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Introduction

In many sciences one encounters nonnegative discrete valued time series, often as counts of events or objects at consecutive points in time. Especially in economics and medicine many interesting variables are (nonnegative) integer-valued. For example: the number of transactions in IBM during each minute, the number of patients in a hospital at the end of the day, the number of claims an insurance company receives during each day, the number of epileptic seizures a patient suffers each day, etcetera. Until the mid seventies modeling discrete valued time series did not attract much attention since most traditional representations of dependence become either impossible or impractical. The last two decades there were many developments in the literature on integer-valued time series; see [START_REF] Mckenzie | Discrete variate time series[END_REF] for a detailed review; for example, INteger-valued Moving Average processes (Al-Osh and [START_REF] Al-Osh | Binomial autoregressive moving average models[END_REF]), INteger-valued AutoRegressive processes (Al-Osh and [START_REF] Al-Osh | First-order integer-valued autoregressive (INAR(1)) processes[END_REF], Al-Osh and [START_REF] Alzaid | An integer-valued pth-order autoregressive structure (INAR(p)) process[END_REF], and [START_REF] Du | The integer-valued autoregressive (INAR(p)) model[END_REF]), and Generalized INteger-valued AutoRegressive processes [START_REF] Latour | Existence and stochastic structure of a non-negative integer-valued autoregressive process[END_REF]) are common choices. [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF] introduced the class of nonnegative INteger-valued BiLinear time series, which contains the three aforementioned classes. Higher order processes turn out to be highly releveant see [START_REF] Latour | Existence and stochastic structure of a non-negative integer-valued autoregressive process[END_REF]) for the class of GINAR models. For extensions to regression based count data time series models see, for example, [START_REF] Fahrmeir | Multivariate Statistical Modelling Based on Generalized Linear Models[END_REF] and [START_REF] Kedem | Regression Models for Time Series Analysis[END_REF].

Recall the definition of an INBL(p, q, m, n) process: let (X -1 , . . . , X -p∨m , ε -1 , . . . , ε -q∨n ) be the (nonnegative) integer-valued initial points generated by some probability distribution ν, and define X t , t = 0, 1, 2, . . ., recursively by,

X t = p i=1 α i • X t-i + q j=1 β j • ε t-j + m k=1 n =1 γ k, • (X t-k ε t-) + ε t , (1) 
where (ε t ) t≥0 is a collection of i.i.d. nonnegative integer-valued variables with distribution G with mean µ G ∈ [0, ∞] and variance σ 2 G ∈ [0, ∞], and where the Steutel-van Harn operators η• applied to some nonnegative integer-valued random variable Z are defined as

η • Z = Z s=1 U (η) s ,
where (U

(η)
s ) s≥1 is a collection of i.i.d. nonnegative integer-valued variables with distribution function F η with mean η. * In proofs we suppose, without loss of generality, p = q = m = n since we may introduce additional lags in (1) with η = 0 or equivalently F η {0} = 1. The class of GINAR(p) processes arises by taking q = m = n = 0. Specializing further to the situation where the F η -distributions are Bernoulli, one gets the class of INAR(p) models. Similarly INMA(q) processes are obtained when p = m = n = 0.

In this note we consider stationarity and existence of moments of superdiagonal INBL(p, q, m, n) processes with γ k, = 0 if k < . Using Markov chain techniques we obtain the existence and uniqueness of a strictly stationary solution of (1) when

i α i + µ G k, γ k, < 1 (see Theorem 2.1
). Theorem 2.2 provides sufficient parameter restrictions ensuring the existence of (higher-order) moments under the stationary distribution. Along completely different lines our results generalize Sections 2 and 3 in [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF] who restricted attention to the INBL(1, 0, 1, 1) process. Moreover our parameter restrictions in Theorem 2.2 are less severe. Estimation of superdiagonal INBL processes can be performed along the same lines as in [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF]; The details are beyond the scope of this note.

Results

First we discuss the existence of a stationary solution. The insightful proof of Theorem 2.1 in [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF] gives an explicit construction of approximating processes for the INBL(1, 0, 1, 1) process. For the general superdiagonal INBL(p, q, m, n) case we provide a compact proof using Markov chain techniques, yielding also an alternative proof for the INBL(1, 0, 1, 1) process.

Let F * G denote the convolution of the probability measures F and G and introduce the process Z = (Z t ) t≥0 by

Z t = (X t-1 , . . . , X t-p∨m , ε t-1 , . . . , ε t-q∨n ).
(2)

Notice that Z 0 ∼ ν. It is easy to see that Z is a Markov chain. For t ≥ 0 and z t = (x t-1 , . . . , x t-p∨m , e t-1 , . . . , e t-q∨n ) we have

P(Z t+1 = z t+1 | Z t = z t ) = G{e} * p i=1 ( * x t-i s=1 F α i ) * q j=1 ( * e t-j s=1 F β j ) * m k=1 * n =1 ( * x t-k e t- s=1
F γ k, ) {z -e}, * Implicitly it is understood that distinct Steutel-van Harn operators are independent and also that Steutel-van Harn operators applied to different random variables are independent; see also [START_REF] Du | The integer-valued autoregressive (INAR(p)) model[END_REF].

if z t+1 = (z, x t-1 , . . . , x t+1-p∨m , e, e t-1 , . . . , e t+1-q∨n ) for some e, z, and with

P(Z t+1 = z t+1 | Z t = z t ) = 0 otherwise. From (1) it is immediate that, for t ≥ 0, E[X t | Z t ] = µ G + p i=1 α i X t-i + q j=1 β j ε t-j + m k=1 n =1 γ k, X t-k ε t-∈ [0, ∞].
(3)

The following proposition provides sufficient conditions for Z to be an irreducible aperiodic Markov chain. The proof is immediate from the definition of the state space.

Proposition 2.1 Let Z be the time series defined in (2) linked to the INBL X defined in (1) and assume, for all relevant i, j, k, ,

0 < G{0}, 0 < F αi {0}, 0 < F βj {0}, 0 < F γ k, {0}. ( 4 
)
Then Z is an irreducible aperiodic Markov chain on the state space

S = {z | ∃t ≥ 1 : P(Z t = z | Z 0 = 0) > 0}.
Remark Condition (4) allows the process X to arrive at 0 and therefore (4) seems to be harmless in real-life applications. Condition (4) can be easily verified from a sufficiently long data series just by checking whether the process has hit zero. At the cost of lengthy derivations, condition (4) might be weakened but this is outside the scope of this short note.

Theorem 2.1 Let X be the superdiagonal INBL process as defined in (1) with γ k, = 0 if k < and assume (4), σ 2 G < ∞, q j=1 β j < ∞, and

p i=1 α i + µ G m k=1 n =1 γ k, < 1. ( 5 
)
Then there exists a unique initial distribution ν * such that X is strictly stationary under P ν * . Furthermore the first moment of X is finite under P ν * .

Proof. We prove that there exists a unique initial distribution ν * such that Z is stationary under P ν * , which yields the result. Since Z is irreducible and aperiodic on S (and since, for countable Markov chains, finite sets are petite) it suffices to prove, see Theorem 15.0.1 in [START_REF] Meyn | Markov chains and stochastic stability[END_REF], that there exists a mapping V : z → [1, ∞) such that the following Foster-Lyapunov drift criterium holds: there exists δ > 0 and a finite set such that for all Z t outside this finite set we have

W (Z t ) = (1 -δ)V (Z t ) -E[V (Z t+1 ) | Z t ] ≥ 0. ( 6 
)
Take, for notational simplicity, p = q = m = n. To verify (6) choose δ > 0 sufficiently small such that

i α i + µ G k≥ γ k, < (1 -δ) n -nδ - 1 2 n(n + 1)µ G δ,
and define V : z → [1, ∞) by V (Z t ) = 1 + i αi X t-i + j βj ε t-j + k≥ γk, X t-k ε t-,
where the nonnegative tilde parameters are recursively defined from αn+1 = βn+1 = γn+1, = 0 and

(1 -δ)α i = αi+1 + µ G γi+1,1 + α i + δ, (1 -δ) βj = βj+1 + β j + δ, (1 -δ)γ k, = γk+1, +1 + γ k, + δ.
Note, by the choice of δ,

θ ≡ α1 + µ G γ1,1 = i (α i + δ)/(1 -δ) i + µ G k≥ (γ k, + δ)/(1 -δ) k < 1.
Hence we obtain, using ( 1), ( 3), and the independence of ε t and X t -ε t ,

W (Z t ) = -δ -µ G (α 1 + β1 ) -(µ 2 G + σ 2 G )γ 1,1 + i [(1 -δ)α i -(α 1 + µ G γ1,1 )α i -αi+1 -µ G γi+1,1 ]X t-i + j [(1 -δ) βj -(α 1 + µ G γ1,1 )β j -βj+1 ]ε t-j + k≥ [(1 -δ)γ k, -(α 1 + µ G γ1,1 )γ k, -γk+1, +1 ]X t-k ε t- = -δ -µ G (α 1 + β1 ) -(µ 2 G + σ 2 G )γ 1,1 + (1 -θ) ×   i (α i + δ 1 -θ )X t-i + j (β j + δ 1 -θ )ε t-j + k≥ (γ k, + δ 1 -θ )X t-k ε t-   .
Conclude W (Z t ) ≥ 0 outside a finite set. Hence the drift condition (6) holds, which concludes the proof of the stationarity. The existence of the first moment under ν * is immediate from Theorem 2.2 below. 2

Remark For p = m = n = 1 and q = 0, (5) reduces to the condition of Theorem 2.1 in [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF].

The next theorem gives a sufficient condition for the existence of higher order moments of X t under P ν * .

Theorem 2.2 Let X be the superdiagonal INBL process as defined in (1) with γ k, = 0 if k < . Suppose, for some K ∈ N, the existence of the K-th order moments of F αi , F βj , and F γ k, , and assume ( 4),

E G ε 2K 0 < ∞, q j=1 β j < ∞, and p i=1 α i + E G ε K 0 1/K m k=1 n =1 γ k, < 1. (7)
Then, with ν * the stationary distribution of Theorem 2.2,

E ν * X K 0 < ∞.
Proof. Recall from Proposition 2.1 that Z is an irreducible aperiodic Markov chain on S and 0 ∈ S. Hence, since Z has stationary distribution ν * , we have Z t d -→ ν * , under P δ 0 as t → ∞. Thus the convergence also holds for marginals. By the Portmanteau theorem, and nonnegativity of X, this implies for L ∈ N,

E ν * X L-1 0 ≤ lim inf t→∞ E δ0 X L-1 t ≤ sup 0≤t<∞ E δ0 X L-1 t . ( 8 
)
To prove that the right hand side of ( 8) is bounded for L ≤ K + 1, we use induction. Clearly the statement holds true for L = 1. To show the boundedness for L = 2 we make some preliminary remarks. Denote, for notational convenience, E δ 0 by E 0 and let, for P ≥ 1,

Z P = E 0 |Z| P 1/P denote the L P (P δ 0 ) norm. Recall • P ≤ • Q for 1 ≤ P ≤ Q. Hence (7) implies that i α i + ε 0 v k, γ k, < 1 for all 1 ≤ v ≤ K.
Since, for t ≤ s, X t -ε t and ε s are independent, we have, for P ≥ 1,

X t ε s P ≤ (X t -ε t )ε s P + ε t ε s P ≤ ε 0 P X t P + ε 2 0 P . ( 9 
)
Using ( 3), ( 9) with P = 1, the zero starting values, and ( 7), the boundedness for L = 2 is obtained from,

E 0 X t = µ G + i α i E 0 X t-i + j β j µ G + k≥ γ k, E 0 X t-k ε t- ≤ µ G + µ G j β j + (µ 2 G + σ 2 G ) k≥ γ k, + i α i E 0 X t-i + µ G k≥ γ k, E 0 X t-k ≤   µ G + µ G j β j + (µ 2 G + σ 2 G ) k≥ γ k,   ∞ s=0   i α i + µ G k≥ γ k,   s < ∞.
To complete the induction, we assume that the right hand side of ( 8) is bounded for some 2 ≤ L ≤ K and we prove that this implies sup 0≤t<∞ E δ0 X L t < ∞. We use the following result (see, for example, [START_REF] Dharmadhikari | Bounds on the moments of martingales[END_REF]).

Lemma 2.1 If Z 1 , . . . , Z n are i.i.d. variables with mean zero and a finite k-th moment, k ≥ 2, then we have the bound

E n s=1 Z s k ≤ C k n k/2 E|Z 1 | k ,
where the constant C k > 0 only depends on k (and not on the distribution of Z 1 ).

Using that the Steutel-van Harn operator

η • Z, conditional on Z, follows a * Z s=1 F η distri- bution, Lemma 2.1 implies the following inequality for L ≥ 2, E|η • Z -ηZ| L = EE |η • Z -ηZ| L | Z ≤ C L EZ L/2 E|U (η) -η| L ≤ C L,η Z L/2 L-1 . (10)
We have for t ≥ 0, using (9), van den Akker, and Werker

X t L ≤ X t - i α i X t-i - j β j ε t-j - k≥ γ k, X t-k ε t-L Drost,
+ i α i X t-i + j β j ε t-j + k≥ γ k, X t-k ε t-L ≤ i α i • X t-i -α i X t-i L + j β j • ε t-j -β j ε t-j L + k≥ γ k, • (X t-k ε t-) -γ k, X t-k ε t-L + ε t L + i α i X t-i L + j β j ε t-j L + k≥ γ k, ( ε 0 L X t-k L + ε 2 0 L ) ≤ M + i α i X t-i L + ε 0 L k≥ γ k, X t-k L ,
where the appropriately chosen constant M < ∞, not depending on t, can be obtained from the assumed moment conditions and the induction hypothesis applied to (10) and ( 9). Condition (7) completes the induction argument just as for the case L = 2,

X t L ≤ M ∞ s=0   i α i + ε 0 L k≥ γ k,   s .
This completes the proof. 2

Remark For the INBL(1,0,1,1) process [START_REF] Doukhan | A simple integer-valued bilinear time series model[END_REF] showed that the condition U (α) K + ε 0 K U (γ) K < 1 suffices to obtain the existence of the K-th moment of X t under P ν * . Condition ( 7) is weaker since, for K ≥ 1, η = U (η) 1 ≤ U (η) K .
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