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The application of statistical tests often generates problems, because of their randomness. Here, stemming from the variability of statistical tests, the reproducibility probability of a statistically significant result (RP ) is estimated first. Then, statistical tests are defined on the basis of RP estimation. Lower bounds for RP , and then pointwise RP estimates are used. It is emphasized that the threshold for the RP pointwise estimator to define statistical tests turns out to be 1/2. Hence, taking the perspective of RP estimation, one can compute statistical tests and have suitable interpretations of their results.

Introduction

The applications of statistical tests in various research fields often generates problems, because the results obtained through statistical hypothesis testing have been, and are, often confuted in further studies, for example in the biomedical field. Indeed, [START_REF] Goodman | A comment on replication, p-values and evidence[END_REF] showed that the estimated probability of repeating a statistically significant result is substantially lower than expected, and he complained that the p-value might lead to too optimistic interpretations of the test's result.

Moreover, many institutional drug agencies, which use statistical tests as experimental proofs for evaluating the efficacy and safety of new drugs and medical systems in general, are aware of the randomness of statistical test results, and ask for the reproduction of statistically significant confirmatory trials (e.g. the United States FDA). [START_REF] Shao | Reproducibility Probability in Clinical Trials[END_REF] estimated the reproducibility probability of a statistically significant result (RP ) for the t-test, and argued that a single clinical trial is sufficient if the statistically significant result of the first experiment is evaluated to be highly reproducible.

On the theoretical side, statisticians seldom consider the Bernoulli randomness nature of statistical tests, and therefore their variability.

Here, it is shown that RP estimation can be used not only to evaluate the results of statistical tests, but even to define statistical tests themselves. Then, taking the perspective of RP estimation, one can compute statistical tests and have suitable interpretations of their results.

In Section 2 the theoretical framework adopted is introduced, which first considers only onesided alternatives. Then, in Section 3, stemming from the variability of statistical tests, the RP is estimated, and it is shown that statistical tests can be defined on the basis of the lower bound of a one-directional confidence interval for the RP . Moreover, even the pointwise RP estimator can be used for the definition of statistical tests, providing a suitable interpretation of test's results. Some examples, which cover many widely used testing procedures, are shown in Section 4. Finally, Section 5 contains the conclusions. Furthermore, the perspective of RP estimation is broadened to two-sided alternatives in the Appendix, in order to present a fluent exposition.

Theoretical Framework

In this section, the theoretical framework adopted in order to present the perspective of RP estimation is introduced. Here, only one-sided alternatives are considered. The results on two-sided alternatives are given in the Appendix.

Let X n ∈ S be a random sample of size n, with distribution F ∈ F , where F is a family of distributions over S. The statistical hypotheses, which should be of scientific interest according with [START_REF] Spiegelhalter | A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion[END_REF], are:

H 0 : F ∈ F 0 , H 1 : F ∈ F\F 0 . Then, let T n = T (X n )
be the test statistic with parametric continuous distribution G n,λn , where λ n = L(n, F ) ∈ R is the parameter of the distribution of T n . It is assumed that the following two conditions hold:

I) G n,λn is stochastically strictly increasing on λ n , that is G n,λ (t) > G n,λ (t) ∀t, if λ < λ (1)
II) sup H0 {λ n } = 0, and G n,0 is known. Now, let α ∈ (0, 1) be the fixed type I error. Then, (II) implies that t n,1-α = G -1 n,0 (1 -α) is the critical value of the test, which is:

Φ α (X n )=        1 iff T n > t n,1-α 0 iff T n ≤ t n,1-α
The power π(n) of the test Φ α then is:

π(n) = P F (Φ α (X n ) = 1) = P F (T n > t n,1-α ) = 1 -G n,λn (t n,1-α ) (2)
Since G n,λn is stochastically strictly increasing (I), it is easy obtaining that Φ α is strictly unbiased (see also Lehmann, 1997, p.137)

, i.e. π(n) ≤ α iff F ∈ F 0 , and π(n) > α iff F ∈ F\F 0 . So, it is
worth noting that statistical hypotheses can be redefined as follows:

H 0 : π(n) ≤ α, H 1 : π(n) > α.
Consequently, confidence intervals for the power might be used to test statistical hypotheses.

RP estimation for testing one-sided alternatives

In this section, the perspective of RP estimation to define statistical tests is introduced. In practice, the RP is estimated through confidence intervals, at first providing lower bounds for the noncentrality parameter, and then by applying the plug-in principle to the power. Finally, statistical tests are defined on the bases of RP estimates.

In the literature, the pointwise estimate of the power of the test is called the Reproducibility Probability significant results (see for example Goodman, 1992, Shao and[START_REF] Shao | Reproducibility Probability in Clinical Trials[END_REF]. Here, in order to avoid confusion between unknown probabilities and their estimates, and between the power in (2) and the power function (see Lehmann, 1997, p.69), the following definition is introduced.

Definition 1. The Reproducibility Probability of a statistically significant result (RP) of the test Φ α (X n ) is the power π(n).

Lemma 1. Lower bound for the noncentrality parameter. Under condition (I), let λn,γ be the solution of the equation G n, λn,γ (T n ) = 1 -γ. Then, λn,γ is the (1 -γ)-lower bound for λ n , that is:

P F ( λn,γ ≤ λ n ) = 1 -γ (3) Proof. Exploit (1) and the uniform distribution on [0, 1] of G n,λn (T n ).
Theorem 1. Lower bound for the RP. Under conditions (I) and (II), πn,γ (n

) = 1-G n, λn,γ (t n,1-α )
is the (1 -γ)-lower bound for the RP, that is:

P F (π n,γ (n) ≤ π(n)) = 1 -γ
Proof. Make use of Lemma (1), of the plug-in principle with (2), and of (1).

Corollary 1.

(1 -α)-lower bound for the RP for testing one-sided alternatives. Under conditions (I) and (II) the following result is obtained:

Φ α (X n )=        1 iff πn,α (n) > α 0 iff πn,α (n) ≤ α
Proof. As a direct consequence of Theorem 1 and (3

): πn,α (n) = α ⇔ T n = t n,1-α . Moreover, using (1): πn,α (n) > α ⇔ T n > t n,1-α .
Remark 1. From the mathematical point of view, the statistical test is a Bernoulli random variable whose parameter is its RP . Thus, the RP is the only parameter of the testing problem.

Consequently, it appears natural that RP estimation can be used to test statistical hypotheses.

It is shown here below that even the pointwise estimator of the RP can be used for testing.

To estimate the RP pointwise, the (50%)-lower bound for the RP is considered, that is πn (n) = πn,50% (n).

Corollary 2. (50%)-lower bound for the RP for testing one-sided alternatives. Under conditions (I) and (II) the following result is obtained:

Φ α (X n )=        1 iff πn (n) > 1/2 0 iff πn (n) ≤ 1/2
Proof. Analogous to Cor.1.

Remark 2. In practice, when the probability to reject H 0 is estimated to be greater than that of accept H 0 , then H 0 is rejected.
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Examples

In this Section some examples of widely used testing procedures are provided, which refer to test statistics with Gaussian, t, F , and χ 2 distributions. For those examples, conditions (I) and

(II) are satisfied, and so the results of Sec.3 hold.

Test statistics referring to the Normal distribution

Let us consider a testing situation where the distribution G n,λn of the test statistic T n is a

Normal distribution, with mean λ n and unitary variance (i.e. φ λn,1 ). Then, condition (I) is fulfilled. Moreover, consider that sup H0 {λ n } = 0, which is encountered, for example, testing the superiority of a mean with respect to another one. Then, G n,0 = φ 0,1 is known, and even condition (II) is satisfied.

The critical value of the test is

φ -1 0,1 (1 -α) = z 1-α , and the test is Φ α (X n ) = 1 ⇔ T n > z 1-α .
Hence, the power is π

(n) = 1 -φ λn,1 (z 1-α ) = 1 -φ 0,1 (z 1-α -λ n )
, and according to (3), the

(1 -γ)-lower bound of λ n (i.e. λn,γ ) results λn,γ = T n -z 1-γ .

Thus, the 1 -α lower bound for the power turns out to be πn,α (n) = 1 -φ 0,1 (2z 1-α -T n ), and from Cor.1 the statistical test is:

Φ α (X n ) = 1 ⇔ 1 -φ 0,1 (2z 1-α -T n ) > α.
As far as the pointwise RP estimation is concerned, the estimate of λ n turns out to be the test statistic, that is λn,50% = T n , and consequently πn

(n) = 1 -φ Tn,1 (z 1-α ) = 1 -φ 0,1 (z 1-α -T n ). Hence, from Cor.2: Φ α (X n ) = 1 ⇔ 1 -φ 0,1 (z 1-α -T n ) > 1/2.

Test statistics referring to the t distribution

Here, assume that T n has a t distribution with ν(n) degrees of freedom and noncentrality parameter λ n . It is then easy to verify condition (I). Now, consider the problem of testing the positive values of the regression parameters in the linear model, where the errors are Normally distributed (see for example [START_REF] Searle | Linear models[END_REF]. Then, the test statistic has a t distribution, sup H0 {λ n } = 0, and G n,0 = t ν(n) , so that even condition (II) is satisfied. Thus, the results of Sec.3 hold, with particular emphasis to Cor.2.
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Discussion

In Sec.4 it is shown that RP estimation can be applied to many statistical tests. In particu- 

(T n ∼ χ 2 ).
RP estimation is also useful for experimental planning, and in particular for sample size estimation. Indeed, lower bounds for RP (i.e., lower bounds for the power) can be used for conservative sample size estimation, once the alternative hypothesis is of scientific relevance, in accordance with [START_REF] Spiegelhalter | A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion[END_REF].

Let m(1 -β) = min{m s.t. π(m) > 1 -β} be the ideal sample size for the experiment, where 1 -β is the targeted power level, and π(m) is defined in (2). Now, assume that a pilot sample of size n is given, and that λm,γ,n is the lower bound for the noncentrality parameter λ m , i.e.,

P ( λm,γ,n ≤ λ m ) = 1 -γ. Then, the (1 -γ)-conservative sample size estimator is m γ,n (1 -β) = min{m s.t. πm,γ,n (m) > 1 -β}, where πm,γ,n (m) = 1 -G m, λm,γ,n (t m,1-α )
, according with the definition of πm,γ (m) in Theorem 1. By adopting m γ,n (1 -β), one has a probability of γ of planning an underpowered experiment. Often, the pointwise estimator of the sample size is used, that is m 50%,n (1 -β). In order to reduce to, for example, 1/4 the probability of an underpowered experiment, γ = 25% is needed. Recently, [START_REF] Wang | Adapting the sample size planning of a phase III trial based on phase II data[END_REF] have argued the use of conservative sample size estimation with γ = 15.9%, i.e., the one-standard error conservative approach.
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As far as concerns criteria for a single clinical trial, in some circumstances an RP estimate of 90% is considered high enough to justify its use for regulatory approval. Nevertheless, [START_REF] Shao | Reproducibility Probability in Clinical Trials[END_REF] emphasized the variability of the pointwise estimate, and suggest adopting the usual lower bounds for RP (e.g., πn,5% (n)), to be compared with standard thresholds of the power (i.e. 80%, 90%).

As a numerical example, let us consider the results of a test statistic referring to a Gaussian distribution, with α = 2.5%: if T n = 3.24 is observed, then the RP pointwise estimate is πn (n) 90%; but the 95% lower bound of RP , i.e., πn,5% (n), is just 48%; moreover, T n = 4.13 is needed to have πn,5% (n) 80%, and T n = 4.57 to obtain πn,5% (n) 90%.

From the results in Sec.3, since the test is statistically significant if πn,α (n) > α, or, equivalently, if πn (n) > 1/2, it follows that a conservative result on the statistical significance is πn,α (n) > 1/2.

Continuing the numerical example, the criterion proposed here above is fulfilled when πn,2.5% (n) > 1/2, which corresponds to T n > 3.92. For the Gaussian distributed test statistics, this turns out to be T n > 2z 1-α . In our opinion, this criterion might be used as a sufficient statistical condition for a single clinical trial.

Conclusions

Statistical tests contain randomness. Consequently, the estimates of the reproducibility probability of a statistically significant test (RP ) are measures of great interest for the analysis of test results.

From the mathematical point of view, the test is a Bernoulli random variable. The RP is the parameter of the statistical test, and so it is the only parameter to estimate. Indeed, in this paper it is shown that RP confidence intervals can be used, under mild conditions, to compute statistical tests.

Hence, on one hand statistical tests can be computed through RP estimation, and on the other hand RP estimates provide suitable interpretations of the results.

In particular, recall that the threshold for defining statistical tests on the basis of the pointwise estimator of the RP turned out to be 1/2. This means that the null hypothesis H 0 is rejected when it is estimated there is more inclination to reject it than to accept it. In our opinion, this result might bring Frequentists and Bayesians closer to one another.

Appendix. RP estimation for testing two-sided alternatives

In order to provide a fluent exposition of the perspective based on RP estimation for testing statistical hypotheses, in this paper only one-sided alternatives are considered. This Appendix broadens the results of Sec.3 on RP estimation to statistical tests with two-sided alternatives.

Assume that the following two conditions hold: AI) G n,λn is stochastically decreasing on λ n when λ < 0, and stochastically increasing when λ > 0;

AII) under H 0 : λ n = 0, and G n,0 is known.

If α ∈ (0, 0.5), then t n,α/2 = G -1 n,0 (α/2) and t n,1-α/2 = G -1 n,0 (1 -α/2) are the critical values of the test, which is:

Ψ α (X n )=        1 iff T n < t n,α/2 or T n > t n,1-α/2 0 iff t n,α/2 ≤ T n ≤ t n,1-α/2
Then, the power of the test Ψ α is:

π(n) = P F (Ψ α (X n ) = 1) = P F (T n < t n,α/2 ) + P F (T n > t n,1-α/2 )
Under the alternative hypothesis, the power is the sum of the probability of rejecting H 0 choosing the wrong direction, that is π III (n) = P (|T n | < -t n,α/2 ) and is called the type III error [START_REF] Harter | Error Rates and Sample Sizes for Range Tests in Multiple Comparisons[END_REF], and of the probability of rejecting choosing the right one, that is named here the Good Power and is π g (n) = P (|T n | > t n,1-α/2 ).

  lar, RP estimates can be computed for tests for comparing proportions (whose large sample test statistic is Gaussian); for statistical tests for means (whose test statistic T n is t distributed, with two-sample parallel designs as well as with crossover designs); for many nonparametric rank-tests, e.g., the Wilcoxon rank-sum and signed-rank tests (whose test statistic is approximately Gaussian); for tests for comparing more than two means, i.e., multiple-sample one-way ANOVA, and for tests for comparing variabilities (T

n ∼ F ); for tests for comparing time-to-event data, e.g., the log-rank test (which refers to a Gaussian distribution), and for the test on Cox's proportional hazards model

ACCEPTED MANUSCRIPT

Test statistics referring to the F distribution

When T n has a singly non central F distribution (see Stuart and Ord, 1991, Vol.2, Par.23.31) condition (I) is fulfilled.

Consider now the General Linear Model (see for example Stuart and Ord, 1991, Ch.23), where the statistic T n to test general linear hypotheses has a non central F distribution. Under H 0 the distribution of T n reduces to the central F , so that condition (II) is satisfied. Consequently, even in these very widely used tests, the results of Sec.3 hold.

Test statistics referring to the Chi-square distribution

Assume that T n has a Chi-square distribution, with ν(n) degrees of freedom and noncentrality parameter λ n , say χ 2 ν(n),λn = G n,λn . Then, condition (I) on the stochastic ordering is satisfied.

Now, let F belong to the exponential family, and, in the context of the Generalized Linear Model (see [START_REF] Mccullagh | Generalized Linear Models[END_REF], consider the problem of comparing two models specified under H 0 and H 1 respectively. Then, the test statistic T n , which is the difference between the log-likelihood ratio statistic of the two models, is distributed as a Chi-square distribution (in some cases only asymptotically) and under the null hypothesis as a central Chi-square, so that condition (II) is satisfied.

As a further example, consider the problem of testing for independence in a contingency table

(see for example [START_REF] Agresti | Categorical Data Analysis[END_REF]. Then the test statistic has, at least approximately, a Chi-square distribution, which is central under H 0 , and then condition (II) is also fulfilled.

Thus, in both situations the results of the previous Section are available, and mainly to Cor.2.
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Now, note that under H 0 : π g (n) = π III (n) = α/2; while under the alternative:

and so statistical hypotheses can redefined as follows:

Definition A1. The Reproducibility Probability of a statistically significant result (RP ) of the test Ψ α (X n ) is the good power π g (n).

Then, analog as to Sec.3, if conditions (AI) and (AII) hold, RP estimation can be used to test statistical hypotheses.

Corollary A1.

(1 -α/2)-lower bound for the RP for testing two-sided alternatives. Under conditions (AI) and (AII) the following result is obtained:

Here, the pointwise estimator of the RP is πg n (n) = πg n,50% (n).

Corollary A2. (50%)-lower bound for the RP for testing two-sided alternatives. Under conditions (AI) and (AII) the following result is obtained: