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A note on distortions induced by truncation

with applications to linear regression systems

Giovanni M. Marchetti, Dipartimento di Statistica “G. Parenti”, 50134 Florence, Italy

Elena Stanghellini, Dipartimento di Economia Finanza e Statistica, 06100 Perugia, Italy∗

We explore the effects of truncation on the joint distribution of the observable random

variables. A general formula for the distortion induced by truncation in the least-squares

coefficients is presented. The implications of our derivations are illustrated with an example.

Keywords: Conditional independence model; directed acyclic graphs; incidental trunca-

tion; instrumental variables; selection bias; truncated normal distribution.

1 Introduction

We study the effects induced by truncation in multivariate systems, with particular

attention to the distortion induced on linear regression coefficients. Truncation mech-

anisms may be used to model some forms of selection. As an instance, in econometric

studies on income, only observations with income above a threshold may appear in

the sample. In biometric studies on the effect of an expensive treatment using health

care claims data, there might be worries that only the sickest patients are given the

treatment.

It is well-known that, in linear regression modelling, the distribution for any fixed

set of units depends on the covariate values, so selection on the basis of covariate

values affects the distribution but does not affect the specification of the model. If

there is selection on the basis of variables other than the covariates, we may have two

well-known situations, such as as censoring or truncation.

In this paper we focus on truncation. This implies that the population consists of

all units satisfying the selectivity condition. We do not address issues of estimation,

but we explore the effects of truncation on the distribution of the observable variables

and give an explicit formula of the distortion induced in the least-squares regression

coefficients of interest. We will assume that some knowledge either on the conditional
∗Corresponding author. Email addresses: elena.stanghellini@stat.unipg.it (E. Stanghellini), gio-

vanni.marchetti@ds.unifi.it (G.M. Marchetti).
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independence structure or on zero constraints on partial regression coefficients is

available a priori. This allows to make connections to graphical models, see e.g.

Lauritzen (1996). For a related approach, where different sources of selection bias

are illustrated using graphical models, see Hernán et al. (2004). The situation here

considered forms the basis of the widely studied Heckman’s model (Heckman, 1979).

There is an extensive literature on the topic of selection bias. A broad account can be

found in Copas and Li (1997), with discussion, while a general review on estimation

is in and Vella (1998).

2 Some general results on truncation

Let X = (Xj), j = 1, . . . , d, be a d× 1 vector of random variables indexed by the set

V = {1, . . . , d}. We assume X to have a joint density function fV . After partitioning

V = N ∪ S, suppose that the variables XS are truncated, i.e. Xj , j ∈ S, is observed

only if it belongs to the interval Ij = (aj , bj) which is a subset of the support. Let IS

be the Cartesian product of all intervals Ij for j ∈ S. The density function of X after

truncation on XS is f̃V (x) = α−1fV (x)I[xS ∈ IS ] where I[xS ∈ IS ] is the indicator

function of the set in square brackets and

α = P (XS ∈ IS). (1)

In the following, we make use of three disjoint subsets of V called R, T , and C, which

may be interpreted as indexes of responses, treatments and covariates, respectively.

We shall denote with F the set of truncated variables outside R, T and C. With the

notation R⊥⊥ T |C we indicate that the random vectors XR and XT are conditionally

independent given XC . We shall look at marginal and conditional densities before

and after truncation on S. Using the tilde, we use the convention that truncation

occurs always before marginalization or conditioning.

First, notice that since the marginal distribution of XS after truncation, is f̃S(xS) =

α−1fS(xS) · I[xS ∈ IS ], the conditional distribution of XN |XS is unaffected by trun-

cation. A more general condition under which the conditional densities before and

after truncation are equal is provided by the following proposition.

Proposition 1. Let F be non empty. If the response variables R are not truncated,

i.e. R ⊂ N , then there is no distortion, f̃R|TC = fR|TC , whenever R⊥⊥F | T ∪ C,

that is the responses are independent of the truncated variables outside the covariates

given the covariates.
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Proof. Assume, without loss of generality, that V = R ∪̇T ∪̇C ∪̇F . Then, if R⊥⊥F |
T ∪ C, fV = fRTCfFTC/fTC and thus, f̃V = α−1fRTCfFTC/fTC · I(xS ∈ IS) with α

as in (1). Marginalizing over XF we get

f̃RTC = fRTC/fTC

[
1
α

∫

IF

fFTC · I(xS ∈ IS)dF

]
= fRTC/fTC · gTC .

The result follows by noting that gTC is a function not depending on XR.

The following Proposition establishes a relationship between the conditional in-

dependence structure before and after truncation.

Proposition 2. Let T , F and C be three disjoint subsets of the node set V such

that, before truncation, T⊥⊥F | C. Then, the conditional independence is preserved if

truncation is on S ⊆ F ∪ C ∪ T .

Proof. By assumption, the marginal density after truncation is

f̃TFC =
∫

IU

α−1fTFCU · I(xT ∈ IT , xF ∈ IF , xC ∈ IC)dU

= α−1fFCfTC/fC · I(xT ∈ IT )I(xF ∈ IF )I(xC ∈ IC),

with U = V \ (T ∪ C ∪ F ) and α as in (1). Therefore, f̃TFC can be factorized into

gFCgTC and the result follows.

Corollary 1. All conditional independencies T ⊥⊥ F |C, such that V = T ∪ F ∪ C,

continue to hold after truncation on S ⊆ V .

Corollary 1 has implications for undirected graphical models (see Lauritzen, 1996,

Section 3.2), that define a class of distributions that obeys to the pairwise Markov

property, such that a conditional independence between Xi and Xj given all the re-

maining variables holds whenever there is a missing edge in the associated undirected

graph. By Corollary 1, the conditional independence graph before truncation matches

the one after truncation.

3 The truncated multivariate normal distribution

We show the effects of truncation on the concentration matrix. We assume that X fol-

lows a multivariate normal distribution with mean µ and positive definite covariance

matrix Σ partitioned as

Σ =


ΣSS ΣSN

. ΣNN


 , Σ−1 =


ΣSS ΣSN

. ΣNN




3



Acc
ep

te
d m

an
usc

rip
t 

where the dot is the usual shortcut for symmetric matrices. In the following, we indi-

cate with Σ̃ and Σ̃−1 the covariance and concentration matrix of the joint distribution

of X after truncation on XS . Then, the covariance matrix after truncation is, see

Johnson and Kotz (1972, p. 70),

Σ̃ =


Σ̃SS Σ̃SSΠT

N |S
. ΣNN.S + ΠN |SΣ̃SSΠT

N |S


 (2)

where ΠN |S = ΣNSΣ−1
SS = −(ΣNN )−1ΣNS , is the matrix of least squares regression

coefficients and ΣNN.S = (ΣNN )−1 is the partial covariance matrix. The expression

for Σ̃SS can be found from the cumulant generating function of the truncated normal,

see Tallis (1961) and Finney (1962). For |S| = 1 and bS = +∞, the marginal

distribution of XN after truncation is an extended skew-normal, see Capitanio et al.

(2003).

Proposition 3. The concentration matrix of vector X after truncation on XS is

Σ̃−1 =


Σ̃SS ΣSN

. ΣNN


 ,

where Σ̃SS = Σ̃−1
SS + ΠT

N |SΣNNΠN |S.

Proof. The covariance matrix in (2) can decomposed as

Σ̃ =


 I 0

ΠN |S I





Σ̃SS 0

0 ΣNN.S





I ΠT

N |S
0 I


 .

Taking the inverse and multiplying, the result follows.

This result is valid outside the Gaussian case provided that the conditional distri-

butions have linear regressions and homoscedastic covariance matrices. Notice that

the matrices Σ−1 and Σ̃−1 must share the same sets of structural zeros in blocks

(S,N) and (N,N). For i and j in S, if σij = 0 then, from Corollary 1, Xi ⊥⊥ Xj |rest
also after truncation.

4 Distortion in linear regression coefficients induced by

truncation

In this section we give an explicit formula for the distortion induced by truncation on

linear regression coefficients. Let ΠR|T.C the partial least-squares regression coefficient
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of XT when regressing XR on XT and XC , before truncation, and let Π̃R|T.C be

the same coefficient computed in the distribution resulting after truncation on XS .

Therefore,

ΠR|T.C = ΣRT.CΣ−1
TT.C and Π̃R|T.C = Σ̃RT.CΣ̃−1

TT.C .

We have that ΠR|TC = (ΠR|T.C ΠR|C.T ). We will make use of the matrix extension of

Cochran’s (1938) recursive formula, Cox and Wermuth (2004),

ΠR|T = ΠR|T.W + ΠR|W.T ΠW |T . (3)

Proposition 4. (i) If the response variables R are not truncated and S ⊆ T , then

Π̃R|T = ΠR|T .

(ii) Let R ⊆ S and T ⊆ N , then

Π̃R|T = ΛR|T ΠR|T

where ΛR|T = Σ̃RR.T (ΣRR.T )−1.

Proof. Let the marginal covariance matrix of (R, T ) be Ω. (i) The regression coeffi-

cients after truncation is Π̃R|T = −(Ω̃RR)−1Ω̃RT . But, as S ⊆ T , from Proposition 3,

we have −(Ω̃RR)−1Ω̃RT = −(ΩRR)−1ΩRT = ΠR|T . (ii) Proposition 3 implies that

Ω̃RT = ΩRT only and Π̃R|T = −(Ω̃RR)−1ΩRT = (Ω̃RR)−1ΩRRΠR|T . The result follows

by noting that ΩRR = Σ−1
RR.T .

Proposition 5. Let R, T and C be three disjoint subsets of V with R ⊆ N . Let

F = S \ (T ∪ C).

(i) Let F be a non-empty set. Then:

Π̃R|T.C = ΠR|T.C −ΠR|F.TC{ΠF |T.C − Π̃F |T.C}. (4)

(ii) Let F be the empty set. Then:

Π̃R|T = ΠR|T −ΠR|C.T {ΠC|T − Π̃C|T }. (5)

Proof. (i) By (3), we have

Π̃R|T.C = Π̃R|T.CF + Π̃R|F.TCΠ̃F |T.C

= ΠR|T.CF + ΠR|F.TCΠ̃F |T.C , by Proposition 4(i)

= ΠR|T.C −ΠR|F.TC{ΠF |T.C − Π̃F |T.C} using again (3).

(ii) It follows analogously.
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Corollary 2. If the response variables R are not truncated, then

Π̃R|T.C = ΠR|T.C (6)

if either (i) ΠR|F.TC = 0 or (ii) ΠF |T.C = Π̃F |T.C = 0.

Notice that, if a stronger condition holds, such as R⊥⊥ F |T∪C, from Proposition 1,

it follows that conditional densities f̃R|TC and fR|TC are equal. In the linear case,

this implies that ΠR|T.C can be estimated using ordinary least-squares, with a loss

of efficiency due to the restrictions on the range of admissible values of XT and XC .

Equation (4) is the multivariate extension of Golberger’s (1981) equation (37) for

incidental truncation.

5 Some implications for linear recursive regressions

Sometimes a full ordering of the variables X can be determined such that the joint

density of the variables in X can be factorized into a product of univariate densities.

In that case, we say that the distribution is generated over a directed acyclic graph, see

Lauritzen, 1996, Section 3.2.2. When truncation occurs on more than one variable

of the univariate recursive process, then the problem arises on whether truncation

on univariate densities in a stepwise fashion is equivalent to truncation on the joint

distribution. Provided that truncations on each variable are independent, the two

mechanisms lead to the same truncated distribution.

Particular cases of distributions generated over a directed acyclic graph are linear

recursive regression systems with independent residuals, where it is assumed that

the random variables X are mean-centred such that AX = ε where A is a unit

upper triangular matrix and the errors ε have zero means and are uncorrelated, see

Wermuth and Cox (2004). In this framework X may contain latent variables which

induce correlated residuals in the equations for the observed variables. We discuss an

example illustrating the implications of the previous results in these systems.

Figure 1 about here

Example. The situation known as incidental truncation, Goldberger (1981), can

be represented with a linear structural model

Y1 = β1XX + η1

Y2 = β2XX + η2,
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where η1 and η2 are correlated error terms, marginally independent of X, and the

unit are selected according to Y2 ∈ I2. The model is related to Heckman’s (1979)

model. By adding a latent variable L inducing correlation among η1 and η2, an

equivalent linear recursive regression model with independent residuals is derived.

The associated directed acyclic graph is in Figure 1(a). The interest is in estimating

ΠY1|X.L after truncation on Y2. Since Y1 ⊥⊥ Y2|X ∪ L, by Proposition 5

Π̃Y1|X.L = ΠY1|X.L −ΠY1|Y2.XL(ΠY2|X.L − Π̃Y2|X.L) = ΠY1|X.L.

Since L is usually not known ΠY1|X.L, cannot be estimated. Suppose now that X

can be partitioned into X1 and X2 such that X1 ⊥⊥ Y2 | X2 and X2 ⊥⊥ Y1|X1 as in

Figure 1(b). The interest is now on ΠY1|X1.L. By direct calculations, or using the

results in Spirtes et al. (1998) Section 4.4, we have ΠY1|X1.L = ΠY1|X1.X2Y2
. Then, from

Proposition 1, fY1|X1.X2Y2
= f̃Y1|X1.X2Y2

. The implication is that, in the linear case,

the least-squares regression coefficient of interest can be estimated from a sample

drawn from the truncated distribution as the OLS coefficient of X1 in the linear

regression of Y1 against X1,X2 and Y2. Notice that the derivations here do not make

use of the information on the censoring mechanism induced by the truncation process.

6 Concluding remarks

This note details the effects of truncation with particular references to linear recursive

systems. Sufficient conditions for the absence of distortion are given, based on con-

ditional independencies or zero partial correlations before truncation. A formula for

the distortion in linear regression coefficient is also provided. When some conditional

independencies can be either postulated or induced via an adequate design, then rules

are given to check which associations are not distorted after truncation. In the lin-

ear case, when the distribution is generated over a directed acyclic graph, this leads

to useful conditions to find adjusting covariates that allow the identification of the

least-squares coefficients of interest. Furthermore, as the example shows, there might

be a gain in the estimation of the least-squares parameters of interest by conditioning

on the truncation variables, when measured, even if not explicitly appearing in the

equation.
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Figure 1: Two conditional independence graphs for the incidental truncation problem

(a) without and (b) with exclusion restrictions.
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