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We propose a new weighted integral goodness of fit statistic for exponentiality. The statistic is motivated by a characterization of the exponential distribution via the mean residual life function. Its limit null distribution is seen to be the same as that of a certain weighted integral of the squared Brownian bridge. The Laplace transform and cumulants of the latter are expressible in terms of Bessel functions.

Introduction

Let X 1 , . . . , X n be independent and identically distributed non negative random variables with some unknown distribution function F (x) = P (X 1 ≤ x), x ≥ 0. It is well-known that, under the assumption 0 < E(X 1 ) < ∞, the distribution of X 1 is exponential, i.e. F (x) = 1 -exp(-λx), x ≥ 0, for some λ > 0, if and only if the mean residual life function is constant, i.e. we have E(X 1 -z|X 1 > z) = E(X 1 ) for each z > 0.

(1) [START_REF] Baringhaus | Tests of fit for exponentiality based on a characterization via the mean residual life function[END_REF] noted that (1) is equivalent to E(min(X 1 , z)) = E(X 1 )F (z) for each z > 0.

(2)

Arguing that, under the assumptions X 1 ≥ 0 and 0 < E(X 1 ) < ∞, (2) is a characteristic property of the class {Exp(λ) : λ > 0} of exponential distributions, they suggested a new approach to assess exponentiality. In particular, they proposed the Cramér-von Mises type statistic

G n = n ∞ 0 1 n n k=1 min(U k , z) - 1 n n k=1 I(U k ≤ z) 2 e -z dz, (3) 
where X = 1 n n k=1 X k and U k = X k /X, k = 1, . . . , n. Interestingly, the limit null distribution of G n is the same as the limit null distribution of the classical Cramér-von Mises statistic when testing the simple hypothesis of uniformity on the interval [0, 1]. The goodness of fit test based on G n rejecting the hypothesis of exponentiality if G n > g n where g n is the (1 -α)-quantile of the null distribution of G n for some given α ∈ (0, 1), is consistent against any fixed alternative distribution. The test is discussed in the recent review paper on goodness of fit tests for exponentiality by [START_REF] Henze | Recent and classical tests for exponentiality: a partial review with comparisons[END_REF]. From the comparative simulation study given there one may conclude that it is a a serious competitor, although there are other procedures showing a better power performance for special alternatives. However, the favorable behavior of these procedures is recognized by varying some weight parameter built in the corresponding test statistic. So, to obtain a possible gain in power performance we suggest to generalize (3) in a natural way by using the more general weight function e -az , z ≥ 0, where a > -1 is some real parameter. Then we have the test statistic

G n,a = n ∞ 0 1 n n k=1 min(U k , z) - 1 n n k=1 I(U k ≤ z) 2 e -az dz. (4) 
By some elementary calculations we see that in the case a = 0 the statistic can be written in the form

G n,a = 1 n n k, =1 2 a 3 - 1 a 2 + 1 a min(U k , U ) exp(-aU k ) + exp(-aU ) - 2 a 3 + 1 a 2 exp(-a min(U k , U )) + 1 a 2 + 1 a exp(-a max(U k , U )) .
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In the special case a = 0 the statistic has the alternative representation

G n,0 = 1 n n k, =1 1 3 min(U k , U ) 3 + min(U k , U ) -1 max(U k , U ) - 1 2 U 2 k - 1 2 U 2 .
Using the central limit theorem in Hilbert spaces as a method of proof different to that given in [START_REF] Baringhaus | Tests of fit for exponentiality based on a characterization via the mean residual life function[END_REF] we show in the next section, that the limit null distribution of G n,a is the same as that of

1 0 B(t) 2 (1 -t) a-1 dt, where (B(t), 0 ≤ t ≤ 1
) is a Brownian bridge. Using this representation we shall be able to express the Laplace transform of the limit null distribution in terms of the Bessel function I 1 a+1 , and, additionally, its cumulants via sums of the even powers of the reciprocal zeros of the Bessel function J 1

a+1

. Critical values and empirical power values of the test obtained by simulation are shown in the last section.

The limit null distribution of G n,a

The null distribution of G n,a does not depend on the parameter λ of the underlying exponential distribution. We therefore assume that λ = 1, i.e. that X k has the distribution function

1 -exp(-x), x ≥ 0. Putting R n (z) = √ n 1 n n k=1 min(X k , z) -XI(X k ≤ z) , z ≥ 0, it follows that G n,a = 1 X 3 ∞ 0 R 2 n (z) exp - 1 X -1 az -1 e -az dz + 1 X 3 ∞ 0 R 2 n (z)e -az dz. (5)
We shall show below that for each a > -1 the statistic ∞ 0 R 2 n (z) exp(-az) dz has a limit distribution. Using this in advance we first prove that

∞ 0 R 2 n (z) exp - 1 X -1 az -1 e -az dz = o P (1). (6) 
For, let us treat the cases a ≥ 0 and -1 < a < 0 separately. If a ≥ 0 we put η = 1 2 , a * = -η and 0 = 1. For given 0 < ≤ 0 we consider the case where

| 1 X -1| < . From exp - 1 X -1 az -1 ≤ za exp( az), z ≥ 0, we get using z ≤ e ηz /η for z ≥ 0 that ∞ 0 R 2 n (z) exp - 1 X -1 az -1 e -az dz ≤ a ∞ 0 R 2 n (z)z exp(-a(1 -)z) dz ≤ a η ∞ 0 R 2 n (z) exp(-[a(1 -) -η]z) dz. ≤ a η ∞ 0 R 2 n (z) exp(-a * z) dz.
If -1 < a < 0 we put η = a+1 4 , a * = a-3 4 and 0 = 1 2 -1 a -1 . For given 0 < ≤ 0 we consider the case where

| 1 X -1| < . From exp - 1 X -1 az -1 ≤ z|a| exp(-az), z ≥ 0, we obtain ∞ 0 R 2 n (z) exp -( 1 X -1)az -1 e -az dz ≤ |a| ∞ 0 R 2 n (z)z exp(-a(1 + )z) dz ≤ |a| η ∞ 0 R 2 n (z) exp(-[a(1 + ) -η]z) dz. ≤ |a| η ∞ 0 R 2 n (z) exp(-a * z) dz.
Thus in any case there is some a * > -1 such for each 0 and1 X 3 = 1 + o P (1) we obtain (6) and, additionally,

< ≤ 0 ∞ 0 R 2 n (z) exp -( 1 X -1)az -1 exp(-az) dz ≤ |a| η ∞ 0 R 2 n (z) exp(-a * z) dz if | 1 X -1| < . Using that ∞ 0 R 2 n (z) exp(-a * z) dz has a limit distribution, 1 X = 1 + o P (1)
G n,a = ∞ 0 R 2 n (z) exp(-az) dz + o P (1).
It remains to derive the limit distribution of ∞ 0 R 2 n (z)e -az dz. To this end note that

R n (z) = H n (z) + (X -1)L n (z), z ≥ 0,
where

H n (z) = √ n 1 n n k=1 [min(X k , z) -I(X k ≤ z) -(X k -1)(1 -e -z )] , z ≥ 0,
and

L n (z) = √ n 1 n n k=1 1 -e -z -I(X k ≤ z) , z ≥ 0.
H n and L n are random elements in the Hilbert space L 2 (R + , B + , µ a ), where R + = [0, ∞), B + is the Borel σ-field on R + , and µ a is the σ-finite measure having density exp(-ax), x ≥ 0, with respect to Lebesgue measure on (R

+ , B + ). Since ∞ 0 Var min(X 1 , z)-I(X 1 ≤ z)-(X 1 -1)(1-e -z ) dµ a (z) = ∞ 0 [1-e -z ]e -(a+1)z dz < ∞ A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT and ∞ 0 Var 1 -e -z -I(X 1 ≤ z) dµ a (z) = ∞ 0 [1 -e -z ]e -(a+1)z dz < ∞
the central limit theorem for Hilbert space-valued random variables applies (see [START_REF] Ledoux | Probability in Banach Spaces[END_REF], Corollary 10.9). Recognizing that

ρ(w, z) = min(1 -e -w , 1 -e -z ) -(1 -e -w )(1 -e -z ), w, z ≥ 0, (7) 
is the covariance function of the process (H n (z), z ≥ 0) and also that of the process (L n (z), z ≥ 0), there is a zero mean Gaussian process (H(z), z ≥ 0) with sample paths in L 2 (R + , B + , µ a ) and covariance kernel ( 7) such that

H 2 n (z) dµ a (z) D -→ H 2 (z) dµ a (z) and L 2 n (z) dµ a (z) D -→ H 2 (z) dµ a (z),
where "

D -→" means convergence in distribution. Due to X -1 = o P (1) this implies that ∞ 0 R 2 n (z) exp(-az) dz D -→ ∞ 0 H 2 (z) exp(-az) dz.
The result just proved is summarized as follows.

Theorem 1. The limit null distribution of the test statistic G n,a is that of H 2 (z) dµ a (z) where (H(z), z ≥ 0) is a zero mean Gaussian process with sample paths in L 2 (R + , B + , µ a ) and covariance function (7).

The Gaussian process (H(z), z ≥ 0) has the same covariance function as the process B(1 -e -z ), z ≥ 0 where (B(t), 0 ≤ t ≤ 1) is the Brownian bridge. Consequently,

H 2 (z) dµ a (z) D = 1 0 B 2 (1 -t)t a-1 dt D = 1 0 B 2 (t)(1 -t) a-1 dt
where " D =" denotes equality in distribution. Since the limit distribution may be of independent interest, it is studied further. Let

G a = 1 0 B(t) 2 (1 -t) a-1 dt. Theorem 2. a) The Laplace transform of G a is ψ a (z) = ∞ j=1 1 + 2 a + 1 2 2z γ 2 j -1/2 = Γ 1 + 1 a + 1 1 1 a+1 √ 2z 1 a+1 I 1 a+1 2 a + 1 √ 2z -1/2 , z ≥ 0, A C C E P T E D M A N U S C R I P T
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where I ν is the modified Bessel function of the first kind of order ν.

b) The first four cumulants of G a are

κ 1 = E(G a ) = 1 (a + 1)(a + 2) , κ 2 = Var(G a ) = 2 (a + 2) 2 (a + 1)(2a + 3) , κ 3 = 16 (a + 2) 3 (a + 1)(2a + 3)(3a + 4) , κ 4 = 48(11a + 16) (a + 2) 4 (2a + 3) 2 (a + 1)(3a + 4)(4a + 5) .
Proof. Although part a) of the theorem can be obtained from the material presented in [START_REF] Deheuvels | Karhunen-Loéve expansions for weighted Wiener processes and Brownian bridges via Bessel functions[END_REF], we give a derivation for the special case considered here. Note that

G a = B 2 (t) dν a (t),
where ν a is the σ-finite measure with density (1 -t) a-1 with respect to Lebesgue measure on the Borel sets

B [0,1] of the interval [0, 1]. Let A be the integral operator on L 2 ([0, 1], B [0,1] , ν a ) associated with the covariance kernel k(s, t) = min(s, t) -st, 0 ≤ s, t ≤ 1, of the Brownian bridge. Thus Af (t) = 1 0 k(t, s)f (s) dν a (s), 0 ≤ t ≤ 1, for f ∈ L 2 ([0, 1], B [0,1] , ν a ).
The integral operator A is positive definite. It is well known (see, e.g. [START_REF] Vakhania | Probability Distributions on Linear Spaces[END_REF], p. 58) that

G a D = k≥1 λ k Z 2 k , (8) 
where the Z k are independent unit normal random variables, and the λ k are the eigenvalues of A. To obtain these eigenvalues, assume that an eigenfunction f of A with associated positive eigenvalue λ is smooth enough so that, starting with the equation

k(t, s)f (s) dν a (s) = λf (t), 0 ≤ t ≤ 1, (9) 
we may differentiate twice on both sides of (9). This leads to the differential equation

λf (t) = -(1 -t) a-1 f (t), 0 < t < 1.
From (9) we also infer the boundary conditions f (0) = 0 and f (1) = 0. Putting ϕ(t) = f (1 -t), ϕ satisfies the differential equation

λϕ (t) = -t a-1 ϕ(t), 0 < t < 1, (10) 
A C C E P T E D M A N U S C R I P T
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subject to the boundary conditions

ϕ(0) = ϕ(1) = 0. ( 11 
)
The general solution of (10) was found by Lommel (1868); for another reference see [START_REF] Nielsen | Handbuch der Theorie der Zylinderfunktionen[END_REF], p. 130. In view of (11), the general solution is

ct 1/2 J 1 a+1 2 a + 1 λ -1/2 t (a+1)/2 , 0 ≤ t ≤ 1,
where J ν is the Bessel function of the first kind of order ν, and c is some constant. In what follows, 0 < γ 1 < γ 2 < . . . are the positive zeros of J 1 a+1

. Putting

λ j = 2 a + 1 2 1 γ 2 j , j = 1, 2, . . . , and 
f j (t) = (a + 1) 1/2 J a+2 a+1 γ j ) J 1 a+1 (γ j (1 -t) (a+1)/2 (1 -t) 1/2 , (0 ≤ t ≤ 1, j = 1, 2, . . . ), it follows from f j (t)f k (t) dν a (t) = a + 1 J a+2 a+1 (γ j )J a+2 a+1 (γ k ) 1 0 (1 -t) a J 1 a+1 γ j (1 -t) (a+1)/2 J 1 a+1 γ k (1 -t) (a+1)/2 dt = 0, j = k, 1, j = k,
(see [START_REF] Erdélyi | Higher transcendental functions[END_REF], p. 70) that {f j , j ≥ 1} is an orthonormal set in

L 2 ([0, 1], B [0,1] , ν a ). For f ∈ L 2 ([0, 1], B [0,1] , ν a ) the Fourier-Bessel series j≥1 α j f j with α j = f (t)f j (t) dν a (t), j ≥ 1, converges in L 2 ([0, 1], B [0,1] , ν a ), i.e. lim n→∞ n j=1 α j f j (t) -f (t) 2 dν a (t) = 0.
This result can be proved in a rather elementary way by using the work of [START_REF] Hochstadt | The mean convergence of Fourier-Bessel series[END_REF], for example. Thus

{f j , j ≥ 1} is a complete orthonormal set in L 2 ([0, 1], B [0,1] , ν a ). Using -f j (t)(1 -t) a-1 = λ j f j (t), 0 < t < 1, A C C E P T E D M A N U S C R I P T
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integration by parts gives

(1 -t) t 0 sf j (s)(1 -s) a-1 ds + t 1 t f (s)(1 -s) a ds = λ j f j (t), 0 ≤ t ≤ 1, or, equivalently, k(t, s)f j (s) dν a (s) = λ j f j (t), 0 ≤ t ≤ 1.
Thus the f j , j ≥ 1, form a complete orthonormal system of eigenfunctions of A with associated eigenvalues λ j , j ≥ 1. In view of (8) the Laplace transform of G a is

ψ a (z) = ∞ j=1 1 + 2 a + 1 2 2z γ 2 j -1/2 , z ≥ 0, = Γ 1 + 1 a + 1 1 1 a+1 √ 2z 1 a+1 I 1 a+1 2 a + 1 √ 2z -1/2 , z ≥ 0,
where I ν is the modified Bessel function of the first kind of order ν. For the second equality see [START_REF] Nielsen | Handbuch der Theorie der Zylinderfunktionen[END_REF], p.358. This proves part a) of the theorem. To prove part b) which asserts an interesting connection between the cumulants cumulants κ ν of G a , the latter being an integral involving the Brownian bridge, and the sums of the even powers of the reciprocal zeros γ j of the Bessel functions J 1 a+1 we note that

κ ν = 2 ν-1 (ν -1)! ∞ j=1 λ ν j = 2 ν-1 (ν -1)! 2 a + 1 2ν ∞ j=1 1 γ j 2ν , ν ≥ 1.
We can derive the first four cumulants of G a directly by using Fubini's theorem and calculating mixed moments of a zero mean multivariate normal vector with covariance structure specified by the Brownian bridge. Alternatively, we can use that [START_REF] Nielsen | Handbuch der Theorie der Zylinderfunktionen[END_REF], p. 360) to obtain the first four cumulants stated in part b) of the theorem.

∞ j=1 1 γ 2 j = 2 -2 1 + 1 a+1 ∞ j=1 1 γ 4 j = 2 -4 (1 + 1 a+1 ) 2 ( 1 a+1 + 2) ∞ j=1 1 γ 6 j = 2 -6 • 2 (1 + 1 a+1 ) 3 ( 1 a+1 + 2)( 1 a+1 + 3) ∞ j=1 1 γ 8 j = 2 -8 (5 1 a+1 + 11) (1 + 1 a+1 ) 4 ( 1 a+1 + 2) 2 ( 1 a+1 + 3)( 1 a+1 + 4) (see
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It is also possible to derive 'limit test statistics' in the cases a → -1 and a → ∞. For, it is immediately seen that

G n,-1 = lim a↓-1 G n,a = -2n + 1 n n k, exp min(U k , U ) .
Of course, one can use G n,-1 as test statistic for testing the hypothesis of exponentiality.

However, presently we are unable to present any asymptotic theory for G n,-1 as n → ∞.

In the second case, a → ∞, putting

U 1:n = min(U 1 , . . . , U n ) we have lim a→∞ a -2 exp(aU 1:n ) a 3 G n,a n -2 = 1 n -2U 1:n .
Thus one may suggest U 1:n as test statistic rejecting hypothesis of exponentiality for small values of U 1:n . We remark that a test based on this statistic is easily done because U 1:n has the beta distribution B(1, n -1) with the density (n -1)(1 -t) n-2 , 0 ≤ t ≤ 1. Finally, we remark that for each -1 < a < ∞ and given level α the test obtained by rejecting the hypothesis of exponentiality if G n,a > g n,a (α), where g n,a (α) is the (1 -α)quantile of G n,a in the case where the hypothesis of exponentiality is true, is consistent against any fixed alternative distribution. A proof of this assertion is easily done by adapting the arguments used by [START_REF] Baringhaus | Tests of fit for exponentiality based on a characterization via the mean residual life function[END_REF].

Empirical Results

For sample sizes n = 10, 20,30,40,50,100,200, parameter values a = -0.99, -0.9, -0.5, 0, 0.5, 1, 1.5, 2, 5, 10 and levels α = 0.05, 0.1 we got approximations of the critical values g n,a (α) by simulation with 100000 replications. The results are shown in TABLE 1 and TABLE 2 of the appendix. An empirical power study based on simulations with 10000 replications was done for the sample sizes n = 20, 50, 100 and level α = 0.05. The alternative distributions were chosen from distribution families considered also by Baringhaus andHenze (1991), (2000). The distributions included are the Gamma distributions (G), Weibull distributions (W), Lognormal distributions (LN ) with scale parameter 1 and shape parameter θ, the uniform distribution U[0, 1], the Half-Normal distribution (HN ), the Half-Cauchy distribution (HC), the χ 2 1 -distribution, the Power distributions (PW) with density θ -1 x 1/θ-1 , 0 < x < 1, the linear increasing failure rate distributions (LIFR) with density (1 + θx) exp(-(x + θx 2 /2)), x > 0, and the JSHAPE distributions (JS) with density (1 + θx) -1/θ-1 , x > 0. The empirical power values (rounded to the nearest integer) are shown in TABLE 3, TABLE 4 and TABLE 5 of the appendix. For estimated power values of various other competitive procedures we refer to [START_REF] Baringhaus | A class of consistent tests for exponentiality based on the empirical Laplace transform[END_REF] and also to [START_REF] Henze | Recent and classical tests for exponentiality: a partial review with comparisons[END_REF], although there is merely a partial overlap with the alternative distributions considered in the latter paper. We conclude, that taking a weight parameter 1 ≤ a ≤ 2 is a rather good choice. For some alternative distributions, the Gamma distributions or lognormal distributions with shape parameter θ < 1 for example, a choice of a > 2 can be recommended. In these cases the power performance is also better than that of the top ranked test in the comparative study of [START_REF] Henze | Recent and classical tests for exponentiality: a partial review with comparisons[END_REF].
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A Appendix: Tables of critical values and power values 

TABLE 1

 1 Critical values of G n,a for α = 0.05

	Sample					Parameter a				
	size n	-0.99	-0.9	-0.5	0	0.5	1	1.5	2	5	10
	10	5.056	3.944 1.846 1.017 0.634 0.427 0.305 0.226 0.065 0.018
	20	8.069	5.983 2.336 1.147 0.678 0.449 0.313 0.230 0.067 0.021
	30	9.886	7.282 2.597 1.193 0.691 0.450 0.316 0.231 0.068 0.021
	40	11.299 8.107 2.723 1.224 0.702 0.446 0.316 0.234 0.069 0.022
	50	12.433 8.793 2.846 1.249 0.699 0.453 0.320 0.232 0.069 0.022
	100	15.848 10.654 3.072 1.279 0.713 0.457 0.316 0.233 0.069 0.022
	200	18.338 11.900 3.233 1.296 0.711 0.464 0.320 0.235 0.069 0.022

TABLE 2

 2 Critical values of G n,a for α = 0.1

	Sample					Parameter a				
	size n	-0.99	-0.9	-0.5	0	0.5	1	1.5	2	5	10
	10	3.063 2.580 1.406 0.793 0.490 0.332 0.237 0.174 0.049 0.014
	20	4.395 3.526 1.705 0.875 0.515 0.340 0.238 0.176 0.050 0.016
	30	5.341 4.180 1.847 0.908 0.528 0.341 0.240 0.176 0.050 0.016
	40	6.033 4.581 1.945 0.927 0.531 0.343 0.240 0.176 0.051 0.016
	50	6.569 4.946 2.042 0.948 0.536 0.346 0.238 0.175 0.051 0.016
	100	8.200 5.929 2.226 0.977 0.539 0.346 0.240 0.177 0.051 0.016
	200	9.917 6.961 2.359 0.991 0.544 0.345 0.239 0.176 0.051 0.017

TABLE 3

 3 

	Percentage of 10000 Monte Carlo samples declared significant;
		level α = 0.05; sample size n = 20	
	Distribution				Parameters a	
		-0.99 -0.9 -0.5 0 0.5 1 1.5 2	5 10
	W(0.6)	59	61	65	69 69 70 72 73 78 80
	W(1.2)	1	1	4	9 12 13 14 14 12 8
	W(1.4)	0	0	11	26 33 35 37 37 32 20
	W(1.6)	0	0	26	50 60 63 64 65 57 39
	χ 2 1	38	39	44	47 49 52 55 57 66 72
	PW(0.8)	1	13	87	94 94 93 92 89 69 40
	PW(1.2)	0	1	33	48 48 44 40 35 17 7
	PW(1.4)	0	0	16	28 27 24 21 18 9	7
	PW(2.0)	1	1	4	8 10 11 12 14 25 37
	PW(3.0)	13	17	28	38 46 53 59 64 79 87
	LIFR(1)	0	0	6	14 18 19 19 19 13 7
	LIFR(2)	0	0	10	24 29 30 30 30 20 11
	LIFR(4)	0	0	17	36 42 43 43 42 30 16
	LIFR(6)	0	0	23	43 50 51 52 50 37 20
	LIFR(10)	0	0	30	53 60 61 61 60 47 26
	HN (0, 1)	0	0	7	17 21 21 22 21 14 8
	LN (0.7)	2	3	16	34 46 53 59 64 73 70
	LN (0.8)	6	6	10	19 23 27 31 34 43 39
	LN (1.0)	21	21	20	18 16 15 14 13 11 8
	LN (1.5)	66	67	68	67 67 66 65 64 59 53
	HC	72	72	73	71 69 67 66 65 59 52
	JS(0.5)	50	50	51	49 47 45 44 43 39 35
	JS(1.0)	81	82	84	84 83 83 83 82 80 77
	U[0, 1]	0	3	58	74 74 71 67 62 38 18
	G(0.4)	56	58	65	68 72 75 77 80 86 90
	G(0.6)	26	28	30	30 32 33 35 37 44 50
	G(0.8)	11	11	12	11 10 10 11 11 13 16
	G(1.4)	1	1	4	9 13 14 15 16 14 9
	G(1.6)	0	0	6	16 21 24 26 27 25 17
	G(1.8)	0	0	10	24 31 34 38 39 38 26
	G(2.0)	0	0	15	33 42 46 50 52 49 36
	G(2.4)	0	0	28	53 64 69 72 74 72 57
	G(3.0)	0	1	49	77 85 89 91 92 91 80

TABLE 4

 4 

	Percentage of 10000 Monte Carlo samples declared significant;	
			level α = 0.05; sample size n = 50				
	Distribution				Parameters a				
		-0.99 -0.9 -0.5	0	0.5	1	1.5	2	5	10
	W(0.6)	86	88	94	96	97	98	98	98	99	99
	W(1.2)	0	0	8	21	28	30	31	32	29	22
	W(1.4)	0	1	41	66	75	77	78	79	73	61
	W(1.6)	0	5	80	95	97	98	98	98	96	90
	χ 2 1	58	62	75	82	87	89	90	92	95	97
	PW(0.8)	50	94	100 100 100 100 100 100 99	89
	PW(1.2)	1	20	92	96	94	90	84	78	40	16
	PW(1.4)	0	5	72	80	75	65	54	45	15	8
	PW(2.0)	0	0	19	30	30	28	29	32	50	66
	PW(3.0)	12	19	59	78	87	91	94	95	99 100
	LIFR(1)	0	0	20	39	45	45	43	42	29	17
	LIFR(2)	0	1	41	64	69	69	67	65	49	31
	LIFR(4)	0	2	64	84	87	87	86	85	71	49
	LIFR(6)	0	4	75	90	93	93	92	91	81	60
	LIFR(10)	0	8	84	95	97	97	96	96	89	72
	HN	0	0	28	49	54	53	51	50	34	21
	LN (0.7)	4	5	43	75	88	94	96	98 100 100
	LN (0.8)	10	10	20	37	51	60	67	73	89	95
	LN (1.0)	36	37	36	34	29	25	22	21	22	29
	LN (1.5)	91	92	94	95	95	95	94	94	91	84
	HC	95	95	96	96	95	94	94	93	88	80
	JS(0.5)	78	79	82	82	81	80	79	78	70	61
	JS(1.0)	98	98	99	99	99	99	99	99	99	98
	U[0, 1]	9	56	99	100 100 99	98	97	79	49
	G(0.4)	80	83	93	97	98	99	99	99 100 100
	G(0.6)	38	40	51	58	63	67	69	72	78	81
	G(0.8)	13	13	16	17	17	18	18	19	23	27
	G(1.4)	1	1	7	21	28	32	33	35	35	30
	G(1.6)	0	0	18	40	51	56	59	62	62	56
	G(1.8)	0	0	33	61	72	77	79	81	82	77
	G(2.0)	0	1	49	78	86	90	91	93	93	90
	G(2.4)	0	5	79	95	98	99	99	99	99	99
	G(3.0)	1	20	97	100 100 100 100 100 100 100

TABLE 5

 5 Percentage of 10000 Monte Carlo samples declared significant; level α = 0.05; sample size n = 100

	Distribution				Parameters a				
		-0.99 -0.9 -0.5 0.1 0.5	1	1.5	2	5	10
	W(0.6)	98	99	100 100 100 100 100 100 100 100
	W(1.2)	0	0	23	44	51	54	56	56	52	44
	W(1.4)	0	8	84	96	98	98	98	98	97	93
	W(1.6)	8	53	100 100 100 100 100 100 100 100
	χ 2 1	78	83	95	98	99	99 100 100 100 100
	PW(0.8)	100	100	100 100 100 100 100 100 100 100
	PW(1.2)	51	94	100 100 100 100 100 98	72	30
	PW(1.4)	14	66	100 100 99	96	90	82	28	10
	PW(2.0)	0	6	76	81	75	69	66	65	77	89
	PW(3.0)	23	47	95	99 100 100 100 100 100 100
	LIFR(1)	0	2	57	76	78	77	76	73	56	37
	LIFR(2)	0	10	85	95	95	95	95	93	82	61
	LIFR(4)	2	31	98	100 100 100 100 99	96	84
	LIFR(6)	6	47	99	100 100 100 100 100 99	91
	LIFR(10)	14	66	100 100 100 100 100 100 100 97
	HN (0, 1)	0	4	70	85	87	86	84	82	64	43
	LN (0.7)	6	12	83	99 100 100 100 100 100 100
	LN (0.8)	15	16	39	71	85	92	96	97 100 100
	LN (1.0)	53	54	56	53	47	44	42	41	45	61
	LN (1.5)	99	99	100 100 100 100 100 100 99	98
	HC	100	100	100 100 100 100 100 100 99	96
	JS(0.5)	94	95	97	97	97	97	96	96	92	85
	JS(1.0)	100	100	100 100 100 100 100 100 100 100
	U[0, 1]	94	100	100 100 100 100 100 100 98	84
	G(0.4)	96	98	100 100 100 100 100 100 100 100
	G(0.6)	52	58	77	86	90	92	94	95	97	97
	G(0.8)	16	18	24	27	29	31	34	35	40	43
	G(1.4)	1	1	22	43	54	59	62	64	66	61
	G(1.6)	0	1	49	76	84	88	90	91	93	91
	G(1.8)	0	5	75	93	97	98	98	99	99	99
	G(2.0)	1	13	91	99	99 100 100 100 100 100
	G(2.4)	6	45	99	100 100 100 100 100 100 100
	G(3.0)	39	90	100 100 100 100 100 100 100 100
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