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We consider a generalized mixture of nonlinear AR models, a hidden Markov model for which the autoregressive functions are single layer feedforward neural networks. The non trivial problem of identifiability, which is usually postulated for hidden Markov models, is addressed here.

A c c e p t e d m a n u s c r i p t 1 Introduction

Neural networks provide a flexible tool for learning an unknown mapping from input space to output space in the presence of noise. It has been proven that neural networks have nice asymptotic properties under some general assumptions (see, e.g, White (1984) or [START_REF] Franke | Estimating Market risk with neural networks[END_REF] and some of the references therein). We assume in this paper that our time series data obey the following hidden Markov model

X t = K k=1 S tk (m k (X t-1 , • • • , X t-p ) + t ) (1) 
with The process {X t } passes through different dynamics depending on {Q t }. This type of mixture of nonparametric autoregressive models plays an important role in practice, for example in econometrics (see, e.g. [START_REF] Franke | Statistics of Financial Markets[END_REF], [START_REF] Gourieroux | ARCH Model and Financial Application[END_REF]) where it is often not realistic to assume that the process is driven by only one trend function throughout time.

S tk = 1 for Q t = k, 0 otherwise. ( 2 
)
{Q t } is a hidden Markov chain with values in {1, • • • , K}, K ∈ N,
Now, a natural way of estimating this type of mixture models is to replace the unknown m k (x) in equation ( 1) by

m k (x) = ν 0k + H h=1 ν hk ψ(< α hk , x > +β hk ), k = 1, • • • , K (3) 
where m k (x) is a one layer feedforward neural network with H hidden neurons, <, > is the classical scalar product on R p and ψ the activation functions, taken here, for sake of simplicity to be the logistic function. Further, we remind that the network parameters ν hk , β hk ∈ R and α hk ∈ R p .

Compared to a single neural network this framework has the advantage of mimicking well the structure of the data and also it allows for the detection of the change points in the dynamics of the models.

Considering the asymptotic behavior of the parameter estimates, it is well known that an important theoretical problem with neural networks is the unidentifiability of the parameters (for a definition see, e.g. [START_REF] Hwang | Prediction Intervals for Artificial Neural networks[END_REF]. If identifiability is not satisfied, asymptotic properties like consistency and asymptotic normality of the parameter estimates are not guaranteed anymore and resampling techniques like bootstrap will not work properly (see, [START_REF] Franke | Bootstrapping Neural Networks[END_REF]). In this paper we are providing sufficient conditions for identifiability (up to the family of transformations generated by equation (5) in [START_REF] Hwang | Prediction Intervals for Artificial Neural networks[END_REF]); in the remainder of this paper for conciseness we shall simply write identifiability.

A c c e p t e d m a n u s c r i p t 3 Conclusion

In conclusion, we can notice that the only condition on our driving hidden Markov chain {Q t } for ensuring the identifiability of the parameters of our mixture model is a weak condition, namely the invertibility of the transition probability matrix. Furthermore, this result can obviously be extended to a large variety of parametric models with switching regimes driven by a hidden Markov process.

Under those rather weak conditions, we can identify the parameter from the conditional expectation (5). For practical use, we have to be able to estimate (5) and, as an auxiliary step, S t for an increasing set of time points t. If the state space of the hidden process {Q t } is infinite, that is possible. For a hidden Markov chain with infinite state space, we have to impose some additional assumptions which guarantee that not all states are transient.

The identifiability of the parameters of our model is an important step towards the proof of asymptotic results for the estimators, e.g. their consistency. Asymptotic inference and practical results based on our model are beyond the scope of this paper and will be analyzed in further research. 
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  and with transition probability matrix A = (a ij ) 1≤i,j≤K . m k , k = 1, • • • , K, are unknown real valued functions. The random errors t are i.i.d. with mean zero and support R.
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A c c e p t e d m a n u s c r i p t

To achieve this, we will mainly generalize the works done for simple neural networks by Hwang and Ding (1997, p. 749) and Farinas et al. (2004).

Results

Let us define S t = (S t1 , • • • , S tK ) and assume

(4)

Now we are focusing on the identifiability of

While it is clear that the expectation needs to be conditioned on the X t-1 , • • • , X t-p , at first sight it may be surprising to condition also on S t-1 . Notice first that without S t-1 , terms of the form P(S t | S t-1 , X t-1 , X t-2 , • • • ) would appear in the conditional expectation, terms which are in general not tractable in practice. Moreover, we condition on S t-1 and not on S t and although we do not know S t-1 either, it is possible to get good estimates for it given X t-1 , X t-2 , • • • Finally, from a theoretical point of view, we can consider S t-1 as an exogenous variable as in Farinas et al (2004).

Let us now focus on the conditional expectation,

Now, we recall that A = (a ij ) 1≤i,j≤K is the transition probability matrix of the hidden process {Q t } with

If we consider for example S

Similarly, if S t-1 is the jth unit vector,

A c c e p t e d m a n u s c r i p t

one can hence write

where <, > is the classical scalar product on R K .

To achieve the announced results we shall need the following assumptions

A. 1 ∀k, m k is not redundant ( i.e. there exists no other network with fewer hidden neurons that represents exactly the same relationship function).

A. 2 The transition probability matrix A of the hidden process {Q t } is invertible.

Proposition 1 Consider that assumptions A.1, A.2 and A.3 hold. Then, the identifiability of the parameters of our model is achieved.

Proof: In the following proof, we will focus on the case m : R -→ R. The multidimensional case can easily be reduced to the one dimensional case in a similar way as in the paper by [START_REF] Hwang | Prediction Intervals for Artificial Neural networks[END_REF].

The conditions of Theorem 2.3(a) of [START_REF] Hwang | Prediction Intervals for Artificial Neural networks[END_REF] and thus the identifiability of the parameters are satisfied if

To show this implication, it suffices to show that

Now consider assumption A.2 and

and hence ν 0k = ν hk = 0, ∀ h, k (see Lemma 2.7 of [START_REF] Hwang | Prediction Intervals for Artificial Neural networks[END_REF]).