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Note on integer-valued bilinear time series models

Feike C. Drost • Ramon van den Akker • Bas J.M. Werker
Econometrics and Finance group, CentER, Tilburg University, The Netherlands

Summary. This note reconsiders the nonnegative integer-valued bilinear processes introduced
by Doukhan, Latour, and Oraichi (2006). Using a hidden Markov argument, we extend their
result of the existence of a stationary solution for the INBL(1,0,1,1) process to the class of su-
perdiagonal INBL(p, q, m, n) models. Our approach also yields improved parameter restrictions
for several moment conditions compared to the ones in Doukhan, Latour, and Oraichi (2006).

Keywords: count data, integer-valued time series, bilinear model

1. Introduction

In many sciences one encounters nonnegative discrete valued time series, often as counts of
events or objects at consecutive points in time. Especially in economics and medicine many
interesting variables are (nonnegative) integer-valued. For example: the number of transac-
tions in IBM during each minute, the number of patients in a hospital at the end of the day,
the number of claims an insurance company receives during each day, the number of epilep-
tic seizures a patient suffers each day, etcetera. Until the mid seventies modeling discrete
valued time series did not attract much attention since most traditional representations of
dependence become either impossible or impractical. The last two decades there were many
developments in the literature on integer-valued time series; see McKenzie (2003) for a de-
tailed review; for example, INteger-valued Moving Average processes (Al-Osh and Alzaid
(1991)), INteger-valued AutoRegressive processes (Al-Osh and Alzaid (1987), Al-Osh and
Alzaid (1990), and Du and Li (1991)), and Generalized INteger-valued AutoRegressive pro-
cesses (Latour (1998)) are common choices. Doukhan et al. (2006) introduced the class of
nonnegative INteger-valued BiLinear time series, which contains the three aforementioned
classes. Higher order processes turn out to be highly releveant see (Latour (1998)) for the
class of GINAR models. For extensions to regression based count data time series models
see, for example, Fahrmeir and Tutz (2001) and Kedem and Fokianos (2002).

Recall the definition of an INBL(p, q, m, n) process: let (X−1, . . . , X−p∨m, ε−1, . . . , ε−q∨n)
be the (nonnegative) integer-valued initial points generated by some probability distribution
ν, and define Xt, t = 0, 1, 2, . . ., recursively by,

Xt =
p∑

i=1

αi ◦Xt−i +
q∑

j=1

βj ◦ εt−j +
m∑

k=1

n∑

`=1

γk,` ◦ (Xt−kεt−`) + εt, (1)

where (εt)t≥0 is a collection of i.i.d. nonnegative integer-valued variables with distribution G
with mean µG ∈ [0,∞] and variance σ2

G ∈ [0,∞], and where the Steutel-van Harn operators
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η◦ applied to some nonnegative integer-valued random variable Z are defined as

η ◦ Z =
Z∑

s=1

U (η)
s ,

where (U (η)
s )s≥1 is a collection of i.i.d. nonnegative integer-valued variables with distribution

function Fη with mean η.∗ In proofs we suppose, without loss of generality, p = q = m = n
since we may introduce additional lags in (1) with η = 0 or equivalently Fη{0} = 1. The
class of GINAR(p) processes arises by taking q = m = n = 0. Specializing further to the
situation where the Fη-distributions are Bernoulli, one gets the class of INAR(p) models.
Similarly INMA(q) processes are obtained when p = m = n = 0.

In this note we consider stationarity and existence of moments of superdiagonal
INBL(p, q, m, n) processes with γk,` = 0 if k < `. Using Markov chain techniques we ob-
tain the existence and uniqueness of a strictly stationary solution of (1) when

∑
i αi +

µG

∑
k,` γk,` < 1 (see Theorem 2.1). Theorem 2.2 provides sufficient parameter restrictions

ensuring the existence of (higher-order) moments under the stationary distribution. Along
completely different lines our results generalize Sections 2 and 3 in Doukhan et al. (2006)
who restricted attention to the INBL(1, 0, 1, 1) process. Moreover our parameter restric-
tions in Theorem 2.2 are less severe. Estimation of superdiagonal INBL processes can be
performed along the same lines as in Doukhan et al. (2006); The details are beyond the
scope of this note.

2. Results

First we discuss the existence of a stationary solution. The insightful proof of Theorem 2.1
in Doukhan et al. (2006) gives an explicit construction of approximating processes for the
INBL(1, 0, 1, 1) process. For the general superdiagonal INBL(p, q, m, n) case we provide a
compact proof using Markov chain techniques, yielding also an alternative proof for the
INBL(1, 0, 1, 1) process.

Let F ∗ G denote the convolution of the probability measures F and G and introduce
the process Z = (Zt)t≥0 by

Zt = (Xt−1, . . . , Xt−p∨m, εt−1, . . . , εt−q∨n). (2)

Notice that Z0 ∼ ν. It is easy to see that Z is a Markov chain. For t ≥ 0 and zt =
(xt−1, . . . , xt−p∨m, et−1, . . . , et−q∨n) we have

P(Zt+1 = zt+1 | Zt = zt)
= G{e} (∗p

i=1(∗xt−i

s=1 Fαi) ∗q
j=1 (∗et−j

s=1 Fβj ) ∗m
k=1 ∗n

`=1(∗xt−ket−`

s=1 Fγk,`
)
) {z − e},

∗Implicitly it is understood that distinct Steutel-van Harn operators are independent and also
that Steutel-van Harn operators applied to different random variables are independent; see also Du
and Li (1991).
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if zt+1 = (z, xt−1, . . . , xt+1−p∨m, e, et−1, . . . , et+1−q∨n) for some e, z, and with
P(Zt+1 = zt+1 | Zt = zt) = 0 otherwise. From (1) it is immediate that, for t ≥ 0,

E[Xt | Zt] = µG +
p∑

i=1

αiXt−i +
q∑

j=1

βjεt−j +
m∑

k=1

n∑

`=1

γk,`Xt−kεt−` ∈ [0,∞]. (3)

The following proposition provides sufficient conditions for Z to be an irreducible aperiodic
Markov chain. The proof is immediate from the definition of the state space.

Proposition 2.1 Let Z be the time series defined in (2) linked to the INBL process X
defined in (1) and assume, for all relevant i, j, k, `,

0 < G{0}, 0 < Fαi
{0}, 0 < Fβj

{0}, 0 < Fγk,`
{0}. (4)

Then Z is an irreducible aperiodic Markov chain on the state space

S = {z | ∃t ≥ 1 : P(Zt = z | Z0 = 0) > 0}.

Remark Condition (4) allows the process X to arrive at 0 and therefore (4) seems to be
harmless in real-life applications. Condition (4) can be easily verified from a sufficiently
long data series just by checking whether the process has hit zero. At the cost of lengthy
derivations, condition (4) might be weakened but this is outside the scope of this short note.

Theorem 2.1 Let X be the superdiagonal INBL process as defined in (1) with γk,` = 0 if
k < ` and assume (4), σ2

G < ∞,
∑q

j=1 βj < ∞, and

p∑

i=1

αi + µG

m∑

k=1

n∑

`=1

γk,` < 1. (5)

Then there exists a unique initial distribution ν∗ such that X is strictly stationary under
Pν∗ . Furthermore the first moment of X is finite under Pν∗ .

Proof. We prove that there exists a unique initial distribution ν∗ such that Z is sta-
tionary under Pν∗ , which yields the result. Since Z is irreducible and aperiodic on S (and
since, for countable Markov chains, finite sets are petite) it suffices to prove, see Theo-
rem 15.0.1 in Meyn and Tweedie (1994), that there exists a mapping V : z 7→ [1,∞) such
that the following Foster-Lyapunov drift criterium holds: there exists δ > 0 and a finite set
such that for all Zt outside this finite set we have

W (Zt) = (1− δ)V (Zt)− E[V (Zt+1) | Zt] ≥ 0. (6)

Take, for notational simplicity, p = q = m = n. To verify (6) choose δ > 0 sufficiently small
such that ∑

i

αi + µG

∑

k≥`

γk,` < (1− δ)n − nδ − 1
2
n(n + 1)µGδ,

and define V : z 7→ [1,∞) by

V (Zt) = 1 +
∑

i

α̃iXt−i +
∑

j

β̃jεt−j +
∑

k≥`

γ̃k,`Xt−kεt−`,
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where the nonnegative tilde parameters are recursively defined from α̃n+1 = β̃n+1 =
γ̃n+1,` = 0 and

(1− δ)α̃i = α̃i+1 + µGγ̃i+1,1 + αi + δ,

(1− δ)β̃j = β̃j+1 + βj + δ,

(1− δ)γ̃k,` = γ̃k+1,`+1 + γk,` + δ.

Note, by the choice of δ,

θ ≡ α̃1 + µGγ̃1,1 =
∑

i

(αi + δ)/(1− δ)i + µG

∑

k≥`

(γk,` + δ)/(1− δ)k < 1.

Hence we obtain, using (1), (3), and the independence of εt and Xt − εt,

W (Zt) = − δ − µG(α̃1 + β̃1)− (µ2
G + σ2

G)γ̃1,1

+
∑

i

[(1− δ)α̃i − (α̃1 + µGγ̃1,1)αi − α̃i+1 − µGγ̃i+1,1]Xt−i

+
∑

j

[(1− δ)β̃j − (α̃1 + µGγ̃1,1)βj − β̃j+1]εt−j

+
∑

k≥`

[(1− δ)γ̃k,` − (α̃1 + µGγ̃1,1)γk,` − γ̃k+1,`+1]Xt−kεt−`

= − δ − µG(α̃1 + β̃1)− (µ2
G + σ2

G)γ̃1,1 + (1− θ)×
∑

i

(αi +
δ

1− θ
)Xt−i +

∑

j

(βj +
δ

1− θ
)εt−j +

∑

k≥`

(γk,` +
δ

1− θ
)Xt−kεt−`


 .

Conclude W (Zt) ≥ 0 outside a finite set. Hence the drift condition (6) holds, which concludes
the proof of the stationarity. The existence of the first moment under ν∗ is immediate from
Theorem 2.2 below. 2

Remark For p = m = n = 1 and q = 0, (5) reduces to the condition of Theorem 2.1 in
Doukhan et al. (2006).

The next theorem gives a sufficient condition for the existence of higher order moments
of Xt under Pν∗ .

Theorem 2.2 Let X be the superdiagonal INBL process as defined in (1) with γk,` = 0 if
k < `. Suppose, for some K ∈ N, the existence of the K-th order moments of Fαi , Fβj , and
Fγk,`

, and assume (4), EGε2K
0 < ∞,

∑q
j=1 βj < ∞, and

p∑

i=1

αi +
(
EGεK

0

)1/K
m∑

k=1

n∑

`=1

γk,` < 1. (7)

Then, with ν∗ the stationary distribution of Theorem 2.2,

Eν∗X
K
0 < ∞.
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Proof. Recall from Proposition 2.1 that Z is an irreducible aperiodic Markov chain on
S and 0 ∈ S. Hence, since Z has stationary distribution ν∗, we have Zt

d−→ ν∗, under Pδ0

as t → ∞. Thus the convergence also holds for marginals. By the Portmanteau theorem,
and nonnegativity of X, this implies for L ∈ N,

Eν∗X
L−1
0 ≤ lim inf

t→∞
Eδ0X

L−1
t ≤ sup

0≤t<∞
Eδ0X

L−1
t . (8)

To prove that the right hand side of (8) is bounded for L ≤ K +1, we use induction. Clearly
the statement holds true for L = 1. To show the boundedness for L = 2 we make some
preliminary remarks. Denote, for notational convenience, Eδ0 by E0 and let, for P ≥ 1,

‖Z‖P =
(
E0|Z|P

)1/P denote the LP (Pδ0) norm. Recall ‖ · ‖P ≤ ‖ · ‖Q for 1 ≤ P ≤ Q. Hence
(7) implies that

∑
i αi + ‖ε0‖v

∑
k,` γk,` < 1 for all 1 ≤ v ≤ K. Since, for t ≤ s, Xt− εt and

εs are independent, we have, for P ≥ 1,

‖Xtεs‖P ≤ ‖(Xt − εt)εs‖P + ‖εtεs‖P ≤ ‖ε0‖P ‖Xt‖P + ‖ε2
0‖P . (9)

Using (3), (9) with P = 1, the zero starting values, and (7), the boundedness for L = 2 is
obtained from,

E0Xt = µG +
∑

i

αiE0Xt−i +
∑

j

βjµG +
∑

k≥`

γk,`E0Xt−kεt−`

≤ µG + µG

∑

j

βj + (µ2
G + σ2

G)
∑

k≥`

γk,` +
∑

i

αiE0Xt−i + µG

∑

k≥`

γk,`E0Xt−k

≤

µG + µG

∑

j

βj + (µ2
G + σ2

G)
∑

k≥`

γk,`




∞∑
s=0


∑

i

αi + µG

∑

k≥`

γk,`




s

< ∞.

To complete the induction, we assume that the right hand side of (8) is bounded for some
2 ≤ L ≤ K and we prove that this implies sup0≤t<∞ Eδ0X

L
t < ∞. We use the following

result (see, for example, Dharmadhikari et al. (1968)).

Lemma 2.1 If Z1, . . . , Zn are i.i.d. variables with mean zero and a finite k-th moment,
k ≥ 2, then we have the bound

E

∣∣∣∣∣
n∑

s=1

Zs

∣∣∣∣∣

k

≤ Cknk/2E|Z1|k,

where the constant Ck > 0 only depends on k (and not on the distribution of Z1).

Using that the Steutel-van Harn operator η ◦ Z, conditional on Z, follows a ∗Z
s=1Fη distri-

bution, Lemma 2.1 implies the following inequality for L ≥ 2,

E|η ◦ Z − ηZ|L = EE
[|η ◦ Z − ηZ|L | Z] ≤ CLEZL/2E|U (η) − η|L ≤ CL,η‖Z‖L/2

L−1. (10)

We have for t ≥ 0, using (9),

‖Xt‖L ≤ ‖Xt −
∑

i

αiXt−i −
∑

j

βjεt−j −
∑

k≥`

γk,`Xt−kεt−`‖L
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+ ‖
∑

i

αiXt−i +
∑

j

βjεt−j +
∑

k≥`

γk,`Xt−kεt−`‖L

≤
∑

i

‖αi ◦Xt−i − αiXt−i‖L +
∑

j

‖βj ◦ εt−j − βjεt−j‖L

+
∑

k≥`

‖γk,` ◦ (Xt−kεt−`)− γk,`Xt−kεt−`‖L + ‖εt‖L

+
∑

i

αi‖Xt−i‖L +
∑

j

βj‖εt−j‖L +
∑

k≥`

γk,`(‖ε0‖L‖Xt−k‖L + ‖ε2
0‖L)

≤ M +
∑

i

αi‖Xt−i‖L + ‖ε0‖L

∑

k≥`

γk,`‖Xt−k‖L,

where the appropriately chosen constant M < ∞, not depending on t, can be obtained
from the assumed moment conditions and the induction hypothesis applied to (10) and (9).
Condition (7) completes the induction argument just as for the case L = 2,

‖Xt‖L ≤ M

∞∑
s=0


∑

i

αi + ‖ε0‖L

∑

k≥`

γk,`




s

.

This completes the proof. 2

Remark For the INBL(1,0,1,1) process Doukhan et al. (2006) showed that the condition
‖U (α)‖K + ‖ε0‖K‖U (γ)‖K < 1 suffices to obtain the existence of the K-th moment of Xt

under Pν∗ . Condition (7) is weaker since, for K ≥ 1, η = ‖U (η)‖1 ≤ ‖U (η)‖K .
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