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Smoothing spline analysis of variance approach for global sensitivity
analysis of computer codes

Samir Touzania, Daniel Busbya

aIFP Energies nouvelles, 92500 Rueil-Malmaison, France

Abstract

The paper investigates a nonparametric regression method based on smoothing spline anal-
ysis of variance (ANOVA) approach to address the problem of global sensitivity analysis (GSA)
of complex and computationally demanding computer codes. The two steps algorithm of this
method involves an estimation procedure and a variable selection. The latter can become com-
putationally demanding when dealing with high dimensional problems. Thus, we proposed a
new algorithm based on Landweber iterations. Using the fact that the considered regression
method is based on ANOVA decomposition, we introduced a new direct method for comput-
ing sensitivity indices. Numerical tests performed on several analytical examples and on an
application from petroleum reservoir engineering showed that the method gives competitive
results compared to a more standard Gaussian Process approach.

Keywords: Global sensitivity analysis, Metamodel, Smoothing Spline ANOVA,
Nonparametric regression.

1. Introduction

The recent significant advances in computational power have allowed computer modeling
and simulation to become an integral tool in many industrial and scientific applications, such as
nuclear safety assessment, meteorology or oil reservoir forecasting. Simulations are performed
with complex computer codes that model diverse complex real world phenomena. Inputs of
such computer codes are estimated by experts or by indirect measures and can be highly un-
certain. It is important to identify the most significant inputs, which contribute to the model
prediction variability. This task is generally performed by the variance-based sensitivity anal-
ysis also known as global sensitivity analysis (GSA) (see [1] and [2]).
The aim of GSA for computer codes is to quantify how the variation of an output of the
computer code is apportioned to different input of the model. The most useful methods
that perform sensitivity analysis require stochastic simulation techniques, such as Monte-Carlo
methods. These methods usually involve several thousands computer code evaluations that
are generally not affordable with realistic models for which each simulation requires several
minutes, hours or days. Consequently, meta-modeling methods become an interesting alterna-
tive.
A meta-model is an approximation of the computer code’s input/output relation, which is fast
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to evaluate. The general idea of this approach is to perform a limited number of model eval-
uations (hundreds) at some carefully chosen training input values, and then, using statistical
regression techniques to construct an approximation of the model. If the resulting approxima-
tion is of a good quality, the meta-model is used instead of the complex and computationally
demanding computer code to perform the GSA.
The most commonly used meta-modeling methods are those based on parametric polynomial
regression models, which require specifying the polynomial form of the regression mean (lin-
ear, quadratic, . . . ). However, it is often the case that the linear (or quadratic) model can fail
to identify properly the input/output relation. Thus, in nonlinear situations, nonparametric
regression methods are preferred.
In the last decade many different nonparametric regression models have been used as a meta-
modeling methods. To name a few of them, [3], [4] and [5] utilized a Gaussian Process (GP).
[6] and [7] used a polynomial chaos expansions to perform a GSA.
In addition, [8], [9] and [10] provide a comparison of various parametric and nonparametric
regression models, such as linear regression (LREG), quadratic regression (QREG), projection
pursuit regression multivariate adaptive regression splines (MARS), gradient boosting regres-
sion, random forest, Gaussian process (GP), adaptive component selection and smoothing
operator (ACOSSO), etc. . . for providing appropriate metamodel strategies. The authors note
that ACOSSO and GP perform well in all cases considered nevertheless suffer from higher
computational time.
We focus in this work on the modern nonparametric regression method based on smooth-
ing spline ANOVA (SS-ANOVA) model and component selection and smoothing operator
(COSSO) regularization, which can be seen as an extension of the LASSO [11] variable selec-
tion method in parametric models to nonparametric models. Moreover, we use the ANOVA
decomposition basis of the COSSO to introduce a direct method to compute the sensitivity
indices.
In this paper, we first review the SS-ANOVA, then we will describe the COSSO method and its
algorithm. Furthermore we will introduce two new algorithms which provide the COSSO esti-
mates, the first one using an iterative algorithm based on Landweber iterations and the second
one using a modified least angle regression algorithm (LARS) (see [12] and [13]). Next we will
describe our new method to compute the sensitivity indices. Finally, numerical simulations
and an application from petroleum reservoir engineering will be presented and discussed.

2. Smoothing spline ANOVA approach for metamodels

In mathematical terms, the computer code can be represented as a function Y = f(X)
where Y is the output scalar of the computer code, X = (X(1), . . . , X(d)) the d-dimensional
inputs vector which represent the uncertain parameters, f : Rd → R the unknown function
that represent the computer code. Our purpose is to introduce an estimation procedure for f .
A popular approach to the nonparametric estimation for high dimensional problems is the
smoothing spline analysis of variance (SS-ANOVA) model [14]. To remind, the ANOVA ex-
pansion is defined as

f(X) = f0 +
d∑
j=1

fj(X(j)) +
∑
j<l

fjk(X(j), X(l)) + ...+ f1,...,d(X(1), ..., X(d)) (1)
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where f0 is a constant, fj ’s are univariate functions representing the main effects, fjl’s are
bivariate functions representing the two way interactions, and so on.
It is important to determine which ANOVA components should be included in the model. Lin
and Zhang [15] proposed a penalized least square method with the penalty functional being
the sum of component norms. The COSSO is a regularized nonparametric regression method
based on ANOVA decomposition.
In the framework of the meta-modeling, Storlie et al. [10] have applied an adaptive version
of COSSO (ACOSSO) for GSA application. This version was introduced in [16]. However,
ACOSSO is computationally more demanding than COSSO.

2.1. Definition
Let f ∈ F , where F is a reproducing kernel Hilbert space (RKHS) (for more details we refer

to [14] and [17]) corresponding to the ANOVA decomposition (1) , and let Hj = {1}⊕H̄j be a
RKHS of functions of X(j) over [0, 1], where {1} is the RKHS consisting of only the constant
functions and H̄j is the RKHS consisting of functions fj ∈ Hj such that 〈fj , 1〉Hj = 0. Then
the model space F is the tensor product space of Hj

F =
d⊗
j=1

Hj = {1} ⊕
d∑
j=1

H̄j ⊕
∑
j<l

[H̄j ⊗ H̄l]... (2)

Each component in the ANOVA decomposition (1) is associated to a corresponding subspace
in the orthogonal decomposition (2). We assume that only second order interactions are
considered in the ANOVA decomposition and an expansion to the second order generally
provides a satisfactory description of the model.
Let’s consider the index α ≡ j for α = 1, . . . , d with j = 1, . . . , d and α ≡ (j, l) for α =
d + 1, . . . , d(d + 1)/2 (where d(d + 1)/2 correspond to the number of ANOVA components)
with 1 ≤ j < l ≤ d. With such notation in (2) when the expansion is truncated to include only
interactions up to the second order

F = {1} ⊕
q⊕

α=1

Fα = {1} ⊕
d∑
j=1

H̄j ⊕
∑
j<l

[H̄j ⊗ H̄l] (3)

where F1, . . .Fq are q orthogonal subspaces of F and q = d(d+ 1)/2. We denote by ‖ · ‖ the
norm in the RKHS F . For some λ the COSSO estimate is given by the minimizer of

1
n

n∑
i=1

(yi − f(xi))2 + λ2
q∑

α=1

‖ Pαf ‖ (4)

where λ is the regularization parameter and Pα is the orthogonal projection onto Fα.

2.2. Algorithm
Lin and Zhang [15] have shown that the minimizer of (4) has the form f̂ = b̂ +

∑q
α=1 f̂α,

with f̂α ∈ Fα. By the reproducing kernel property of Fα, f̂α ∈ span{Kα(xi, ·), i = 1, . . . , n},
where Kα is the reproducing kernel of Fα defined by

Kα(x, x′) = Kj(x, x′) = k1(x)k1(x′) + k2(x)k2(x′)− k4(|x− x′|)
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where kl(x) = Bl(x)/l! and Bl is the lth Bernoulli polynomial. Thus, for x ∈ [0, 1]

k1(x) = x− 1
2

k2(x) =
1
2

(k2
1(x)− 1/12)

k4(x) =
1
24

(k4
1(x)− k2

1(x)
2

+
7

240
)

Moreover, the reproducing kernel Kα for the RKHS Fα such as Fα ≡ H̄j ⊗ H̄l, are given by
the following tensor products

Kα(X,X′) = Kj(X(j), X(j)′)Kl(X(l), X(l)′)

For more details we refer to [14].
Lin and Zhang [15] have also shown that (4) is equivalent to a more easier form to compute,
which is

1
n

n∑
i=1

{yi − f(xi)}2 + λ0

q∑
α=1

θ−1
α ‖ Pαf ‖2 +ν

q∑
α=1

θα, subject to θα ≥ 0 (5)

where λ0 is a constant and ν is a smoothing parameter. If θα = 0, then the minimizer of (5)
is taken to satisfy ‖ Pαf ‖= 0 and we use the convention 0/0 = 0. The penalty term of θ’s,∑q

α=1 θα, controlling the sparsity of each component fα.
For fixed θ = (θ1, . . . , θq)T (5) is equivalent to the standard SS-ANOVA [14] and therefore the
solution has the form

f(x) = b+
n∑
i=1

ci

q∑
α=1

θαKα(xi,x) (6)

Let Kα be the n × n matrix {Kα(xi,xj))}, i = 1, . . . , n, j = 1, . . . , n, let Kθ stands for the
matrix

∑q
α=1 θαKα and 1n the column vector consisting of n ones. Then f = Kθc + b1n with

c = (c1, . . . , cn)T and (5) can be expressed as

1
n
‖ Y −

q∑
α=1

θαKαc− b1n ‖2 +λ0cTKθc + ν

q∑
α=1

θα (7)

For a fixed θ, (7) can be written as

min
c,b
‖ Y −Kθc− b1n ‖2 +nλ0cTKθc (8)

which is a smooting spline problem (a quadratic minimization problem) and the solution sat-
isfies

(Kθ + nλ0I)c + b1n = Y (9)

1Tnc = 0 (10)
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where I is the identity matrix.
On the other hand, for fixed c and b, (7) can be written as

min
θ
‖ z−Dθ ‖2 +nν

q∑
α=1

θα subject to θα ≥ 0 (11)

where z = Y − (1/2)nλ0c − b1n and D the n × q matrix with the αth column dα = Kαc.
Note that this formulation is similar to the nonnegative garrote (NNG) optimization problem
introduced in [18].
An equivalent form of (11) is given by

min
θ
‖ z−Dθ ‖2 subject to θα ≥ 0 and

q∑
α=1

θα ≤M (12)

for some M ≥ 0. Lin and Zhang [15] noted that the optimal M seems to be close to the number
of important components. For computational consideration Lin and Zhang [15] preferred to
use (12) rather than (11).
Notice that the COSSO algorithm is a two step procedure. Indeed, it iterates between the
standard smoothing spline (8) estimator, which gives a good initial estimate and the NNG
(12) estimator, which is a variable selection procedure.
They also observed empirically that after one iteration the result is close to that at convergence.
Thus the COSSO algorithm is presented as a one step update procedure

1. Initialization: Fix θα = 1, α = 1, ..., q
2. Tune λ0 using v-fold-cross-validation.
3. Solve for c et b with (8).
4. For each fixed M in a chosen range, solve (12) with c and b obtained in step 3. Tune M

using v-fold-cross-validation. The θ’s corresponding to the best M are the final solution
at this step.

5. With the new θ, tune λ0 using v-fold-cross-validation.
6. Solve for c and b with (8)

Notice that we have added step 5 respect to the original COSSO algorithm because we observed
empirically that it improved the method’s performance.

2.3. COSSO based on the Iterative projected shrinkage algorithm
Consider the (11) regression problem

min
θ
‖ z−Dθ ‖2 +nν

q∑
α=1

θα subject to θα ≥ 0

The functional (11) is convex since the matrix DTD is symmetric and positive semidefinite
and since the constraints θα > 0 define also a convex feasible set. For the convex optimization
problem, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the op-
timal solution θ∗, where θ∗ = arg minθ ‖ z − Dθ ‖2 +nν

∑q
α=1 θα subject to θα ≥ 0. This

KKT conditions are defined as

{−dTα(Y −Dθ∗) + ν}θ∗α = 0

−dTα(Y −Dθ∗) + ν ≥ 0
θ∗α ≥ 0
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which is equivalent to

−dTα(Y −Dθ∗) + ν = 0, if θ∗α 6= 0 (13)

−dTα(Y −Dθ∗) + ν > 0, if θ∗α = 0 (14)

where dα denotes the αth column of D. Therefore, from (13) and (14) we can derive the
fixed-point equation

θ∗ = PΩ+(δSoftν (θ∗ +DT (Y −Dθ∗))) (15)

where PΩ+ is the nearest point projection operator onto the nonnegative orthant (closed convex
set) Ω+ = {x : x ≥ 0}, and δSoftλ is the soft-thresholding function defined as

δSoftν (x) =


0 if | x |≤ ν
x− ν if x > ν
x+ ν if x < −ν

(16)

Thus, in the framework of Landweber algorithm [19] we introduced in [20] the iterative pro-
jected shrinkage algorithm (IPS) to solve (11). This algorithm is defined by

θ[p+1] = PΩ+(δSoftν (θ[p] +DT (Y −Dθ[p]))) (17)

We have assumed that λmax(DTD) ≤ 1 (where λmax is the maximum eigenvalue). Otherwise
we solve the equivalent minimization problem

min
θ
‖ z
c
− D

c
θ ‖2 +

nν

c

q∑
α=1

θα subject to θα ≥ 0

where the positive constant c ensures that λmax(DTD) ≤ 1.
In practice, slow convergence, particularly when D is ill-conditioned or ill-posed, is an obstacle
to a wide use of this method in spite of the good results provided in many cases. Indeed,
IPS procedure is a composition of the projected thresholding with the Landweber iteration
algorithm, which is a gradient descent algorithm with a fixed step size, known to converge
usually slowly. Unfortunately, combining the Landweber iteration with the projected thresh-
olding operation does not accelerate the convergence, especially with a small value of ν. Several
authors proposed different methods to accelerate various Landweber algorithms, among them
[21], [22] and [23], the later brought an efficient procedure, named two-step iterative shrink-
age/thresholding (TwIST). We adapted this algorithm so it converge to the solution of (11).
The accelerated projected iterative shrinkage (AIPS) algorithm is defined as

θ[1] = PΩ+(δSoftν (θ[0])) (18)

θ[p+1] = (1− α)θ[p−1] + (α− β)θ[p] + βPΩ+(δSoftν (θ[p] +DT (Y −Dθ[p]))) (19)

In accordance with Theorem 4 given by [23] the parameters α and β are set to

α = ρ̂2 + 1
β = 2α/(1 + ζ)

where ρ̂ = (1 −
√
ζ)/(1 +

√
ζ) and ζ = λmin(DTD) (where λmin is the minimal eigenvalue) if

λmin(DTD) 6= 0, else ζ = 10−κ with κ = 1, . . . , 4 needs to be tuned by running a few iterations.
The condition κ = 1 corresponds to mildly ill-conditioned problems and κ = 4 for severely
ill-conditioned problems. For more detail about the choice of these parameters we refer to [23].
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COSSO using IPS or AIPS
Thereby, the COSSO algorithm using IPS or AIPS will iterate between (8) and (11) instead

of iterating between (8) and (12). Thus we substitute the step 4 of the COSSO algorithm by

4. For each fixed ν, solve (11) by using the IPS (or AIPS) algorithm with the c and b,
obtained in step 3. Tune ν using v-fold-cross-validation. The θ’s corresponding to the
best ν are the final solution at this step.

Note that it can be shown that θ = 0 for ν ≥ νmax, with νmax ≡ maxα | dTαY |. Hence, the
value of ν, which needs to be estimated, is bounded by νmax and νmin, with νmin small enough.
Then, ν is tuned by v-fold-cross-validation.

2.4. COSSO based on nonnegative LARS algorithm
Consider (11) the NNG regression problem, [13] provided an efficient algorithm similar to

LARS for computing the entire path solution as ν is varied. We called this algorithm the
nonegative LARS (NN-LARS) and it is described below

1. Start from k = 1, θ[0]
1 , . . . , θ

[0]
q = 0, Ak = ∅ and the residual r[0] equal to the vector z

2. Update the active set

Ak = Ak−1 ∪ {j∗},with j∗ = arg max
j∈Ac

k

(dTj r
[k−1])

where Ack is the complementary of Ak.
3. Compute the current descent direction vectors

w[k]
Ak

= (DT
Ak
DAk

)−1DT
Ak

r[k]

4. Now, for every l ∈ Ack compute γl that satisfies dTl r
[k+1] = dTj r

[k+1]. Hence

dTl r
[k] − γldTl DAk

w[k]
Ak

= dTj r
[k] − γldTj DAk

w[k]
Ak
,with l ∈ Ack and j ∈ Ak

It follows

γl =
dTj r

[k] − dTl r
[k]

dTl DAk
w[k]
Ak
− dTj DAk

w[k]
Ak

,with l ∈ Ack and j ∈ Ak

5. For every j ∈ Ak, compute γj = min(αj , 1) where αj = −θ[k]
j /w

[k]
j

6. If for every j we have γj ≤ 0 or minj +(γj) > 1, set γ = 1. Otherwise, set γ = γj∗ =
minj +(γj) and update the coefficients vector by using the new γ

θ
[k+1]
Ak

= θ
[k]
Ak

+ γw[k]
Ak

If j∗ /∈ Ak put the corresponding variable into the active set Ak+1 = Ak∪{j∗}, otherwise
drop the corresponding variable from the active set Ak+1 = Ak − {j∗}.

7. Set r[k+1] = z−Dθ[k+1], k = k + 1 and continue until γ = 1.

7



COSSO using NN-LARS
Thus we substitute the step 4 of the COSSO algorithm by

4. Solve (11) by using the NN-LARS algorithm with the c and b, obtained in step 3. Choose
the best model using v-fold-cross-validation. The θ’s corresponding to the best model
are the final solution at this step.

Notice that even if the NN-LARS algorithm provides the entire solution path the choice of the
best model (as we will empirically show later) becomes computationally expensive for a high
dimensional problem.

3. Global sensitivity analysis

3.1. Variance based Sobol’s indices
In order to describe this concept, let us suppose that the mathematical model of the

computational code is defined on the unit d-dimensional cube (X ∈ [0, 1]d). The main idea from
[1]’s approach is to decompose the response Y = f(X) into summands of different dimensions
via ANOVA decomposition (1). The integrals of every summand of this decomposition over
any of its own variables is assumed to be equal to zero, i.e.∫ 1

0
fj1,...,js(X(j1), . . . , X(js))dX(jk) = 0 (20)

where 1 ≤ j1 < . . . < js ≤ d, s = 1, . . . , d and 1 ≤ k ≤ s. It follows from this property that all
the summands in (1) are orthogonal, i.e, if (i1, . . . , is) 6= (j1, . . . , jl), then∫

Ωd

fi1,...,isfj1,...,jldX = 0 (21)

Using the orthogonality, Sobol [1] showed that such decomposition of f(X) is unique and that
all the terms in (1) can be evaluated via multidimensional integrals

f0 = E(Y ) (22)

fj(X(j)) = E(Y |X(j))− E(Y ) (23)

fj,l(X(j), X(l)) = E(Y |X(j), X(l))− fj − fl − E(Y ) (24)

where E(Y ) and E(Y |X(j)) are respectively the expectation and the conditional expectation
of the output Y . Analogous formulae can be obtained for the higher-order terms. If all the
input factors are mutually independent, the ANOVA decomposition is valid for any distribution
function of the X(i)’s and using this fact, squaring and integrating (1) over [0, 1]d, and by (21),
we obtain

V =
d∑
j=1

Vj +
∑

1≤j<l≤d
Vjl + . . .+ V1,2,...,d (25)

where Vj = V [E(Y |X(j))] is the variance of the conditional expectation that measures the
main effect of Xj on Y and Vjl = V [E(Y |X(j), X(l))]− Vj − Vl measures the joint effect of the
pair (X(j), X(l)) on Y . The total variance V of Y is defined to be

V = E(Y 2)− f2
0 (26)
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Variance-based sensitivity indices, also called Sobol indices, are then defined by

Sj1,...,js =
Vj1,...,js
V

(27)

where 1 ≤ j1 < . . . < js ≤ d and s = 1, . . . , d. Thus, Sj = Vj/V is called the first order
sensitivity index (or the main effect) for factor X(j), which measures the main effect of X(j)

on the output Y , the second order index Sjl = Vjl/V , for j 6= l, is called the second order
sensitivity index expresses the sensitivity of the model to the interaction between variables
X(i) and X(j) on Y and so on for higher orders effects. The decomposition in (25) has the
useful property that all sensitivity indices sum up to one.

p∑
j=1

Sj +
∑

1≤j<l≤p
Sjl + . . .+ S1,2,...,p = 1 (28)

The total sensitivity index (or total effect) of a given factor is defined as the sum of all the
sensitivity indices involving the factor in question.

STj =
∑
l#j

Sl (29)

where #j represents all the Sj1,...,js terms that include the index j. Total sensitivity index
of an input X(j) measures the part of output variance explained by all the effects in which
it plays a role. Note however that the sum of all STj is higher than one because interaction
terms are counted several times. It is important to note that total sensitivity indices can be
computed by a single multidimensional integration and do not require computing all high order
indices (see [1]). Then comparing the total effect indices provides information about influential
parameters.
GSA enables to explain the variability of the output response as a function of the input param-
eters through the definition of total and partial sensitivity indices. The computation of these
indices involves the computation of several multidimensional integrals that are estimated by
Monte Carlo method and thus requires huge random samples. For this reason GSA techniques
are prohibitive if used directly using the computer code (fluid flow simulator for example).

3.2. Global sensitivity analysis using COSSO
It has been shown in the previous section that when the input vector components are inde-

pendently distributed (and X ∈ [0, 1]d), the component functions in the ANOVA decomposition
are orthogonal and contain relevant information on the input/output relationships. Moreover,
the total variance V of the model can be decomposed into its input variable contributions.
Using the variance decomposition (25) and the COSSO solution form (6) we have

V ≈
d∑
j=1

Vj +
∑

1≤j<l≤d
Vjl (30)

≈
q∑

α=1

∫ 1

0

[
θα

n∑
i=1

ciKα(xi,X)
]2

dX(α) (31)

where dX(α) ≡ dX(α) for α = 1, . . . , d and dX(α) ≡ dX(j)dX(l) for α = d + 1, . . . , q with
1 ≤ j < l ≤ d.
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Let us consider aN i.i.d random sample from the distribution of X, say {zi = (zi1 , . . . , zid)T , i =
1, . . . , N}. The Monte-Carlo estimate of Vj is given by

V̂j =
1
N

N∑
m=1

[
θj

n∑
i=1

ciKj(xij , zmj )
]2

(32)

Hence the main effect indices (first order sensitivity indices) are estimated as

Ŝj =
V̂j

V̂
(33)

where V̂ is the total variance estimation. The estimation of Vjl are given by

V̂jl =
1
N

N∑
m=1

[
θjl

n∑
i=1

ciKj(xij , zmj )Kl(xil , zml
)
]2

(34)

Thus, the second order indices are estimated by

Ŝjl =
V̂jl

V̂
(35)

Since we assume that a truncated form of ANOVA decomposition provides a satisfactory
approximation of the model, the total effect indices estimation is given by

ŜTj = Ŝj +
∑
l 6=j

Ŝjl (36)

Notice that to compute all the indices (main effect, interaction and total effect) we need only
N evaluations of the meta-model.

4. Simulations

The present section is focused on studying the empirical performance of the four different
versions of COSSO estimate and compares it to the GP method. The four version of COSSO
are COSSO-IPS, COSSO-AIPS, COSSO-NN-LARS and COSSO-solver which use a standard
convex optimizer (Matlab code developed by the COSSO’s authors [15]).
The empirical performance of estimators will be measured in terms of prediction accuracy and
global sensitivity analysis (GSA). The measure of accuracy is given by Q2 defined as

Q2 = 1−
∑ntest

i=1 (yi − f̂(xi))2∑ntest
i=1 (yi − ȳ)2

,with ntest = 1000 (37)

where yi denotes the ith test observation of the test set, ȳ is their empirical mean and f̂(xi)
is the predicted value at the design point xi. We also compare the methods for different ex-
perimental design sizes, uniformly distributed on [0, 1]d and built by Latin Hypercube Design
procedure [24] with maximin criterion [25] (maximinLHD). For each setting of each test ex-
ample, we run 50 times and average. Thus we define the quantity Q̄2 = 1/50

∑50
k=1Q

k
2.

Concerning the performance in terms of GSA, we will study the accuracy of the total effect
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indices estimation. Furthermore, we will study the size effect of the sample used to estimate
the total effect indices by Monte-Carlo integration. We will compare the results to those ob-
tained by Sobol’s method (described in [1] and [2]) and using GP meta-modeling procedure.
To fit COSSO models using a standard convex optimizer we have used the matlab code de-
veloped by the COSSO’s authors Yi Lin and Hao Helen Zhang. COSSO-IPS, COSSO-AIPS
and COSSO-NN-LARS are adapted versions of the original Matlab code. The GP code was
implemented using R with a generalized power exponential Family [26].

4.1. Example 1
Consider the g-Sobol function, which is strongly nonlinear and is described by a non-

monotonic relationship. Because of its complexity and the availability of analytical sensitivity
indices, this function is a well-known test case in the studies of GSA. Figure 1 illustrates the
g-Sobol function against the two most influential parameters X(1) and X(2). The g-Sobol
function (see [2]) is defined for 8 inputs factors as

gSobol(X(1), . . . , X(8)) =
8∏

k=1

gk(X(k)) with gk(X(k)) =

∣∣4X(k) − 2
∣∣+ ak

1 + ak

where {a1, . . . , a8} = {0, 1, 4.5, 9, 99, 99, 99, 99}. The contribution of each input X(k) to the
variability of the model output is represented by the weighting coefficient ak. The lower this
coefficient ak, the more significant the variable X(k). For example

ak = 0→ x(k) is very important,
ak = 1→ x(k) is relatively important,
ak = 4.5→ x(k) is poorly important,
ak = 9→ x(k) is non important,
ak = 99→ x(k) is non significant.

The analytical values of Sobol’s indices are given by

Vj =
1

3(1 + aj)2
, V =

d∏
k=1

(Vk + 1)− 1,

Sj1,...,js =
1
V

s∏
k=1

Vk

where 1 ≤ j1 < . . . < js ≤ d and s = 1, . . . , d. The analytical values of the total effect indices
are shown in table (1).

4.1.1. Assessment of the prediction accuracy
Table 2 summarizes the results for the 50 realizations of the g-Sobol model with three

different experimental design sizes (n = 100, n = 200 and n = 400). It appears that for
this example the GP outperforms all of the COSSO versions for n = 100 and n = 200.
However, when the experimental design size increases, the performance of the GP does not get
much better while all the COSSO methods increase their accuracy by increasing the sample
size. Indeed, for n = 400 the COSSO methods outperforms GP especially COSSO-NN-LARS,
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Figure 1: Plot of g-Sobol function versus inputs X(1) and X(2) with other inputs fixed at 0.5

Input Total effect
X(1) 0.787
X(2) 0.242
X(3) 0.034
X(4) 0.011

X(5,...,8) 0

Table 1: Analytical values of the total effect indices of the g-Sobol function

COSSO-AIPS and COSSO-solver, which have Q̄2 quantity equal to 0.99 that indicates that
those meta-models explain 99% of the model variance. All the COSSO versions provide quite
similar results for this example. Moreover, as expected, the AIPS method is clearly faster
than IPS. Notice that even if the NN-LARS provides the entire path of the solution, the
COSSO-NN-LARS method has the same computational cost as COSSO-AIPS and COSSO-
solver, the reason of that is the choice of the best model by v-fold-cross-validation which is
computationally costly.

4.1.2. Global sensitivity analysis
In this subsection, we apply the COSSO-AIPS method in order to estimate the total ef-

fect indices. The choice of COSSO-AIPS instead of other COSSO was motivated by the good
performance of the method and it fast execution. We first focus on the robustness of the size
effect of the sample used to estimate the indices. To this end, we repeated the experiment
100 times with two different sample size N = 500 and N = 5000 built using maximinLHD.
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n Q̄2 time (s)

COSSO-NN-LARS
100 0.86(0.03) 4
200 0.91(0.02) 14
400 0.99(0.01) 59

COSSO-IPS
100 0.82(0.08) 28
200 0.90(0.01) 45
400 0.97(0.02) 195

COSSO-AIPS
100 0.84(0.07) 6
200 0.90(0.01) 15
400 0.99(0.01) 53

COSSO-solver
100 0.85(0.06) 8
200 0.90(0.01) 18
400 0.99(0.01) 59

GP
100 0.93(0.01) 29
200 0.96(0.01) 86
400 0.95(0.01) 342

Table 2: Q2 results from the g-Sobol function. The estimated standard deviation of Q2 is given in parentheses.

We estimate the indices using a meta-model build by COSSO-AIPS of an experimental design
of size n = 400 and having a Q2 equal to 0.99. We compare the results to those obtained by
Sobol’s method of indices estimation based on meta-model build by GP on an experimental
design of size n = 400 and having a Q2 equal to 0.96. As introduced previously Sobol’s methods
to estimate the total effect needs 2 samples, thus we build, using a maximinLHD procedure,
200 samples of two sizes: N = 500 and N = 5000. Figure 2 summarizes the results for the
100 different samples and the two sizes (N = 500 and N = 5000). Each panel is a boxplot
of the 100 estimations of the total effect index ŜTj , j = 1, . . . , 8. Dashed lines are drawn at
the corresponding analytical values of the total effects indices. We see that our direct method
of indices estimation based on COSSO procedure is more robust than Sobol’s one using the
GP meta-model, especially when the sample size is small (N = 500). Moreover our method
needs only N evaluation of the COSSO-AIPS meta-model while Sobol’s method needs 2Nd
evaluations of GP meta-model (for N = 5000, 80000 evaluations are used).
To study the performance of the total effect indices estimations versus the sizes of the ex-
perimental design we compute the indices, using sample of size N = 5000, for each of the
50’s realizations and for the three different experimental design sizes (n = 100, n = 200 and
n = 400). Figure 3 summarizes the results, each panel is a boxplot of the 50 estimations of ŜTj ,
j = 1, . . . , 8. Dashed lines are drawn at the corresponding analytical values of the total effects
indices. As expected the estimations based on GP meta-models outperforms those based on
COSSO-AIPS for n = 100 and n = 200, which is due to the better performances in terms of
Q2 of the GP for these experimental design sizes. Nevertheless, for n = 400 the estimations
based on COSSO-AIPS are better than those based on GP.
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Figure 2: Total effect indices vs. sample effect (example 1)

4.2. Example 2
Let us consider the same example that has been used in [15]. This 10 dimensional regression

problem is defined as

f(X) = g1(X(1))+g2(X(2))+g3(X(3))+g4(X(4))+g1(X(3)+X(4))+g2(
X(1)X(3)

2
)+g3(X(1)X(2))

(38)
where

g1(t) = t; g2(t) = (2t− 1)2; g3(t) =
sin(2πt)

2− sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

Therefore X(5), . . . , X(8) are uninformative. This analytical model is fast enough to evaluate
so we can calculate the total effect indices with great precision. Thus the reference values
of the indices are computed by direct Monte-Carlo simulation using Sobol’s method (with
N = 250000, which correspond to 5.106 evaluations). Table 3 shows 95% confidence intervals
(95% CI) provided by 100 different samples and the chosen reference values
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Figure 3: Total effect indices vs. experimental design size effect (example 1)
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Input Total effect 95% CI Reference value
X(1) [0.343, 0.346] 0.344
X(2) [0.213, 0.215] 0.214
X(3) [0.285, 0.288] 0.286
X(4) [0.377, 0.380] 0.379

X(5,...,10) 0 0

Table 3: 95% CI and the reference values of the total effect indices for the example 2

4.2.1. Assessment of the prediction accuracy
Table 4 summarizes the results for the 50 realizations of the example 2 model with three

different experimental design sizes (n = 100, n = 200 and n = 400). Here we see that for
all versions and for all sizes of experimental designs the COSSO method outperforms GP.
The accuracy for all methods improves as the experimental design increases. Notice that the
COSSO-AIPS method is the fastest one, especially with a large experimental design size as
opposed to the GP, which is the slowest method.

n Q̄2 time (s)

COSSO-NN-LARS
100 0.80(0.09) 6
200 0.94(0.03) 30
400 0.99(0.01) 118

COSSO-IPS
100 0.82(0.08) 27
200 0.95(0.02) 50
400 0.99(0.01) 140

COSSO-AIPS
100 0.82(0.08) 7
200 0.94(0.02) 22
400 0.99(0.01) 84

COSSO-solver
100 0.82(0.08) 19
200 0.93(0.03) 37
400 0.98(0.01) 110

GP
100 0.76(0.03) 25
200 0.88(0.02) 95
400 0.94(0.02) 490

Table 4: Q2 results from example 2. The estimated standard deviation of Q2 is given in parentheses.

4.2.2. Global sensitivity analysis
As in the previous subsection, we apply the COSSO-AIPS method in order to estimate

the total effect indices. We first focus on the size effect of the sample used to estimate the
indices. Thus we build, using a maximinLHD procedure, 100 samples of two sizes: N = 500
and N = 5000; then we estimate the indices using a meta-model built by COSSO-AIPS of an
experimental design of size n = 400 and having a Q2 equal to 0.99. We compare the results
to those obtained by Sobol’s method of indices estimation based on meta-model built by GP
on an experimental design of size n = 400 and having a Q2 equal to 0.95. We build, using a
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Figure 4: Total effect indices vs. sample effect (example 2)

maximinLHD procedure, 200 samples of two sizes: N = 500 and N = 5000.
Figure 4 shows the results obtained by the 100 different samples and for the two sizes (N = 500
and N = 5000). Each panel is a boxplot of the 100 estimations of the total effect indices ŜTj ,
j = 1, . . . , 10. Dashed lines are drawn at the corresponding reference values of the total effects
indices. We see that our direct method of indices estimation based on COSSO method is more
robust than Sobol’s one using the GP meta-model especially when the sample size is small
(N = 500).
A summary of the indices estimation on 50 realizations and for the three different experimental
design size (n = 100, n = 200 and n = 400) is shown in figure 5. Each panel is a boxplot
of the 50 estimations of ŜTj , j = 1, . . . , 10. Dashed lines are drawn at the corresponding
analytical values of the total effects indices. It appears that the indices estimation using
COSSO-AIPS suffers more from the small experimental design sizes than GP, especially for
those indices corresponding to the uninformative inputs. However, as the sample size increases,
our COSSO-AIPS method performs better than Sobol’s with GP.
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Figure 5: Total effect indices vs. experimental design size effect (example 2)
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4.3. Example 3
This third example is a high dimensional model with d = 20. This model is defined as

f(X) = g1(X(1)) + g2(X(2)) + g3(X(3)) + g4(X(4)) + 1.5g2(X(8)) + 1.5g3(X(9))

+ 1.5g4(X(10)) + 2g3(X(11)) + 1.5g4(X(12)) + g3(X(1)X(2)) + g2(
X(1) +X(3)

2
)

+ g1(X(3)X(4)) + 2g3(X(5)X(6)) + 2g2(
X(5) +X(7)

2
)

where the functions g1, g2, g3 and g4 are the same as for example 2. Notice that X(13), . . . , X(20)

are uninformative. The reference values of the total effect indices are computed by direct
Monte-Carlo simulation using Sobol’s method (with N = 250000, which corresponds to 5.106

evaluations). Table 5 shows 95% confidence intervals (95% CI) provided by 100 different
samples and the chosen reference values.

Input Total effect 95%CI Reference value
X(1) [0.050, 0.051] 0.050
X(2) [0.031, 0.032] 0.031
X(3) [0.042, 0.043] 0.042
X(4) [0.055, 0.057] 0.056
X(5) [0.139, 0.141] 0.140
X(6) [0.129, 0.132] 0.130
X(7) [0.033, 0.034] 0.033
X(8) [0.050, 0.051] 0.050
X(9) [0.116, 0.119] 0.117
X(10) [0.147, 0.149] 0.148
X(11) [0.207, 0.210] 0.209
X(12) [0.147, 0.149] 0.148

X(13,...,20) 0 0

Table 5: 95% CI and the reference values of the total effect indices for example 3.

4.3.1. Assessment of the prediction accuracy
Table 6 summarizes the results for the 50 realizations of the example 3 model with two

different experimental design sizes (n = 200 and n = 400) built using maximinLHD procedure.
For this example we choose to do not test COSSO-IPS since we shown in the previous tests that
AIPS have better computational performance. It can be seen that for this model GP has a bad
performance for both sizes of the experimental design. Concerning the COSSO methods we
can see that as the size of the experimental design increases, both COSSO-AIPS and COSSO-
solver provide increasingly accurate estimates. However, we can note that COSSO-NN-LARS
does not increase its performance as others and as one would expect. As for previous examples,
notice that COSSO-AIPS is the fastest method especially comparing to COSSO-solver and GP.
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n Q̄2 time (s)

COSSO-NN-LARS
200 0.73(0.10) 120
400 0.75(0.08) 281

COSSO-AIPS
200 0.78(0.08) 78
400 0.94(0.04) 274

COSSO-solver
200 0.78(0.09) 355
400 0.94(0.02) 720

GP
200 0.40(0.05) 240
400 0.56(0.03) 1105

Table 6: Q2 results from example 3. The estimated standard deviation of Q2 is given in parentheses.

4.3.2. Global sensitivity analysis
In this section, total effect indices are computed using COSSO-AIPS. Here we do not

compare the results to those using Sobol’s method with GP meta-model, because of its bad
prediction performance (see Table 6). As previously, we first study the effect of the sample
size N on indices estimations. Thus, we build using maximinLHD procedure, 100 samples of
two sizes N = 500 and N = 5000 and we compute the indices using our direct method based
on predictive COSSO-AIPS meta-model (Q2 = 0.98). We can see in the figure 6 that those
estimates are close to the reference values of the indices and that robustness of estimations
increases by increasing N , nevertheless with N = 500 estimations are still quite good.
Table 7 summarize the results from using meta-models built with the two different sizes of
experimental design (n = 200 and n = 400). As one would expect the accuracy of the indices
estimations improves as the experimental design increases (in other words as the predictivity
improves). This study was done using the 50 meta-models used in the previous section using
a N = 5000 sample to compute the total effect indices.

5. Petroleum reservoir test cases

5.1. PUNQS test case
5.1.1. Reservoir model description

The PUNQS case is a synthetic reservoir model taken from a real field located in the North
Sea. The PUNQS test case, which is qualified as a small-size model, is frequently used as
a benchmark reservoir engineering model for uncertainty analysis and for history-matching
studies, see [27].
The geological model contains 19× 28× 5 grid blocks, 1761 of which are active. The reservoir
is surrounded by a strong aquifer in the North and the West, and is bounded to the East
and South by a fault. A small gas cap is located in the centre of the dome shaped structure.
The geological model consists of five independent layers, where the porosity distribution in
each layer was modelled by geostatistical simulation. The layers 1, 3, 4 and 5 are assumed to
be of good quality, while the layer 2 is of poorer quality. The field contains six production
wells located around the gas-oil contact. Due to the strong aquifer, no injection wells are
required. For more detailed description on the model. Twenty uncertain parameters uniformly
distributed and independent, are considered in this study

• DensityGas U [0.8; 0.9] Kg/m3: gas density
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Figure 6: Total effect indices vs. sample effect (example 3)

• DensityOil U [900; 950] Kg/m3: oil density

• MPH U [0.5; 1.5]: horizontal transmissibility multipliers for each layers (from 1 to 5)

• MPV U [0.5; 5]: vertical transmissibility multipliers for each layers (from 1 to 5)

• PermAqui1 U [100; 200] mD: analytical permeability of the aquifer 1

• PermAqui2 U [100; 200] mD: analytical permeability of the aquifer 2

• PoroAqui1 U [0.2; 0.3]: analytical porosity of the aquifer 1

• PoroAqui2 U [0.2; 0.3]: analytical porosity of the aquifer 2

• SGCR U [0.02; 0.08]: critical gas saturation

• SOGCR U [0.2; 0.3]: critical oil gas saturation; largest oil saturation at which oil is
immobile in gas

• SOWCR U [0.15; 0.2]: critical oil water saturation; largest oil saturation at which oil is
immobile in water

• SWCR U [0.2; 0.3]: critical water saturation
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Input Reference value n = 200 n = 400
X(1) 0.050 0.035(0.017) 0.047(0.008)
X(2) 0.031 0.022(0.019) 0.023(0.012)
X(3) 0.042 0.021(0.019) 0.040(0.015)
X(4) 0.056 0.029(0.022) 0.052(0.008)
X(5) 0.140 0.127(0.033) 0.124(0.009)
X(6) 0.130 0.107(0.051) 0.120(0.011)
X(7) 0.033 0.034(0.028) 0.034(0.006)
X(8) 0.050 0.041(0.034) 0.054(0.006)
X(9) 0.117 0.146(0.018) 0.118(0.011)
X(10) 0.148 0.172(0.025) 0.145(0.008)
X(11) 0.209 0.248(0.05) 0.210(0.011)
X(12) 0.148 0.158(0.026) 0.144(0.009)
X(13) 0 0.003(0.004) 0.001(0.001)
X(14) 0 0.002(0.004) 0.001(0.001)
X(15) 0 0.004(0.006) 0.001(0.002)
X(16) 0 0.001(0.003) 0.002(0.001)
X(17) 0 0.003(0.003) 0.001(0.001)
X(18) 0 0.001(0.002) 0.001(0.002)
X(19) 0 0.003(0.004) 0.001(0.002)
X(20) 0 0.004(0.009) 0.001(0.002)

Table 7: Total effect indices vs. experimental design size effect (example 3). The estimated standard deviation
of the total effect index are given in parentheses.

For this study we focus on an objective function output, defined as:

OF (X) =
(f(X)− d)TC−1

D (f(X)− d)
2

(39)

where CD is the covariance matrix of the observed data and d the observed data. This OF is
given by equation (39) and represents the mismatch between observed and simulated data. The
observed data is synthetically generated using a random value for the uncertain parameters in
the simulator and adding noise (10% of the average value of each time series) to the results.
This data consists in time series given with two months frequency during the first 6 years
for the following simulator outputs: Gas Oil Ratio, Bottom Hole Pressure, Oil Production
Rate, and Water Cut. To define the weights in the objective function definition, we consider
independent measurement errors for each time dependent output. This error was taken to be
equal to 10% of the average value of each time series.

5.1.2. Assessment of the prediction accuracy
Each of the input range has been rescaled to the interval [0, 1] and the reservoir simulator

is run on two experimental designs of size n = 200 and n = 400, which were built using
maximinLHD. Then we construct meta-models using COSSO-AIPS, C0SSO-solver, COSSO-
NN-LARS and GP. In order to estimate Q2 the simulator was run at an additional sample set
of size ntest = 500. Table 8 shows the results of this study. We see that for this test case GP
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Figure 7: Top structure map of the reservoir field (PUNQS test case).

outperforms COSSO’s methods, but differences between Q2 given by the used methods are
small when the design size is n = 400. In addition, as previously shown COSSO-AIPS is less
time consuming than others especially if we compare it with GP. Consequently COSSO and
particularly COSSO-AIPS is well adapted to perform GSA.

n Q2 time (s)

COSSO-NN-LARS
200 0.67 200
400 0.81 450

COSSO-AIPS
200 0.69 70
400 0.82 300

COSSO-solver
200 0.67 280
400 0.81 700

GP
200 0.75 402
400 0.84 794

Table 8: PUNQS model Q2 results

5.1.3. Global sensitivity analysis
Here we use COSSO-AIPS and GP to produce meta-models which are built using the

experimental design of size n = 400. To compute the total effect and main effect indices via
COSSO-AIPS we use a sample of size N = 5000 and two samples of the same size for the case
using GP. We provided here the main effect indices to show the reader the importance of the
interaction effects in this model. Tables 9 shows the computed indices, thus we can see that
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the main effect and the interactions of MPH5 explain more than 65% of the model variance,
then we have a group of five inputs (SWCR, MPH1, SOGCR, SGCR and PermAqui1 )
with relatively important effects and a group of five or six (depending on the method used)
inputs with poor importance (0.05 > ŜTj > 0.01). While the remaining are considered as
uninformative. The GSA results using COSSO-AIPS and GP are almost equivalent, which
was expected knowing that their Q2 are close.

GP
Input Total effect Main effect
MPH5 0.656 0.396
SWCR 0.193 0.013
MPH1 0.143 0.035
SOGCR 0.122 0.003
SGCR 0.112 0.021

PermAqui1 0.060 −0.011
MPH3 0.049 0.001

DensityOil 0.040 −0.007
PermAqui2 0.035 −0.010
SOWCR 0.024 −0.019
MPV 4 0.023 −0.016
MPV 1 0.005 −0.019
MPV 2 0.005 −0.019
MPV 5 0.004 −0.018
MPV 3 0.002 −0.018

PoroAqui1 0.003 −0.017
DensityGas 0.001 −0.019
MPH4 0.001 −0.018
MPH2 0.001 −0.019

PoroAqui2 0 −0.019

COSSO-AIPS
Input Total effect Main effect
MPH5 0.664 0.402
SWCR 0.203 0.034
MPH1 0.160 0.058
SGCR 0.104 0.041
SOGCR 0.091 0.019

PermAqui1 0.062 0.003
MPH3 0.034 0.007

PermAqui2 0.021 0.002
MPV 1 0.021 0

DensityOil 0.019 0.008
MPV 4 0.018 0.004
SOWCR 0.011 0.003
PoroAqui2 0.005 0.001
PoroAqui1 0.004 0.002
MPV 3 0.003 0
MPV 5 0.002 0
MPV 2 0.002 0

DensityGas 0.001 0
MPH2 0 0
MPH4 0 0

Table 9: GSA from PUNQS model

5.2. IC Fault Model
5.2.1. Reservoir model description

The geological model consists of six layers of alternating good and poor quality sands (see
Figure 8). The three good quality layers have identical properties, and three poor quality
layers have different set of identical properties. The thickness of the layers has arithmetic
progression, with the top layer having a thickness of 12.5 feet, the bottom layer a thickness of
7.5 feet, and a total thickness of 60 feet. The width of the model is 1000 feet, with a simple
fault at the mid-point, which off-sets the layers. There is a water injector well at the left-hand
edge, and a producer well on the right-hand edge. Both wells are completed on all layers, and
operated at a fixed bottom hole pressures.
The simulation model is 100×12 grid blocks, with each geological layer divided into two simu-
lation layers with equal thicknesses, each grid block is 10 feet wide. The model is constructed
such that the vertical positions of the wells are kept constant and equal, even when different
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Figure 8: IC Fault Model

fault throws are considered. The well depth is 8325 feet to 8385.
The porosity and permeabilities in each grid block were randomly drawn from uniform distri-
butions with no correlations. The range for the porosities was ±10 of the mean value, while
range for the permeabilities was ±1 of the mean value. The means for the porosities were 0.30
for the good quality sand and 0.15 for the bad quality sand. The means of the permeabilities
were 158.6 mD for the good quality sand and 2.0 mD for the poor quality sand.
This simplified reservoir model has three uncertain input parameters, corresponding to the
fault throw h, the good and the poor sand permeability multipliers kg and kp. The three
parameters are selected independently from uniform distributions with ranges: h ∈ [0, 60]
kg ∈ [100, 200] and kp ∈ [0, 50]. The analysed output is in this test case the oil production rate
Qop at 10 years. Figure 9 illustrates this output against kg and kp at a fixed high value of h.
For more detailed description on the IC Fault model, see [28].

5.2.2. Assessment of the prediction accuracy
The simulator is run on four experimental designs of size n = 100, n = 200, n = 400

and n = 1600 generated by maximinLHD procedure. Then we construct meta-models using
COSSO-AIPS and GP. In order to estimate Q2, the simulator was run at an additional sample
set of size ntest = 25000. Table 10 shows the results of this study. Clearly, COSSO-AIPS
outperforms GP in this test case, however an experimental design of size n = 400 is necessary
to provide a reasonably accurate estimate. Moreover, we can note that as the experimental
design increases the accuracy of COSSO-AIPS estimate increases, this is not the case for
GP as remarked in Example 1. Indeed, by increasing the design from 200 to 400 instead
of improving, the estimate becomes worse in terms of predictivity. Even if there are only
three uncertain inputs in this test case, the approximation of the input/output relation is a
complicated problem, this is due to the presence of the fault that provide strong discontinuities
in the model.
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Figure 9: Oil production rate after 10 years vs. kg and kp at a fixed high value of h (obtained with 1000
simulations)

n Q2 time (s)

COSSO-AIPS

100 0.34 1
200 0.63 4
400 0.72 15
1600 0.81 280

GP

100 0.33 8
200 0.57 25
400 0.52 63
1600 0.66 1128

Table 10: IC fault model Q2 results

5.2.3. Global sensitivity analysis
As for PUNQS test case we use COSSO-AIPS and GP to produce meta-models which are

built using the experimental design of size n = 1600. To compute the total effect and main
effect indices via COSSO-AIPS we use a sample of size N = 5000 and two samples of the
same size for the case using GP. Tables 11 shows the computed indices. Following the GSA
results produced via COSSO-AIPS, we can see that the variance of the oil production rate
mainly depend on the fault throw h and the poor sand permeability kp. With respect to GSA,
results produced via GP gives more interaction effect to the good sand permeability kg than
COSSO-AIPS. The better Q2 of COSSO-AIPS suggests that its GSA results are more robust.
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GP
Input Total effect Main effect
h 0.381 0.100
kg 0.173 0.021
kp 0.809 0.596

COSSO-AIPS
Input Total effect Main effect
h 0.375 0.225
kg 0.030 0.011
kp 0.733 0.586

Table 11: GSA from IC fault model

6. Conclusion

In this work, we presented the COSSO regularized nonparametric regression method, which
is a model fitting and variable selection procedure. One of the COSSO’s algorithm steps is
the NNG optimization problem. The original COSSO algorithm uses classical constrained
optimization techniques to solve the NNG problem, these techniques are efficient but time
consuming, especially with high dimensional problems (as empirically shown) and with big
size of experimental design (high number of observations). A new iterative algorithm was de-
veloped, so-called IPS with its accelerated version (AIPS). Based on the Landweber iterations
these procedures are conceptually simple and easy to implement.
We also applied the NN-LARS algorithm to COSSO that, as expected, has competitive com-
putation time performance comparing to the original COSSO (COSSO-solver). We empirically
show that COSSO based on the AIPS algorithm is the fastest COSSO version.
Moreover, we used the ANOVA decomposition basis of the COSSO to introduce a direct
method to compute the Sobol’ indices. We applied COSSO to the problem of GSA for several
analytical models and reservoir synthetic test cases, and we compared its performance to GP
method combined with Sobol’ Monte-Carlo method. For all the test cases COSSO shows very
competitive performances, especially the COSSO-AIPS version, for which the computational
gain was significant compared to COSSO-solver and GP. Consequently, COSSO-AIPS consti-
tutes an efficient and practical approach to GSA.
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