power provided or recuperated by the battery is calculated
by adding up all the electrical power demands

Pbat = Te1we1 + Ploss1(Te1 , we1 , Ubat)+
Te2we2 + Ploss2(Te2 , we2 , Ubat) + Pacc,

(7)

with Ploss1 , Ploss2 the power losses in the electric motors.
These losses depend on the electric motors set points given
by (5),(6) and battery voltage Ubat (i.e. the electric motors
are directly linked to the battery). Pacc represents the
power consumption of all auxiliary electrical loads.

The battery is then modeled as an open circuit voltage
source ocv in series with an internal resistance Rint. These
two components vary with battery state of charge x.
Battery current Ibat is calculated from Kirchhoff’s law

Ibat =
ocv(x)−

√
ocv(x)2 − 4PbatRint(x)

2Rint(x)
. (8)

Battery state of charge, representing the dynamic part of
the model, is calculated by integrating the current (9). In
the case of energy recuperation a fraction of the current is
not transformed into charge. This physical loss is modeled
by the Coulombic efficiency η

x(t) =
1

Qmax

∫ t

0

I∗bat(τ)dτ

I∗bat =
{
Ibat if Ibat ≥ 0
ηIbat if Ibat < 0,

(9)

where Qmax is the maximum charge capacity of the
battery. Because the purpose of this paper is to understand
the influence of battery capacity, Qmax varies according to
the experiment. Then the state dynamic which represents
the variation in the battery state of charge is described by

ẋ(t) = f
(
x(t),u(t)

)
, x(0) = x0. (10)

As the battery current is correlated to thermal dissipation
by the Joule effect, the lower the battery current, the
higher the battery efficiency. For a given battery power,
a high open circuit voltage source ensures low current
(8). Open circuit voltage is a function of battery state of
charge. Since the battery state of charge dynamics depends
on battery capacity (9), it is logical to study this influence
on the overall efficiency. The studied battery capacity is
border between 0.8 to 6.3 kWh, considering 100 Wh/kg,
the influence of battery capacity on the overall vehicle
mass was neglected.



3. PREDICTIVE ENERGY MANAGEMENT

3.1 Energy management general formulation

The energy management controller has to set the two
manipulated variables u = [Ti, Pe]T throughout the entire
mission in order to minimize CO2 emission. This prob-
lem is equivalent to a dynamic constrained optimization
problem

min
u

{
J(x,u) =

∫ T

0

L
(
u(t)

)
dt+ Φ

(
x(T )

)}
with respect to :

ẋ(t) = f
(
x(t),u(t)

)
, x(0) = x0

x(t) ∈ X,∀t ≥ 0
u(t) ∈ U,∀t ≥ 0.

(11)

with Φ
(
x(T )

)
a penalty function which guarantees a

minimum battery state of charge at the end of the mission,
L
(
u(t)

)
an instantaneous greenhouse gas emission. u(t)

represents the control vector and x(t) the state variable
which represents battery state of charge. Furthermore the
input and state constraints sets U,X are defined by

U =
{
u ∈ R2 |umin(t) ≤ u ≤ umax(t)}

X = {x ∈ R |xmin ≤ x ≤ xmax}
(12)

xmin, xmax are physical battery state of charge limitations,
umin,umax are input constraints such as the engine and
electric motors limitations. It is also possible to include
for example engine limitations for low speed drive in
order to enhance noise agreement. Since in real time
implementation, the entire mission cannot be known at
the outset, this optimization problem cannot be solved
directly. One way to minimize the overall CO2 emission
is to solve the previous problem on a prediction of future
driving conditions.

3.2 Predictive control

The control used in this paper follows the model predictive
control paradigm. This predictive control is formulated
as a repeated solution of a finite horizon optimal control
problem with respect to system dynamics, input and
state constraints. For each sampling period of the energy
management calculator the following sequence is repeated:

• Generation of the future trajectory
• Minimization of the cost function over the receding

prediction horizon starting with the current state of
charge
• Application of the first part of the control signal

on the process during the sampling period of the
calculator.

At the computation time t0, the future trajectory T̂o(τ),
ŵo(τ), τ ∈ [t0; t0 + tp] on the prediction horizon tp is
estimated with onboard instruments and model based
algorithm. For this study, the estimation is a perfect
representation of future driving conditions.

Then a dynamic programming algorithm finds the optimal
control u(τ) that minimizes greenhouse gas emission on
the future trajectory T̂o(τ), ŵo(τ) (13).



min
u

{
J(x̂,u) =

∫ t0+tp

t0

L̂
(
u(t)

)
dt+ Θ

(
x̂(to + tp)

)}
with respect to :
˙̂x(t) = f

(
x̂(t),u(t)

)
, x̂(t0) = x(t0)

x̂(t) ∈ ℵ(t),∀t ≥ 0
u(t) ∈ U,∀t ≥ 0.

(13)

The quasi-static model of the vehicle gives the estimation
of greenhouse gas emission L̂ and the variation of battery
state of charge ˙̂x (Fig. 2).
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Fig. 2. Signal flow of the quasi-static model of the vehicle

As in Back et al. (2002), the penalty function is governed
by (14) which guarantees charge sustaining but doesn’t
limit kinetic energy recuperation

Θ(x) =
{

0 if x ≥ xend
∞ if x < xend.

(14)

Where xend represents the minimum value of final battery
state of charge.

3.3 Computational time reduction

The computational time required is the main disadvantage
of the dynamic programming algorithm. In order to apply
optimal predictive control during the sampling period, it
is therefore necessary to introduce some improvements so
as to reduce the computational burden.

The search grid ℵ (Fig. 3) is reduced by considering the
maximum energy recuperation or the maximum battery
discharge capacity (Back et al. (2004))
ℵ(t) = {x̂(t) ∈ R |x̄min(t) ≤ x̂(t) ≤ x̄max(t)} , (15)

x̄min(t) and x̄max(t) are defined considering the physical
limitations of prime movers and battery{

x̄min(t) = max{x̂+
t0+tp(t), x̂−t0(t), xmin}

x̄max(t) = min{x̂+
t0(t), xmax},

(16)

where x̂+
t0+tp(t) represents the maximum rechargeable tra-

jectory that respects the final battery state of charge con-
straint, x̂−t0(t) is the maximum charge depleting trajectory
for the starting battery state of charge xt0 and x̂+

t0(t) is the
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Fig. 3. Reduction of state space grid search

maximum rechargeable trajectory for the starting battery
state of charge xt0 .

Reducing the search grid is not enough for real time
implementation because the optimization results require
more time than the sampling period of the calculator.
In Koot et al. (2005) the authors approximate the cost
criterion with a second order polynomial function of the
manipulated variable and then use quadratic programming
to solve the optimization problem. While this method
considerably reduces computational time, it is not suited
for the combined hybrid energy management purpose
since a second order polynomial function of manipulated
variables and wheel set point (To, wo) is not representative
of CO2 emission. The loss of information induced by this
approximation results in a control strategy which is too
far from optimal solution.

Another solution is to reduce the dynamic programming
algorithm computational time by constraining some of the
manipulated variables (Debert et al. (2010)). Considering
that energy losses mainly come from the internal combus-
tion engine, the strategy favors best engine efficiency set
points by fixing the engine speed wi and engine torque Ti
as a function of the engine power Pi

[Ti, wi] = g(Pi). (17)
Therefore the system is more constrained and a degree of
freedom is lost which means that the previous multi input
control is transformed into a single input control

u = Pi. (18)
This strategy gives sub-optimal results but the increase in
fuel consumption is acceptable for the predictive control
strategy. Results presented in Debert et al. (2010) shows
that for a NEDC cycle this strategy gives an extra fuel
consumption of 3% with a computational time divided by
62.

3.4 Implementation

The predictive energy management algorithm respects
real time implementation requirements. Computational
time was sufficiently reduced for the predictive energy
management strategy to be used in a vehicle calculator.
In Finkeldei and Back (2004) the MPC algorithm was
embedded on a power PC.

A possible interaction of the predictive management in
the vehicle control environment is proposed in Fig. 4. The
control architecture is based upon four different layers.
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energy management in the vehicle environment

• Extended Driver Interpretation is devoted to the in-
terpretation of driver demands. It analyzes signals
coming from driver actuators such as throttle pedal,
gear shift lever, Zero Emission Vehicle button (i.e.
which forces a purely electric drive) etc. and the vehi-
cle environment (vehicle speed, road slope etc.). With
this information, it calculates the required torque at
the wheel and driveability constraints to ensure a
smooth drive.

• MPC calculates the best prime mover parameters
in terms of fuel consumption that satisfy driver de-
mands. This layer integrates the predictive energy
management algorithm.

• System Control Optimization ensures a dynamic con-
trol of prime mover parameters, mode change, engine
stop-start, torque creeping etc. It implements, as well
as possible, references coming from the operating
point optimization layer.

• Component Control ensures dynamic control of com-
ponents especially in transient modes.

This control architecture was tested on a dynamic model
of the vehicle with a driver model.



4. RESULTS

4.1 Simulation

This paper proposes to study the influence of the horizon
prediction and the battery capacity on CO2 emission in
a predictive energy management. The predictive energy
management previously described was applied on different
driving cycles with the same initial and final battery state
of charge of 50% and 30%. The charge sustaining around
30% represents the embedded strategy for a plug-in hybrid
when the available electrical energy is low (i.e. often used
for homologation strategies after the charge depleting).
The charge sustaining around 50% represents the em-
bedded strategy for conventional hybrid. An example of
predictive strategy simulation is proposed on Fig. 5
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The final constraints (14) forces the predictive strategy to
limits battery state of charge range. When the prediction
horizon grows, the predictive strategy disposes of more
liberty to wide this range. Fig. 5 shows that the battery
state of charge trajectory for the 2s predictive horizon
is higher than the 20s one. 2s of prediction horizon is
not enough to estimate kinetic energy recuperation while
braking.

4.2 Influence of prediction horizon

Since the studied variable is the prediction horizon, the
battery capacity is set at 1.3 kWh which is the battery
capacity of the Toyota Prius III. Because predictive energy
management doesn’t constraint free kinetic energy recu-
peration (14)(Fig. 5), final battery state of charge is not ex-
actly the same for different prediction horizons. Therefore
the final CO2 emission cannot be directly compared, but is
compared to the optimal CO2 emission given by a dynamic
programming algorithm (Debert et al. (2010))(i.e. DP is
applied using, for each case, the same value of final SOC
as the predictive strategy). Table 1 presents extra CO2

emission on standard regulatory cycle and on the Artemis
driving cycles (Andre (2004)).

Since on-board information about future driving condi-
tions is limited, prediction horizons higher than 30s are not
considered. Moreover computational time increases with

Table 1. Extra CO2 emission in different driv-
ing cycles with a charge sustaining strategy

around 30%

Cycle / Horizon (s) 2 5 10 20 30

Artemis Extra-urban 4% 2.6% 2% 1.8% 1%
Artemis Urban 6.6% 5.2% 4.5% 2.3% 1.2%

Artemis Traffic-Jam 14.7% 5.7% 3.8% 2.3% 1.2%
NEDC 3.1% 2.3% 2% 1.5% 1%

high predictive horizon which runs counter to real time
implementation requirements.

As expected, the CO2 emission decreases when the pre-
dictive energy management possesses of more information
about future driving conditions. The relation between CO2

emission and predictive horizon is not linear. Increasing
predictive horizon from 2 seconds to 3 seconds is more
interesting for reducing CO2 emission than increasing it
from 20 seconds to 21 seconds. Considering the general
form of extra CO2 emission (Z) as a function of predictive
horizon, it can be approximated by a decreasing exponen-
tial function

Z = α · e−βtp . (19)
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4.3 Influence of battery capacity

This section is devoted to the influence of battery capacity
Qmax on fuel consumption in predictive energy manage-
ment.
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If the amount of energy available during recuperation
events exceeds battery capacity, some energy cannot be
recuperated and must be wasted in conventional braking.
This event considerably decreases the predictive energy
strategy performance and is not the purpose of this study.
Therefore results presented in this section always trans-
form kinetic energy into electrochemical energy with re-
spects to battery state of charge limitations.

The predictive strategy with different battery capacities
and predictive horizons was evaluated on standard reg-
ulatory cycles and on the Artemis cycle. An example of
simulation result obtained on an Artemis Extra-urban
driving cycle is proposed in Fig. 7. This result shows that
battery capacity has no real impact on the performance
of predictive strategy. In the studied hybrid configuration,
the thermal engine operating point is completely indepen-
dent of battery state of charge. Moreover the open circuit
voltage variation in battery state of charge domain X is
relatively low for Li-ion battery technology. This explains
the results obtained for all the driving cycles tested. Note
that there are no energy losses in conventional braking
which would penalize lower battery capacity.

Sometimes there is local increasing extra fuel consumption
for higher prediction horizon (e.g. between 5s and 7s of
prediction horizon). This can be explained by comparing
the battery state of charge trajectory on the overall driving
cycle. When this exceptional event occurs the trajectory
taken by the lower prediction horizon is closer to the
optimal one than the higher horizon.

5. CONCLUSION

Global optimizations such as dynamic programming are
not directly suited for real time requirements. However,
the future driving conditions can be predicted during
real time operation, making it possible to use a model
predictive control on the receding windows. The predictive
control uses a dynamic programming algorithm applied
on a vehicle model. Improvements are required to reduce
computational time in order to use this strategy in real
time. A classical optimization of state space search is
necessary but not sufficient for a combined hybrid. A
new strategy based on the engine efficiency, well suited
for the hybrid configuration considered, was used and
considerably reduces computational effort.

Simulation clearly demonstrated the benefits of a high
predictive horizon on fuel consumption for the studied
hybrid vehicle. Extra CO2 emission compared to the opti-
mal solution as a function of the predictive horizon can be
approximated as a decreasing exponential function. When
there is no energy loss in conventional brakes the influence
of battery capacity is negligible on the performance of
the predictive strategy. For this hybrid configuration with
the predictive energy management proposed, high battery
capacity serves only to ensure autonomy in the purely
electric drive range.

The influence of perturbations in future driving conditions
in predictive energy management remains an open ques-
tion. It would be interesting to know the impact of these
perturbations on final CO2 emission.
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