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Abstract

In previous work,[DGF06] we introduced a framework for proof nets of the multiplicative fragment of
Linear Logic, where partially sequentialized nets are allowed.

In this paper we extend this result to include additives, using a definition of proof net, called J-proof net,
which corresponds to a typed version of an L-net of Faggian and Maurel.

In J-proof nets, sequentiality constraints are represented using the proof-net notion of jumps; by gradual
insertion or removal of jumps then it is possible to characterize nets with different degrees of sequentiality.
As a byproduct, we obtain then a proof of the sequentialization theorem.

Moreover, we provide a denotational model for J-proof nets which is an extension of the relational one,
and we show that the “degree” of sequentiality of a J-proof net can be read-off from its semantics, by proving
that the model is injective with respect to J-proof nets.

1 Introduction

Game models of computation interpret a program as a strategy in a game: usually such strategies appear as
trees, (for instance, innocent Hyland-Ong strategies, see [HO00]), and composition between strategies yields a
linearly ordered set of moves, which somehow describes the “trace” of the computation. Using tree strategies,
it has been possible to solve the outstanding open problem of providing a fully abstract model of PCF, a
paradigmatic sequential programming language based on λ-calculus ([HO00],[AMJ00]).

Several proposals have been made (see among others [HS02, AM99, Mel04]) in order to extend game semantics
to represent more parallel forms of computation; in these approaches, strategies are no more trees, but more
generally graphs, so that the order between the actions is not completely specified: the composition between
graph strategies yields a partially ordered set of moves.

Recently, in the context of ludics (a game model based on linear logic, introduced by Girard in [Gir01]), a
parallel generalization of ludics strategies called L-nets was proposed by Faggian and Maurel [FM05]. A design
(i.e. a ludics strategy) can be thought of as a merging of two kinds of orders between actions, as pointed out
by Faggian in [Fag02]:

- the causal (or spatial) order, representing the causal dependencies between actions;
- the sequential (or temporal) order, representing how causally independent actions are scheduled.
L-nets are built from standard designs by relaxing the sequential order between actions, in such a way to have

still enough information to compute; a characteristic feature of this approach is to provide an homogeneous space
of strategies with different levels of sequentiality, depending on the amount of sequential order they contain. Such
a space has as extremes from one side parallel L-nets (with minimal sequentiality), from the other sequential
L-nets (which correspond to designs, see [CF05]); by the way, designs are a special case of L-nets, as trees are
a special case of graphs.

The definition of L-nets is directly inspired from the one of proof net ( a graph representation of linear logic
proofs introduced by Girard in [Gir87]); actually we could think of L-nets as a sort of abstract, untyped proof
nets.

In [CF05] Faggian and Curien analyzed the relation between parallel and sequential L-nets using specific
techniques coming from the framework of proof nets (namely sequentialization, desequenzialization, splitting
theorems, and so on); in particular, they showed how to turn a graph strategy (L-net) into a tree strategy
(design) by introducing a maximal amount of sequential order, and viceversa. Nevertheless, in the conclusions
of the paper the following questions were still open :

• What is the notion of proof net underlying the one of L-net?

• Is it possible to turn gradually an L-net into a design, by introducing sequential order little by little (that
is to move from graph strategies to tree strategies in a continuum) ?



The first motivation of the present paper is to provide answers for the questions above by introducing a
new kind of proof nets called J-proof nets, which are the typed, logical counterpart of L-nets. By the insertion
of special edges called jumps, representing sequentiality constraints, we can gradually increase the amount of
sequential order on a J-proof net; in this way as in L-nets, we can characterize J-proof nets with different degrees
of sequentiality.

A second, more general motivation behind the introduction of J-proof nets lies in the attempt to reconcile
two different notions of canonical representation of proofs provided by linear logic, namely that of proof net and
the one of focusing proof, as we point out in the following paragraphs.

Proof nets. In 1987, in the seminal paper [Gir87], Girard introduces linear logic (briefly LL) from a fine
analysis of intuitionistic and classical logic; such a refinement provides a logical status to the structural rules
(weakening and contraction) of sequent calculus (due to the introduction of the exponential connectives, ! and
? ) and splits the usual propositional connectives (“and”, “or”) in two classes (the additives &,⊕, and the
multiplicatives ⊗,O).

The deep insight on the standard connectives operated by LL allows to represent proofs as graphs called
proof nets, whose nodes correspond to linear logic rules and which satisfy some specific geometrical properties
(called correctness criteria); such a discovery brought to the fore the geometrical nature of proofs.

The main characteristic of proof nets is to be modular, parallel objects: in a proof net, there is no direct
reference to the sequential succession of steps which brought to its construction.

As a consequence, a proof net turns out to be a canonical representative of a class of sequent calculus proofs
equivalent modulo permutations of rules: sequentialization, one of the key results in the theory of proof nets,
allows to recover a sequent calculus proof from a proof net, by proving that among the nodes of the proof
net one can be chosen as a sequent calculus last rule; by iterated application of this property, it is possible to
retrieve a proof in sequent calculus.

We must remark that outside multiplicative linear logic (briefly MLL), the beautiful theory of proof nets
becomes less elegant and (in some cases) quite complicated: for instance, the search of a proper representation
of additives in proof nets has been an open problem for a long time, only recently solved by Hughes and Van
Glaabeek in [HVG03].

Nevertheless, proof nets allows to eliminate those naive aspects of sequentiality which are not naturally
inherent to the structure of proofs.

However there exists also another side of sequentiality, more intrinsic than the simple ordered succession
of rules. Such a meaningful notion of sequentiality has been disclosed by the discovery inside linear logic of
polarities.

Polarities. LL, tampering the structural rules with the exponential connectives, allows for the first time to
define an involutive negation independent from structural rules, called linear negation.

Such a discovery enlightened the operational meaning of negation as a change of viewpoint. In computer
science, a program is executed in a given environment; this process can be either analyzed from the point of
view of the program or from the one of the environment, and negation is here the switch between these two
positions.

It is worth mentioning that the above intuition contributed in a remarkable way to the birth of game
semantics, which interprets computation as a game between two players, one representing the program, and the
other representing the environment (see [AMJ00], [HO00]).

The refinement of usual negation inside LL was the starting point of a deep analysis of the logical notion of
duality, which eventually brought to the discovery of polarities.

Multiplicative and additive connectives of LL naturally splits into two dual families:
- Positives (or synchronous): ⊗,⊕;
- Negatives (or asynchronous): O,&.
A formula is positive (resp. negative) if its outermost connective is positive (resp. negative).
The difference between positive and negative formulas relies in the fact that, while the rules introducing

negative formulas are reversible (that is, the conclusion of the rule implies the premises), the rules introducing
positive formulas are irreversible.

Following this distinction, in [And92], Andreoli proved that any proof of linear logic can be transformed
modulo permutations of rules into a proof which satisfies (bottom-up) the following discipline:

i) negative formulas, if any, are decomposed immediately;
ii) otherwise, one chooses a positive formula, and keeps decomposing it up to its negative subformulas.
Such proofs are called focusing.
The alternation of positive and negative steps provides then a canonical way to construct a sequent calculus

proof, yielding an intrinsic, non-trivial notion of time in proofs, as pointed out by Girard in [Gir99].



Looking at focusing proofs through the lens of interaction, a positive cluster of rules appears as the act of
posing a question to an Opponent by a Proponent, and a negative cluster of rules as the reception of an answer
from the Opponent; if we apply linear negation, we switch the point of view, turning questions into answers
and answers into questions.

To provide a canonical representation of focusing proofs in multiplicative-additive linear logic (briefly
MALL), in [Gir00] Girard introduced a calculus called hypersequentialized calculus (briefly HS), using syn-
thetic connectives, that is considering clusters of connectives of the same polarity as a single connective. The
distinctive feature of HS is the presence of only two kinds of logical rules (the positive rule and the negative
rule), one strictly alternating with the other.

Nevertheless, the hypersequentialized approach too has its limitations: mainly, it forces to leave aside the
geometrical representation of proof nets, in spite of the simplicity and elegance of its multiplicative part.

Jumps: sequentializing à la carte. Clearly there is a mismatch regarding the nature of proofs between
proof nets and hypersequentialized calculus. Firstly, proof nets exhibit an elegant geometrical structure which
is absent in HS; furthermore, while proof nets are timeless, parallel objects, in hypersequentialized proofs there
is an explicit marking of time, which makes them sequential in a strong, natural sense.

The spirit behind the present work is to try to reconcile this mismatch, by proposing a notion of proof net
compatible with HS and recovering in this way polarities (and time) in a geometrical, parallel setting: here is
where L-nets come into the picture.

It is well known that a design in ludics corresponds to an abstract, untyped hypersequentialized proof. What
we would like to achieve is a notion of proof net which corresponds to the one of L-net, as an hypersequentialized
proof corresponds to a design. In order to accomplish this task, we must find a counterpart for both the causal
and the sequential ordering in the representation of proof nets. Concerning the causal ordering, if we restrict
to MALL, we have already an answer in the subformula relation induced by the structure of the links in a
proof net. To properly characterize sequential order in proof nets, we have to resort to the notion of jump (as
observed in [FM05]).

The idea of using edges to represent sequentiality constraints has been widely used in the study of correctness
criteria for proof nets: in [Gir91] and [Gir96], Girard, as a part of the correctness criterion for proof nets,
introduces jumps : if a link n is a O, &, ⊥ or ∀ link, a jump is an untyped edge between n and another link m,
which represents a sequential ordering between n and m; n precedes m (bottom-up) in every sequentialization.

Girard, in several occasions, suggested that it could be possible to retrieve a sequent calculus proof from a
proof net just by fixing some temporal information on it, using jumps.

Let us try to make this point clearer with an example; consider the sketch of proof net below:

Ax AxO O

⊗ ⊗

We remark that such a configuration is forbidden in sequent calculus: one must decide which one of the two
⊗ is the last rule. To retrieve a proof then we draw a jump between the leftmost (negative) O and the rightmost
(positive) ⊗, meaning that the corresponding O rule must precede (bottom-up) the corresponding ⊗ rule in the
sequentialization;

Ax AxO O

⊗ ⊗

Now, the sequent calculus proof π induced by this proof net will have as last rule the leftmost ⊗, followed
respectively by the leftmost O, the rightmost ⊗ and the rightmost O; we stress that such a proof respects the



focusing discipline. Instead of fixing the order in the way above, we could as well draw a jump between the the
rightmost (negative) O and the leftmost (positive) ⊗, as below, obtaining a different focusing proof π′:

Ax AxO O

⊗ ⊗

Furthermore, once fixed an order between links using jumps, some other choices become unavailable: namely
one cannot draw both the jumps above at the same time, without creating a cycle, which would prevent us to
obtain an order on the rules.

Ax AxO O

⊗ ⊗

Once all possible jumps have been chosen, one directly retrieves in this way a focusing proof.
In previous work [DGF06, DGF08], realizing the proposal put forward by Girard, we provided a simple proof

of sequentialization theorem for the multiplicative fragment of Linear Logic; we proved that by gradual insertion
of jumps in a proof net, one increases step by step sequentiality information, until one directly retrieves a sequent
calculus proof. Our proof relied on a technical result, that we called arborisation lemma, which provides a way
to insert edges into a directed acyclic graph G, preserving a geometrical property called switching acyclicity
(which corresponds to the correctness criterion of proof nets) and increasing at the same time the order induced
by G.

J-proof nets. Building up on such previous results, in the present work :

• we introduce proof nets with jumps for the hypersequentialized calculus, called J-proof nets, by translating
L-nets to a typed setting: the basic idea is to use jumps to represent sequential order;

• we extend the sequentialization method used in [DGF06, DGF08] for the multiplicative fragment in order
to take into account additives, and we show that we can gradually remove or add sequentiality in a J-proof
net, in the form of jumps, to get more parallel or more sequential proofs, in the style of L-nets. At any
time, the information provided by jumps always makes possible to retrieve a fully sequentialized J-proof
net, which directly corresponds to an hypersequentialized proof.

In this way, as in L-nets, we get an homogeneous space of J-proof nets with different degrees of sequentiality,
having as extremes from one side J-proof nets with minimal sequentiality, from the other J-proof nets with
maximal sequentiality, that is HS proofs; moreover, adding jumps provides a way to move in a continuum from
one extreme to the other.

1.1 Outline of the paper

First, in section 2 we provide some background. We present the hypersequentialised calculus , together with an
informal introduction to two important notions to understand additive connectives: the one of slice (see [Gir87])
and the one of superposition. Then we recall some graph theoretical definitions that we will use throughout the
paper.

In section 3 we introduce our main objects of study: J-proof nets. As usual in proof nets theory, we first
define a general class of graphs, called J-proof structures, and then we isolate among them the ones coming
from HS, called J-proof nets, using a correctness criterion.



In section 4 we provide a formal definition in our setting of the “superposition” effect induced by additives,
using the key notion of sharing equivalence; to define such equivalence we will import concepts and tools from
the setting of ludics and L-nets, establishing in this way a direct connection between the two frameworks.

Section 5 is dedicated to the proof of the sequentialization theorem. We extend the sequentialization method
used in [DGF06] to include additives; the relevance of this result is clear, if one consider that the problem of
sequentializing in presence of additives is one of the most difficult in the framework of proof nets.

In section 6 we introduce and study the dynamics of cut reduction. In subsection 6.2 we define cut-elimination
on J-proof structures, following [FM05] and [LTdF04]). In subsection 6.3 using pointed sets, we define a model of
cut-reduction in J-proof nets, called pointed semantics, which extends usual relational semantics: differently from
the standard relational model, pointed sets allow in fact to semantically characterize jumps. In subsection 6.3.2
we show that pointed semantics is a faithful description of J-proof nets, by proving that the model is injective
with respect to J-proof nets: namely, two J-proof nets with the same interpretation in pointed semantics are
syntactically equivalent.

Then in section 6.4, using injectivity of pointed semantics, we will prove that composition of J-proof nets is
stable under cut reduction (a similar strategy was used also by Laurent and Tortora de Falco in [LTdF04]). The
use of semantics to prove a syntactical property should not be surprising; in the spirit of the program launched
in [Gir99] by Girard, syntax and semantics are just two different ways to describe the same object.

Finally, in section 7 we adress some general questions concerning J-proof nets; namely, the problem of
canonicity (which was first posed in the setting of L-nets by Faggian and Curien in [CF]), the relation with
monomial proof nets (see [Gir96], [HVG03]) and the link with multifocalization (see [CMS08]).
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2 Background

In this section we introduce the principal notions and concepts we will use throughout the paper. In subsection
2.1 after an informal introduction of synthetic formulas, we define the hypersequentialized calculus; then we
introduce the reader to the notions of slices and superposition, absolutely necessary to understand additives. In
subsection 2.2 we recall basic concepts of graph theory. Finally in subsection 2.3 we provide some indications
on how to represent hypersequentialized proofs as graphs.

2.1 Hypersequentialized calculus

2.1.1 From MALL to HS

Let us consider the grammar of MALL without atoms, and additive costants:

F := 1 | ⊥ | FOF | F ⊗ F | F&F | F ⊕ F

Starting from this grammar, we define the notion of synthetic formula as a sort of “canonical representative”
of the formulas of MALL equivalent modulo the usual associative, distributive and neutral element properties
of linear logic connectives.

Let us give an informal sketch of how to build a synthetic formula . Let us consider the following formula:

A = (1&1)O(1&1)

First of all, we apply to A the distributivity property (B&C)OD ⋍ (BOD)&(COD) using it as a rewriting
rule oriented from left to right. We obtain as “normal form” the formula A′:

A′ = ((1O1)&(1O1))&((1O1)&(1O1))

Now let us look at the subformula tree t of A′:

((1O1)&(1O1))&((1O1)&(1O1))

(1O1)

(1O1)&(1O1)

11

(1O1)

(1O1)&(1O1)

(1O1)
(1O1)

1111
1 1



The tree t is composed bottom-up by two layers: a first layer of negative formulas, and then a set of
positive formulas, which are the leaves of the tree. The negative layer is itself divided in two layers: first a set
formulas whose outermost connective is & (its “additive” sub-layer), and then a set of formulas whose outermost
connective is O (its “multiplicative” sub-layer).

The negative layer of connectives in t can be represented by a single “big step” negative connective, as
follows.

Let us assign to every positive leaf an integer index as a place marker, in the following way:

1 2 3 4 5 6 7 8

((1O1)&(1O1))&((1O1)&(1O1))

(1O1)

(1O1)&(1O1)

11

(1O1)

(1O1)&(1O1)

(1O1)(1O1)

1111 1 1

Let us consider the maximal subtrees of t having a O formula as root (we can call them O-trees); there are
four of them in t. We can partition the leaves of t by grouping together the leaves belonging to the same O-tree.

We call a set I of indexes of leaves belonging to the same O-tree a ramification of t; we call directory
the set N of all ramifications I of t. In our case, the directory of t contains the following ramifications:
{1, 2}, {3, 4}, {5, 6}, {7, 8}.

Now, it is easy to verify that if we replace t with any other subformula tree t′ equivalent to t modulo
associativity and neutral elements, the directories of t and t′ will be the same.

The information provided by the directory N is enough to retrieve all the formulas whose subformula tree
is equivalent to t modulo the usual isomorphisms of linear connectives. Now if we want to rewrite the formula
retaining only the information provided by the directory N we would obtain something like this:

&(O(11, 12),O(13, 14),O(15, 16),O(17, 18))

We call such an object a synthetic formula; we stress that the possibility of defining such a formula depends
strictly from the fact that rewriting a formula, using the associative, distributive and neutral element property
of LL, preserves the polarity of the formula.

Due to the focalization property (see the introduction of the paper) then it is possible to define a linear logic
calculus manipulating only synthetic formulas. We call such a calculus hypersequentialized calculus.

2.1.2 HS syntax

The grammar of hypersequentialized formulas is the following:

N ::= &I∈N (Oi∈I(Pi))

P ::= ⊕I∈N (⊗i∈I(Ni))

where

• there are two kinds of formulas: N formulas are negative while P formulas are positive;

• I is a ramification (that is an index set) and N is a non-empty1 directory (that is, a set of ramifications).

Duality is defined as follows:

(⊕I∈N (⊗i∈I(Ai)))
⊥ = &I∈N (Oi∈I(A

⊥
i ))

(&I∈N (Oi∈I(Ai)))
⊥ = ⊕I∈N (⊗i∈I(A

⊥
i ))

P⊥⊥ = P
1For technical reasons we do not consider the additive constants ⊤ and 0



Note We remark the following facts:

• By &I∈N (Oi∈I(Pi)) we indicate the synthetic formula which represents all possible combinations of the
formulas Pi (where i is an element of the ramification I belonging to the directory N ) modulo the
associativity and distributivity properties of usual O and & connectives in LL, and neutral element
property of O connective of LL; in case the directory N is a singleton, we shall use the abbreviation
(Oi∈I(Pi)); if for some I ∈ N , I is a singleton or is empty, then we will denote the component (Oi∈I(Pi))
corresponding to I as ↑ P in the former case, and as ⊥ in the latter.

• By ⊕I∈N (⊗i∈I(Ni)) we indicate the synthetic formula which represents all possible combinations of the
formulas Ni (where i is an element of the ramification I belonging to the directory N ) modulo the
associativity and distributivity of usual ⊗ and ⊕ connectives in LL, and neutral element property of ⊗
connective of LL; in case the directory N is a singleton, we shall use the abbreviation (⊗i∈I(Ni)); if for
some I ∈ N , I is a singleton or is empty, then we will denote the component (⊗i∈I(Ni)) corresponding to
I as ↓ N in the former case, and as 1 in the latter.

Note that ↑ and ↓ are “linear” versions of the exponentials ?, !, acting as polarity inverter (see [Lau04],[Gir01]).
Moreover, for technical reasons we must forbid the presence of more than one empty ramification I in a

directory N ; this will prevent us from representing, for example the formula 1⊕ 1.
The HS (+ Mix) calculus is the following:

⊢ Γ1, N1 . . . ⊢ Γn, Nn
(+,I)

⊢ Γ1, . . . ,Γn,⊕J∈N (⊗j∈JNj)

⊢ Γ, P 1
1 . . . , P k1

1 . . . ⊢ Γ, P 1
n . . . , P kn

n
(−,N )

⊢ Γ,&J∈N (Oj∈JPj)

⊢ Γ ⊢ ∆
mix

⊢ Γ,∆
⊢ Γ, P ⊢ ∆, P⊥

cut
⊢ Γ,∆

where:

• in the (+, I) rule the cardinality of I is n;

• in the (−,N ) rule the cardinality of N is n, with n 6= 0, and the cardinality of J is ki for J ∈ N and
i ∈ {1, . . . , n}

• Γ,∆, . . . only contain positive formulas.

Additives and superposition Before presenting J-proof nets, we want to give a first intuition about two
fundamental notions which naturally come out whenever a linear logic calculus includes additives: the one of
slice and the one of superposition.

Let us consider the following sequent proof π of
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)), &(O(11, 12),O(13, 14)):

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1,2})
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)), 1, 1

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{3,4})
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)), 1, 1

(−,{{1,2},{3,4}})
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)),&(O(11, 12),O(13, 14))

Now, we choose a branch for each (−,N ) rule, (in this case just one); by erasing the right branch we get
the following derivation s1:

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1,2})
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)), 1, 1

(−,{{1,2},{3,4}})
⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)),&(O(11, 12),O(13, 14))

and by erasing the left branch, we get the following derivation s2:



(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

⊢ 1,⊥
(+,{3,4})

⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)), 1, 1
(−,{{1,2},{3,4}})

⊢ ⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)),&(O(11, 12),O(13, 14))

In both s1 and s2 the (−,N )-rule is unary (the “additive” part is erased and only the “multiplicative” part
is kept).

Following this observation, a (−,N )-rule appears as a set (superposition) of unary rules having the same
active formulas. If we consider a sequent calculus derivation in HS, and for each (−,N )-rule we select one of
the premises, we obtain a derivation where all (−,N )-rules contain a single ramification; actually we “forget”
the additive structure of the proof, keeping only the multiplicative one. This is called a slice. Hence, an HS
proof containing some (−,N )-rule can be thought of as a superposition of multiplicative proofs (that is, slices).

Actually, the notion of slice is as old as Linear Logic itself: it appears for the first time in the seminal paper
[Gir87]; it has been used by Laurent and Tortora de Falco for studying normalization on polarized proof nets
(see [LTdF04]) and is a key notion of ludics and L-nets.

The main point when one deals with additive proof nets is to properly reconstruct the structure of the
multiplicative proofs an additive proof is composed of, and to correctly superpose them; such a task is usually
fulfilled by boxes (as in [Gir87], [LTdF04], [TdF03b]) or by boolean weights (as in [Gir96], [Lau99], [Mai07]),
which provide enough “synchronization points” to glue slices together. As we will see later, in additive J-proof
nets it is possible to glue together slices due to the presence of jumps, acting as synchronization points.

2.2 Preliminaries on graphs

A directed graph G is an ordered pair (V,E), where V is a finite set whose elements are called nodes, and E is
a set of ordered pairs of nodes called edges.

We will denote nodes by small initial Latin letters a, b, c, . . . and edges by small final Latin letters . . . , x, y, z.
To denote that there is an edge from a node a to a node b, we will write a→ b; we say that an edge x from

a to b is emergent from a and incident on b; b is called the target of x and a is called the source.
The in-degree (resp. out-degree) of a node is the number of its incident (resp. emergent) edges; two edges

are coincident when they have the same target.
Given a directed graph G = (V,E) and a subset V ′ of V , the restriction of G to V ′ is the graph G′ = (V ′, E′)

where E′ is the restriction of E to the elements of V ′.
Given a directed graph G a path (resp. directed path) r from a node b to a node c is a sequence 〈a1, . . . , an〉

of nodes such that b = a1, c = an, and for each ai, ai+1, there is an edge x either from ai to ai+1, either from
ai+1 to ai (resp. from ai to ai+1); in this case, x is said to be used by r; given a path r = 〈a1, . . . , an〉 we will
say that r leaves a1 and enters in an. Moreover, we require all nodes in a path from a node b to a node c to be
distinct, with the possible exception of b and c.

If there is a directed path from a to b, we denote it by a
+
−→ b.

A graph G is connected if for any pair of nodes a, b of G there exists a path from a to b.
A cycle (resp. directed cycle) is a path (resp. directed path) 〈a1, . . . , an〉 such that a1 = an.
A directed acyclic graph (d.a.g.) is a directed graph without directed cycles.
When drawing a d.a.g we will represent edges oriented up-down so that we may speak of moving downwardly

or upwardly in the graph; in the same spirit we will say that a node is just above (resp. hereditarily above) or
below (resp. hereditarily below) another node.

A d.a.g. with pending edges is a d.a.g. where some edges have a source but not a target.
We call typed d.a.g. a d.a.g. with pending edges whose edges are possibly labelled with formulas ; we call

such edges typed.
We call typed d.a.g. with ports a typed d.a.g. G where for each node b the typed edges incident on b and

the typed pending edges of G are partitioned into subsets called ports.
We call module a d.a.g, where some edges have a target but not a source.
We recall that we can represent a strict partial order as a d.a.g., where we have an edge b → a whenever

a <1 b (i.e. a < b, and there is no c such that a < c and c < b.) Conversely (the transitive closure of) a d.a.g.
G induces a strict partial order ≺G on the nodes of G.

We call predecessor of a node c, a node which immediately precedes (bottom-up) c in ≺G (similarly for the
successor).

A root of a d.a.g. is a node with no predecessors.



A forest (resp. tree) is a d.a.g. G such that, given a node a and a root b of G, there exists at most one
(resp. exactly one) directed path from a to b.

Similarly, a strict order on a set is arborescent when each element has at most one immediate predecessor.

An edge a→ b is transitive if there is a node c such that a
+
−→ c and c→ b.

The skeleton of a d.a.g. G (denoted Sk(G)) is the directed graph obtained from G by erasing all the edges
which are transitive

Since Sk(G) is obtained from G just by erasing transitive edges, the order associated with Sk(G) as a d.a.g
and the order associated with G as a d.a.g. are equal; so if the order associated with G is arborescent, the
skeleton of G is a forest.

2.3 HS proofs as d.a.g.’s

Let us consider the following HS proof π1:

⊢⊥, 1 ⊢⊥, 1 ⊢⊥, 1 ⊢⊥, 1

⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, 1, 1
(+, {1, 2, 3, 4})

(−,{{1,2}})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, O(11, 12) ⊢ 1,⊥

(+,{3,4})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, ⊗(O(11, 12)3,⊥4), 1

(−,{{5,6}})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), O(15, 16), ⊗(O(11, 12)3,⊥4), 1 ⊢ 1,⊥

(+,{7,8})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), ⊗(O(15, 16)7,⊥8), ⊗(O(11, 12)3,⊥4), 1, 1

where each initial sequent is the conclusion of the following proof:

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

The order of application of rules provides an arborescent partial order, which yields the following d.a.g. G1:

(+, {})

(+, {7, 8})

(−, {{}})
(−, {{5, 6}})

(+, {3, 4})

(−, {{1, 2}})

(+, {1, 2, 3, 4})

(+, {}) (+, {}) (+, {}) (+, {})

(−, {{}}) (−, {{}}) (−, {{}}) (−, {{}})

(−, {{}})

(+, {})

We can refine our analysis, and observe that the order associated with π1 it is actually the merging of two
orders:

• the causal order, which is the transitive closure of the following relation: a rule a is causally dependent
from a rule b when the formula introduced by b is an active formula in the premises of a;

• the sequential order: a is sequentially dependent from b if a follows b (top-down) in the proof but it is not
causally dependent from it.

For instance, the rule (+, {7, 8}) is causally dependent from the rule (−, {{5, 6}}), and is sequentially de-
pendent for example from the rule (+, {3, 4}).

Let us draw the d.a.g G′
1 associated with the causal order (we label the edges with types in order to stress

the subformula relation)



O(11, 12) O(15, 16)

11

1
1

1 1

⊥

⊥ ⊥ ⊥
⊥

⊥

⊗(⊥1,⊥2,⊥3,⊥4)

⊗(O(15, 16)7,⊥8)

⊗(O(11, 12)3,⊥4)

(−, {{}}) (−, {{}})(−, {{}})(−, {{}})

(+, {1, 2, 3, 4})

(+, {})(+, {})

(−, {{1, 2}})

(+, {})(+, {})

(−, {{5, 6}})

(+, {3, 4})

(−, {{}})
(−, {{}})

(+, {7, 8})

(+, {})
(+, {})

If we add to G′
1 the information provided by the sequential order (in the form of dashed edges) we obtain

the following d.a.g G′′
1 :

O(11, 12) O(15, 16)

11

1
1

1 1

⊥

⊥ ⊥ ⊥
⊥

⊥

⊗(⊥1,⊥2,⊥3,⊥4)

⊗(O(15, 16)7,⊥8)

⊗(O(11, 12)3,⊥4)

(−, {{}}) (−, {{}})(−, {{}})(−, {{}})

(+, {1, 2, 3, 4})

(+, {})(+, {})

(−, {{1, 2}})

(+, {})(+, {})

(−, {{5, 6}})

(+, {3, 4})

(−, {{}})
(−, {{}})

(+, {7, 8})

(+, {})
(+, {})

whose transitive closure bring us back to G1.
In G′′

2 we can observe that there are two kind of edges: the ones corresponding to causal order, (which is
the correspondent of the structure of links in proof nets) and the ones corresponding to sequential order. We
call the latter jumps.

Now consider this other HS proof π2 (differing from the first one only by permutation of rules):

⊢⊥, 1 ⊢⊥, 1 ⊢⊥, 1 ⊢⊥, 1

⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, 1, 1
(+, {1, 2, 3, 4})

(−,{{5,6}})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, O(15, 16) ⊢ 1,⊥

(+,{7,8})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), 1, 1, ⊗(O(15, 16)7,⊥8), 1

(−,{{1,2}})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), O(11, 12), ⊗(O(15, 16)7,⊥8), 1 ⊢ 1,⊥

(+,{3,4})
⊢ ⊗(⊥1,⊥2,⊥3,⊥4), ⊗(O(15, 16)7,⊥8, ⊗(O(11, 12)3,⊥4), 1, 1

If we perform on π2 the same analysis we did on π1, we get the following graph G′′
2 , where the causal order

is the same as G′′
1 but the sequential order is different.

O(11, 12) O(15, 16)

11

1
1

1 1

⊥

⊥ ⊥ ⊥
⊥

⊥

⊗(O(11, 12)3,⊥4)

⊗(⊥1,⊥2,⊥3,⊥4)

⊗(O(15, 16)7,⊥8)

(−, {{}}) (−, {{}})(−, {{}})(−, {{}})

(+, {1, 2, 3, 4})

(+, {})(+, {})

(−, {{1, 2}})

(+, {})(+, {})

(−, {{5, 6}})

(+, {3, 4})

(−, {{}})
(−, {{}})

(+, {7, 8})

(+, {})
(+, {})



Starting from this observations, in the following section we will define a notion of proof net with jumps,
whose links correspond to HS rules. The question we will try to answer will be the following:

If we “relax” the sequential order in both G′′
1 , G

′′
2 can we find another d.a.g. G′′

3 such that:

• Both G′′
1 , G

′′
2 can be retrieved from G′′

3 ;

• G′′
3 is “logically” sound (as proof nets are sound with respect to linear sequent calculus)?

We stress that the examples above do not contain any “additive” feature; in order to represent proofs
respecting the constraints induced by additives (namely the “contraction” of contexts implicit in the &-rule of
LL) we will make use of d.a.g.’s with ports instead of plain d.a.g.’s.

3 J-proof nets

In this section we present J-proof nets for HS, using a syntax which is directly inspired by L-nets.
Firstly, in subsection 3.1, we give a first definition of pre-proof structure as a typed d.a.g. with ports; we

introduce this first notion in order to represent the “additive contraction” effect induced by the (−,N )-rule.
While in others syntaxes (as [Lau99]) this is done by introducing an explicit “additive contraction” link, here we
adopt the convention of incorporating contraction into links, by partioning edges of the same type incident on
the same link into ports. Then we refine the definition of pre-proof structure into the one of J-proof structure,
which will allow us to define in our setting the notion of slice, a fundamental tool to deal with additives. In
subsection 3.2 we study the relation between J-proof structures and HS, by defining sequentializable J-proof
structures; then, in subsection 3.3, we introduce the correctness criterion and we define J-proof nets.

3.1 J-proof structures

Definition 1 (Pre-proof structure) A pre-proof structure is a typed d.a.g. with ports whose nodes (also
called links) are labelled by one of the symbols cut,+I∈N ,−I∈N

The label of a link imposes some constraints on the number and the types of its incident and emergent edges:
we will call premises (resp. conclusions) the typed edges incident on (resp. emergent from) a link; an untyped
edge is called a jump.

+I∈N
−I∈N

Cut

P⊥

Pi∈I Pi′∈I

&I∈N (Oi∈I (Pi)) ⊕I∈N (⊗i∈I(Ni))

Ni′∈INi∈I

C C

C

P

Figure 1: Links of a pre-proof structure

• a cut-link has no conclusions, and two ports, one containing n ≥ 1 premises all typed by a formula A and
the other containing k ≥ 1 premises all typed by A⊥;

• a −I∈N link b (also called negative link) has:

– one port for each i ∈ I; each port contains n ≥ 1 premises which are typed by the same formula P ;



– one conclusion, typed by a formula N .

– n ≥ 0 jumps incident on b.

If the premises of the i-th port (for i ∈ I) are typed by a formula Pi, then the conclusion is typed by
&J∈N (Oj∈J (Pj)), where I ∈ N .

• a +I∈N link b (also called positive link) has:

– one port for each i ∈ I; each port contains n ≥ 1 premises which are typed by the same formula N ;

– one conclusion, typed by a formula P .

– n ≥ 0 jumps emergent from b.

If the premises in the i-th port (for i ∈ I) are typed by a formula Ni, then the conclusion is typed by
⊕j∈N (⊗j∈j(Nj)), where I ∈ N .

A link whose conclusion is a pending edge is called a terminal link; pending edges are also partitioned into
ports called terminal ports in such a way that, if two pending edges belong to the same terminal port, they
have the same type. Informally, we will call type of a port the type of the edges contained by the port. The
conclusions of a pre-proof structure are the types of its terminal ports.

The constraints and the links of definition 1 are synthetically represented in fig. 1; we denote ports by black
spots, and we distinguish positive and negative links by their shape; following this graphical convention, we will
often label a positive (resp. negative) link simply with I ∈ N instead of +I∈N (resp. −I∈N ).

J-proof structures and slices To properly take into account the structure of additives, we must now refine
our definition of proof structure, as follows:

Definition 2 (Contracted links and &-rule) Given a pre-proof structure , two links a, b are contracted if
the conclusion of a and the conclusion of b belong to the same port.

A & rule W is a maximal set {w1, . . . , wn} of negative contracted links. We will consider & rules as a
sort of “macro“ links, so we adopt for them the same terminology we use for links; we will often refer to the
premises (resp. conclusion) of a &-rule W , meaning the premises (resp.conclusion) of the elements of W .

An additive pair is a pair of negative links belonging to the same & rule.
A & rule containing terminal links is called a terminal & rule.

{1, 2} {3, 4}{3, 4}{1, 2}

{} {} {} {} {} {} {} {}

1 1 1 1 ⊥ ⊥ ⊥ ⊥

&(O(11, 12), O(13, 14))

⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4))

Figure 2: example of J-proof structure

Definition 3 (J-proof structure) A pre-proof structure R is a J-proof structure if it satisfies the follow-
ings:

Positivity: If a link a has in-degree 0, then is positive;

Additives: if two links a, b of R belong to the same & rule, then the label of a is −J∈N and the label of b is
−J′∈N and J 6= J ′ ;

Coherence: given a link a and two negative links b, c, if a
+
−→ b and a

+
−→ c then b and c do not belong to the

same & rule;



Contraction: given two positive contracted links a, b, there exists an additive pair w1, w2 s.t. a
+
−→ w1 and

b
+
−→ w2.

In addition to the above conditions, a J-proof structure must have at most one negative conclusion.

Remark 1 Since every J-proof structure R is a d.a.g, we can associate with it a partial order ≺R. From now
on we will always identify two J-proof structures which are equal modulo transitive jumps, where a transitive
jump is a transitive edge which is a jump.

Let us give some explanations on the conditions of definition 3:

• Positivity forbids the presence of negative 0-ary links in a J-proof structure. Such a constraint is required
to represent the fact that in the calculus HS defined above there can be only positive initial rules.

• Given the synthetic connective &I∈N (Oi∈I(Ai)), each of the ramifications I ∈ N corresponds to a branch
of a (clustered) &. In J-proof structures we represent the sequent calculus rule introducing a & formula
not with a single link, but with a set of links (the &-rule defined above), each of them corresponding to a
branch of a &. The Additives condition then allows to recognize the different branches of which a &-rule
is composed, by assigning to two different components of a &-rule a different ramification I ∈ N .

• The Coherence condition is required in order to define a proper notion of slice on J-proof structures. It
assures that no conflict rises when determining if a link belongs or not to a given slice: namely, if a link
is hereditarily above a component of a &-rule, then it cannot be above any other component of the same
&-rule.

• The Contraction condition allows us to recognize whenever two different slices are superposed; by Con-
traction, we know that each time two links are contracted, we can determine the &-rule which justifies
the superposition. Combining this condition with the previous one, we can then identify slices simply by
looking at the links which are hereditarily above a given element of a & rule W , for all & rules.

{1, 2}{1, 2}

{} {} {} {}

1 1 ⊥ ⊥

&(O(11, 12), O(13, 14))

⊕(⊗(⊥1 ,⊥2), ⊗(⊥3,⊥4))

Figure 3: a slice of the J-proof structure in fig. 2

Now we are in the position to formally define the notion of slice of a J-proof structure:

Definition 4 A slice of a J-proof structure R is a graph S obtained by selecting, for each & rule W =
{w1, . . . , wn} of R, an element wi of W , erasing all the wj 6= wi ∈ W , and recursively all the links above
them, and all the edges emergent from an erased link.

3.1.1 Totality

Once introduced the notion of slice, a natural restriction is to consider only “well defined” J-proof structures:
that is, J-proof structures whose slices are themselves J-proof structures. We do that introducing the notion of
totality.

Definition 5 A multiplicative J-proof structure is a J-proof structure without contracted links.

Definition 6 Given two J-proof structures R,R′ we say that R,R′ have the same conclusions whenever
there exists a bijection between the terminal ports of R and the terminal ports of R′ s.t. if b is terminal port of
R and b′ is the corresponding terminal port of R′, then b, b′ have the same type (and vice versa).



Definition 7 (Total J-proof structure) A J-proof structure R is total if

• for each negative-link a of R, with conclusion &I∈N (Oi∈I(Pi)), if N contains more than one ramification,
then a belongs to a &-rule W and there is a bijective correspondence between the elements of N and the
elements of W .

• for any slice S of R, S is a multiplicative J-proof structure with the same conclusions as R.

{1, 2} {3, 4}{3, 4}{1, 2}

{} {} {} {} {} {} {} {}

1 1 1 1 ⊥ ⊥ ⊥ ⊥

⊕(⊗(⊥1 ,⊥2), ⊗(⊥3,⊥4))
⊕(⊗(⊥1,⊥2), ⊗(⊥3,⊥4))

&(O(11 , 12), O(13, 14), O(15, 16))

Figure 4: example of J-proof structure which is not total

In figure 4 we show a J-proof structure R which is not total: there is not a bijective correspondence between
the elements of the leftmost negative rule W and the elements of the directory {{1, 2}, {3, 4}, {5, 6}} of the
conclusion of W ; morover the two slices of R have not the same conclusions of R . The J-proof structure in
figure 2 instead is total.

3.1.2 Jumps and the additive structure

One important difference with respect to the definition of J-proof structure already given in [DGF06] for the
multiplicative fragment, is the role of jumps; in the additive case they not only graduate sequentiality, but allow
also to keep track of the additive structure through the notion of dependency, which we define in the following.

Given a total J-proof structure R, a & rule W and a slice S of R, we denote by SW any slice of R obtained
by choosing the same element as S for all & rule Z 6= W of R, while making a different choice only for W .

Definition 8 Given a &-rule W of a total J-proof structure R, we say that a link c depends from W iff for
every slice S which contains a, all the slices SW does not contain a.

Proposition 1 Let R be a total J-proof structure, a be a link of R and W a & rule. a depends from W iff for

some w ∈W , a
+
−→ w in R.

Proof. The right to left direction is trivial. From left to right, let us suppose by absurd that a depends from

W but for no element w of W , a
+
−→ w in R. But then for every slice S of R, by definition of slice, if a belongs

to S then a belongs to any slice SW too, contradicting the hypothesis that a depends from W . �

3.1.3 Axiom links

The reader confident with linear logic proof nets has certainly noticed that in the list of links defining a J-proof
structure we did not include the axiom link, corresponding to the axiom rule of sequent calculus. An axiom
link in proof nets has the following shape, with no premises and two conclusion typed by dual atomic formulas:

Ax

P P⊥

This choice was made to simplify our presentation of J-proof structure; nevertheless, we can simulate axiom
links in our setting. If a is an axiom link, then we can replace it with a 0-ary positive link and a 0-ary negative
link connected together through a jump as follows:



{} {}

1 ⊥

Modulo this replacement then, all the results which follow still hold in presence of axiom links.

3.2 J-proof structures and sequent calculus

Given an HS proof π and a J-proof structure R, we say that R can be associated with π, if R can be inductively
decomposed in such a way that each step of decomposition of R corresponds to the writing down of a rule of π.
If a J-proof structure R can be associated with a proof π of HS, we say that π is a sequentialization of R.

Decomposing a J-proof structure Given a J-proof structure R and a terminal link b of R by removing b
from R we mean the following operation:

• erasing b (and all edges emergent from b) from R. We stress that, after erasing b, the edges incident on b
become pending edges.

• partitioning the new typed pending edges into new terminal ports, in such a way that two new typed
pending edges belong to two different terminal ports if and only if they were contained in two different
ports of b. Any non typed pending edge is erased.

Definition 9 (Scope) Let R be a J-proof structure and W a terminal & rule of R: we call scope of an element
w of W (denoted Rw) the graph obtained from R by erasing all links w′ such that w′ ∈ W and w′ 6= w, and all
links and edges hereditarily above some w′.

Proposition 2 Let R be a total J-proof structure with a terminal & rule W and let w be an element of W .
The graph R′

w obtained by taking Rw (the scope of w in R) and removing w is a total J-proof structure.

Proof. First we have to prove that R′
w is a J-proof structure: to prove that is enough to prove that Rw is a

J-proof structure: we must check then the four conditions of definition 3. The preservation of the coherence
condition is a direct consequence of the fact the that Rw is obtained by restricting R, so if a link a is above
two different elements of the same & rule in Rw then it is the case also in R, which is impossible by coherence
condition on R. For the same reason, additive condition on R implies additive condition on Rw. Concerning
contraction condition, we reason by absurd and suppose that there are two positive contracted links a, b of Rw

that do not satisfy the contraction condition; since Rw is a restriction of R, a, b must be contracted also in R;

so by contraction condition on R there is an additive pair y1, y2 such that a
+
−→ y1 (resp. b

+
−→ y2) in R. Since

we supposed that a, b do not satisfy the contraction condition on Rw, the path a
+
−→ y1 or the path b

+
−→ y2

do not belong to Rw. W.l.o.g., suppose that the path a
+
−→ y1 does not belong to Rw; then at least one node

c in the path does not belong to Rw. But then we obtain a contradiction, since, by definition of scope, in R

c
+
−→ w′ for some element w′ 6= w of W , and then a

+
−→ w′; but then a cannot belong to Rw, contradicting

our initial hypothesis on a, b. Concerning positivity condition, it is easy to verify that by definition of scope,
a link a of R belongs to Rw iff a belongs to a slice S of R obtained by choosing w for the & rule W ; then by
totality condition on R, S is a multiplicative J-proof structure, so it satisfies the positivity condition; but then
also Rw satisfies it. So Rw is a J-proof structure, and then R′

w is trivially a J-proof structure too. The fact
that R′

w is total is a direct consequence of the fact that 1) any slice of Rw is a slice of R so by totality on R is
a multiplicative J-proof structure; 2) any slice of R obtained by choosing the element w of W is a slice of Rw,
by definition of scope. It is then easy to verify that, once removed w, R′

w is total. �

Definition 10 (Splitting positive) Let R be a J-proof structure and c a positive terminal link with n ports
(resp. a cut link with two ports); We say that c is splitting for R if removing c, R splits into R1, . . . , Rn (resp.
R1, R2) J-proof structures, one for each port of c .



3.2.1 Sequentializable J-proof-structures

The following definitions are adapted from [Lau99].

Definition 11 We define the relation “L sequentializes R in ε”, where R is a J-proof structure, L is a
terminal link or a terminal &-rule of R and ε is a set of J-proof structures , in the following way, depending
from L:

• If L is a positive link with no ports, and is the only link of R, then L sequentializes R into ∅;

• if L is a positive link or a cut link with n ports and is splitting, then L sequentializes R into {R1, . . . , Rn}
J-proof structures;

• if L is a terminal & rule W = {w1, . . . wn} with conclusion &J∈N (Oj∈J (Pj)) such that there is a bijection
between the elements of N and the elements of W , we consider for each wj the scope Rwj

of wj. If for
all j ∈ {1, . . . n}, Rwj

is a J-proof structure with the same conclusions of R, and the graph R′
wj

obtained
by removing wj from Rwj

is a J-proof structure too, then L sequentializes R into {R′
w1

, . . . , R′
wn
}.

• if L is a terminal negative link which does not belong to a &-rule, and removing it we get a J-proof structure
R0, then L sequentializes R into R0.

Definition 12 (Sequentializable J-proof structure) A J-proof structure R is sequentializable if

• R has a terminal & rule (resp. a terminal negative link), which sequentializes R into a set of sequential-
izable J-proof structures (resp. a J-proof structure);

• R has no terminal & rule or terminal negative link and

– R is composed by a single connected component, and at least one of its links sequentializes R into a
set of sequentializable J-proof structures or into the empty set;

– R is composed by more than one connected component and each component is a sequentializable
J-proof structure.

Proposition 3 If a J-proof structure R is sequentializable, there exists at least one proof π of HS, such that π
is the sequentialization of R.

Proof.
By induction on the links of R:

1. n = 1: by positivity, the only node in R is a 0-ary positive link, whose sequentialization is the proof
⊢ 1

.

2. n > 1: suppose R contains one terminal &-rule W = {w1, . . . wn} with conclusion &J∈N (Oj∈J (Pj)); then
by definition of sequentializable J-proof structure, W sequentializes R into R1, . . . , Rn J-proof structures
with conclusions respectively Γ, P 1

1 , . . . P
k1

1 , . . .Γ, P 1
n . . . P kn

n ; each Rj by induction hypothesis has a se-

quentialization πj with conclusion ⊢ Γ, P j
1 , . . . P

kj

j . We obtain the sequentialization π of R by applying a
(−,N ) rule with conclusion ⊢ Γ,&J∈N (Oj∈J (Pj)) to all π1, . . . πn.

If R has no terminal &-rule, but has a terminal negative link n of conclusion O(P1, . . . Pn), then by defi-
nition of sequentializable J-proof structure n sequentializes R into a J-proof structure R0 with conclusion
Γ, P1, . . . Pn; R0 by induction hypothesis has a sequentialization π0 with conclusion ⊢ Γ, P1, . . . Pn. We
obtain the sequentialization π of R by applying a (−, {{J}}) rule with conclusion ⊢ Γ,O(P1, . . . Pn) to π0.

Otherwise R has no negative conclusion; suppose R is composed by a single connected component; since
it is sequentializable there exists at least one link L which sequentializes R. We choose one such link and
we reason by cases:

• L is a cut link whose premises are typed by P, P⊥; then L sequentializes R into two J-proof structures
R1, R2 with conclusions respectively Γ, P and ∆, P⊥; by induction hypothesis R1 (resp. R2) has a
sequentialization π1 with conclusion ⊢ Γ, P (resp. π2 with conclusion ⊢ ∆, P⊥). We obtain the
sequentialization π of R by applying to π1, π2 a cut rule with conclusion ⊢ Γ,∆;

• L is a positive link +I∈N with conclusion ⊕J∈N (⊗j∈J(Nj)); we recall that each port of L cor-
responds to an i ∈ I. L sequentializes R into R1, . . . , Rn J-proof structures with conclusions re-
spectively Γ1, N1 . . .Γn, Nn,; by induction hypothesis there exist π1, . . . , πn proofs with conclusion
⊢ Γ1, N1, . . . ⊢ Γn, Nn, which are sequenzializations of R1, . . . , Rn, respectively. We obtain the se-
quentialization π of R by applying a (+, I) rule with conclusion ⊢ Γ1, . . . ,Γn,⊕J∈N (⊗j∈J (Nj)) to
π1, . . . , πn.



Otherwise, R is composed by more than one connected component, and each of them is a sequentializable
J-proof structure; we conclude by applying induction hypothesis on them, followed by a sequence of Mix rules.

�

3.3 Correctness criterion

A correctness criterion must allow to characterize in an intrinsic, purely geometrical way all sequentializable
J-proof structures, that is the ones which can be sequentialized into HS proofs; the J-proof structures satisfyng
the criterion are called J-proof nets. The correctness criterion for J-proof structures in the additive case is
composed by two conditions:

• a quantitative one, the totality condition, which assures that in a J-proof net there are enough slices to
retrieve a sequent calculus proof. We have already discussed this condition in subsection 3.1.1.

• a qualitative one, called cycles condition, which is a reformulation in our setting of the homonymous
condition introduced by Curien and Faggian on L-nets , see [CF05].
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Figure 5: An example of a J-proof structure with a “legal” cycle (marked in red), justified by a negative rule
(marked in blue).

In order to define the Cycles condition, we need to introduce the notion of switching path in a J-proof
structure:

Definition 13 (Switching path and cycle) Given a J-proof structure R, and a &-rule W (resp. a negative
link n) of R, we call switching edge of W (resp. n) any edge incident on an element of W (resp. on n). A
switching path is a path which never uses two different switching edges of the same &-rule (resp. negative
link) of R; a switching cycle is a switching path which is a cycle.

Definition 14 (Cycles-correct J-proof-structure) A J-proof structure R is cycles-correct if, given a non
empty union C of switching cycles of R, there is a negative rule W ∈ R not intersecting C and a pair w1, w2 ∈ W

such that for some links c1, c2 ∈ C , c1
+
−→ w1 and c2

+
−→ w2; in this case we say that the additive pair

w1, w2 ∈ W breaks C.



Cycles condition deals with cycles which crosses different slices of the same J-proof structure; in fact, in the
framework of additive proof nets, as first pointed out by Girard in [Gir96], the correctness of the single slices of
a proof structure does not imply the sequentiability of the whole proof net (see for example the representation
of the Gustave function as a proof structure given in [HVG03]).

In fig 6 we provide an example (due to Claudia Faggian) of a J-proof structure which is slice by slice switching
acyclic, but it is not cycles-correct: there is a cycle crossing all the &-rules and all the terminal positive links.

As a consequence, we cannot choose any of the terminal positive links as the last rule of a sequent calculus
proof, since none of them is splitting. In fig 5 instead we provide an example of a cycles-correct J-proof structure
containing a “legal” cycle, which does not violate the Cycles condition. The example is based on an analogous
one contained in [HVG03].
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Figure 6: An example of a J-proof structure with an “illegal” cycle (marked in red)

Definition 15 (J-proof net) A J-proof net is a J-proof structure which is total and cycles-correct.

Theorem 1 (Sequentialization) Let R be a J-proof structure; R is a J-proof net iff is sequentializable.

The right to left direction is (as usual) trivial. In section 5 we provide a proof of the left to right one,
upgrading the technique already used in [DGF06] for the multiplicative fragment.

4 J-proof nets, L-nets and superposition

We already remarked that the “essence” of an additive proof is to be a superposition of proofs; in order to address
the problem of sequenzialization, we need then to give a precise definition of what it means to “superpose” two
proofs (or in our case, two J-proof structures). We define the operation of superposition of J-proof structures,
by adapting the notion of union of chronicles from ludics and L-nets (see [CF]) to our setting. We begin by
recalling the basic ludic notion of adress and by defining its relation with J-proof structure.

Note. In this section, we will only consider J-proof structures without cut links.

4.1 Adresses and ludification

An address is a sequence ξ of natural numbers. An adress σ is subadress of an adress ξ if ξ is a prefix of σ.
Let us take a non-empty multiset of formulas of HS. Let us call them A1, . . . , An. A localization f of

A1, . . . An is a function which associates with every node F of the subformula tree of Aj an adress, for every
 ∈ {1, . . . , n}, in the following way:

• For every  ∈ {1, . . . , n} f(Aj) = ξ , where ξ is an arbitrary adress;

• f(Aj) 6= f(Ak), for j 6= k ∈ {1, . . . , n};
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Figure 7: A J-proof structure R1.
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Figure 8: A J-proof structure R1 labelled with actions

• If f(F ) = σ, and F = ⊕I∈N (⊗i∈I(Ni)) (resp. &I∈N (Oi∈I(Pi))) then f(Ni) (resp. f(Pi)) = σi, for
i ∈ I ∈ N .

Informally, localization can be thought of as a way to unambiguously retrieve the position of a formula,
given a forest of subformula trees.

Ludification An action is a pair k = (ξ, I) where ξ is an adress and I is a finite index set (that is, a
ramification). An action k = (ξ, I) is said to use the adress ξ. We say that an action (ξ, I) generates the adress
ξi for all i ∈ I, and that an action a is parent of an action b if a generates the adress used by b.

Given a J-proof structure R with conclusions A1, . . . , An and a localization f of A1, . . . , An, a ludification
of R is a function l which associates with each link of R an action, in the following way:

• if a is a positive link labeled by (+, I) (resp. a negative link labelled by (−, I)), with conclusion P (resp.
N) and f(P ) = ξ (resp. f(N) = ξ) then l(a) = (ξ, I).

With a slight abuse, we will extend the parent relation from actions to links, meaning that if a, b are links,
a is parent of b iff l(a) is a parent of l(b); moreover, we will say that a and b are similar, if l(a) and l(b) use the
same adress.

We call view of a link a the set of actions {l(a)}∪{l(a′); a
+
−→ a′}, equipped with the following order relation

: l(b) < l(c) iff b ≺R c.

Remark 2 It is easy to observe that the ludification function l is completely determined by the localization
function f on the conclusions of R; meaning, up to the choice of f , the function l is unique.

In figure 8 , in order to clarify how actions can be associated with links, we show how, starting from the
J-proof structure R1 given in figure 7, formulas can be replaced with adresses.



J-proof structure and L-nets The reader acquainted with L-nets will observe that the object represented in
figure 8 is actually an L-net. In fact, to transform a cut-free J-proof structure R with conclusion Γ, N (where N
is the unique negative conclusion of R) into an L-net G with interface ξ ⊢ Λ, it is enough to provide a localization
of the conclusions of R which associate with N the adress ξ, and with the formulas in Γ the addresses in Λ; The
set of views associated with the links of R straightforwardly induces an L-net with interface ξ ⊢ Λ.

4.2 Sharing equivalence

Before explaining how to superpose two J-proof structures, first we must define how to compare them in order
to decide the portion of J-proof structures to be superposed. We introduce then an equivalence relation on
J-proof structures, that we call sharing equivalence.

Definition 16 Let R1, . . . , Rn be J-proof structures with the same conclusions. Let f be a localization for the
conclusions of R1; since R1, . . . , Rn have the same conclusions, f is a localization also for the conclusions of
Ri for all i in {1, . . . , n}. Let l be a function from the links of R1, . . . Rn to actions, such that l restricted to Ri

is the ludification of Ri induced by f , for all i in {1, . . . , n}. Given two links a, a′ of R1, . . . , Rn, we say that a
is sharing equivalent to a′ modulo l (denoted by a ≡l a

′) iff the view of a induced by l is equal to the view of
a′ induced by l.

Proposition 4 Let R1, . . . , Rn be J-proof structures with the same conclusions and a, a′ be two links of R1, . . . Rn.
Let f, f ′ be two localizations of the conclusions of R1 (and hence of the conclusions of all Ri for i ∈ {1, . . . , n}),
and l, l′ the ludifications of R1, . . . Rn corresponding respectively to f, f ′. Then a ≡l a

′ if and only if a ≡l′ a
′.

Proof.
Consider a single conclusion A of R1, . . . , Rn and the two addresses ξ, σ associated with A respectively by

f, f ′. Now let us consider all the links a of R1, . . . , Rn, such that l(a) = (λ, I) and λ has ξ has prefix (so that the
conclusion of a is subformula of A) ; if we substitute in λ ξ with σ, we get an address λ′ such that (λ′, I) = l′(a).
Now, if we generalize the procedure to all the conclusions of R1, . . . , Rn, substituting in l the adresses associated
with the conclusions of R1, . . . , Rn by f with the ones associated by f ′, we get that l(a) = l′(a) for all links a;
and moreover, for all links a, the view of a induced by l is equal to the view of a induced by l′. We conclude
that, given f and two links a, b of R1, . . . Rn such that a is sharing equivalent with b modulo l, if we replace f
with f ′ in l′, then a is still sharing equivalent with b modulo l′. �

Since by proposition 4, the relation of sharing equivalence induced by a ludification l does not depend from
the specific ludification l chosen, we will speak more generally of sharing equivalence and denote it by ≡ (instead
of ≡l).

Proposition 5 Given R1, . . . , Rn J-proof structures with the same conclusions, the relation ≡ is an equivalence
relation on the links of R1, . . . , Rn; moreover, there exists a unique sharing equivalence on R1, . . . , Rn.

Proof. Sharing equivalence is trivially an equivalence relation; concerning unicity is a consequence of the
definition of ludification of a J-proof structure, of remark 2 and proposition 4. �

Proposition 6 Let R1, . . . , Rn be J-proof structures with the same conclusions. and a, a′ be two links in
R1, . . . , Rn. If a is sharing equivalent to a′ then the type of the conclusion of a and the type of the conclu-
sion of a′ are the same.

Proof. Trivial from the fact that to be sharing equivalent for two links a, a′ implies that l(a) = l(a′) for some
ludification l; that is l(a) and l(a′) are two actions using the same addresses, meaning that the conclusions of
a, a′ are typed by the same formula, by definition of ludification of a J-proof structure. �

In figure 10 we provide a representation of the J-proof structure R2 in figure 9 where we have replaced
formulas with adresses: comparing R2 with the J-proof structure R1 with the same conclusions in fig.7 and
looking at their views, we can tell for example that the left terminal positive links of R1 and R2 are sharing
equivalent, but the right terminal positive links of R1, R2 are not.

4.3 Superposition

Definition 17 Let R1, . . . , Rn be J-proof structures with the same conclusions. Let a ∈ Rj and a′ ∈ Rk be two
similar links. Then a, a′ are said to be sibling, whenever a is not sharing equivalent to a′, but either the parent
b of a in Rj and the parent b′ of a′ in Rk are sharing equivalent or a, a′ are both terminal links.
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Figure 9: A J-proof structure R2.
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Figure 10: A J-proof structure labelled by actions R2.

Definition 18 (Compatibility) Let R1, . . . , Rn be J-proof structures with the same conclusions. We say that
R1, . . . , Rn satisfy the compatibility condition whenever for any two sibling positive links b ∈ Rj and b′ ∈ Rk,

there are two negative sibling links a ∈ Rj, a
′ ∈ Rk, such that b

+
−→ a in Rj and b′

+
−→ a′ in Rk.

Definition 19 (Superposition) Let R1, . . . , Rn be J-proof structures with the same conclusions. The super-

position of R1, . . . , Rn, is the J-proof structure R having the same conclusions of R1, . . . , Rn, such that:

1. for all R1, . . . , Rn and for every link a′ of Ri, there exists a link a of R s.t. a ≡ a′;

2. R = R′
1 ∪ . . . ∪ R′

n, where, given an Ri for i ∈ {1, . . . , n}, R′
i is the restriction of R to the set {a ∈ R :

∃a′ ∈ Ri s.t.a ≡ a′}.

Given R1, . . . , Rn J-proof structures with the same conclusions, we will denote their superposition by ≬
(R1, . . . , Rn).

Proposition 7 Let R1, . . . , Rn be J-proof structures with the same conclusions; there exists a unique J-proof
structure R =≬ (R1, . . . , Rn) iff R1, . . . , Rn satisfies the compatibility condition.

Proof. First of all, it is easy to see that if a, b are links of R1, . . . Rn, the links a′, b′ of R s.t. a ≡ a′ and b ≡ b′

are contracted iff a, b are sibling; as a consequence, it is easy to see that the compatibility condition is nothing
but a reformulation of the contraction condition in terms of sharing equivalence.

Once stressed this, the left to right direction is trivial. Concerning the right to left direction, we have to
prove that R is a J-proof structure; that is we have to prove that the constraints given in the definition of
J-proof structure are respected. Concerning positivity condition, let us consider a negative link a of R; by point
2) of definition 19, there exists a link a′ in some Ri s.t. a ≡ a′; by positivity condition on Ri there exists a

positive link b′ in Ri such that b′
+
−→ a′ in Ri, but then by point 1) of definition 19 and by definition of sharing

equivalence there exists a positive link b ∈ R such that b ≡ b′ and b
+
−→ a, so R respects the positivity condition.

Concerning coherence condition, let us consider a link a of R; by point 2) of definition 19, there exist a link

a′ in some Ri s.t. a ≡ a′. Now it is easy to verify that, by definition 19, for all links b such that a
+
−→ b in R,
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Figure 11: The superposition of R1, R2.
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Figure 12: The superposition of R1, R2, labelled by actions

there exists a link b′ in Ri such that a′
+
−→ b′ in Ri and b ≡ b′ (otherwise a, a′ would not be sharing equivalent)

; but then if a is above two different elements of the same & rule in R, so does a′ in Ri, contradicting the
hypothesis that Ri is a J-proof structure.

Last, we show that additives condition holds for R.
Suppose that w,w′ are two negative sibling links of Rj , Rk respectively. We have two cases: either w,w′

are both terminal links, or they aren’t. In the first case, by definition of sharing equivalence, in order to be not
sharing equivalent w,w′ must have two different labels J,K ∈ N ; then w,w′ satisfy the Additives condition on
R. In the second case, since w,w′ are siblings and not terminal, there exists in Rj a link x (resp. in Rk a link
x′) such that x is the parent of w in Rj (resp. x

′ is the parent of w′′ in Rk) and x ≡ x′. Since w,w′ are negative
links, and the views of their parents are the same, in order to be not sharing equivalent w,w′ must have two
different labels J,K ∈ N ; then w,w′ satisfy the additives condition on R. Unicity of R is a consequence of the
unicity of the sharing equivalence on R1, . . . , Rn.

�

Proposition 8 If S1, . . . , Sn are the slices of a total J-proof structure R, then ≬ (S1, . . . , Sn) = R

Proof. Straightforward from the definitions. �

In fig. 11 we provide the superposition R3 of the J-proof structures R1, R2 in fig. 7, 9. The set of views
associated with R3 can be retrieved looking at fig 12. It can be easily verified that R3 contains exactly the
views of R1, R2.

5 Sequentializing with jumps

In this section we will provide a proof of the sequentialization theorem by showing how to retrieve a sequen-
tialization of a J-proof net by adding jumps on it. First in subsection 5.1 we will isolate a particular class of
J-proof structures, called arborescent, which we prove to be in a one-to one correspondence with HS proofs.



In the rest of the section we will show how we can turn any J-proof net R into an arborescent J-proof net
RJ by adding jumps. In subsection 5.2 we will first show a simple, purely multiplicative example recalling the
techinque already used in [DGF06]. Then in subsection 5.3, we will give an example of how to generalize the
technique to include the additive case. In subsection 5.4 we formally define the operation of adding jumps on
a J-proof structure and in subsection 5.5 we will finally prove the sequentialization theorem for J-proof nets.

Note. In this section, we will only consider J-proof nets without cut-links; we will speak about the question
of sequentialization with cut-links in section 6.

5.1 Arborescence and sequent calculus

Definition 20 (Arborescent J-proof structure) A J- proof structure R is arborescent when the order ≺R

associated with R as a d.a.g. is arborescent.

Proposition 9 There is a one to one correspondance between cut-free arborescent total J-proof structures and
cut-free proofs of HS, such that if a proof π is associated with an arborescent J-proof structure R, then π is the
unique sequentialization of R.

Proof.
The proof is by induction on the height n of an HS proof π:

n = 1: in this case, π is composed by just a 0-ary positive rule
⊢ 1

to which we associate a 0-ary positive link,

whose unique sequentialization is trivially π.

n = k + 1: We have different cases depending on the last rule of π:

• Let the last rule of π be a (−,N ) rule L with conclusion ⊢ Γ,&J∈N (Oj∈J (PJ )) and premises

Γ, P 1
1 , . . . P

k1
1 , . . .Γ, P 1

n . . . P kn
n . Let RI be the arborescent J-proof structure associated by induction

hypothesis with the proof πI of the premise Γ, P 1
I , . . . P

kI

I of L, corresponding to the ramification
I ∈ N ; by induction hypothesis, πI is the unique sequentialization of RI . The arborescent J-proof
structure R associated with π is the J-proof structure obtained in the following way:

1. add a −I∈N link bI with conclusion &J∈N (Oj∈J(Pj)) to each RI for I ∈ N , in order to get an
arborescent J-proof structure R′

I with conclusions Γ,&J∈N (Oj∈J(Pj)) for each I ∈ N ;

2. for every R′
I and for every positive terminal link a of R′

I , add a jump in R′
I from a to bI , obtaining

an arborescent J-proof-structure R′′
I for each I ∈ N ;

3. R =≬J∈N R′′
J .

It is easy to verify that R is a total arborescent J-proof structure whose unique sequentialization is
π.

• Let the last rule of π be (+, I) rule with conclusion ⊢ Γ1, . . . ,Γn,⊕J∈N (⊗j∈J (Nj)), and premises
respectively ⊢ Γ1, N1, . . . ,⊢ Γn, Nn. Let Ri be the arborescent J-proof structure associated with the
proof πi of the premise ⊢ Γi, Ni of L for i ∈ {1, . . . , n}; by induction hypothesis, πi is the unique
sequentialization of Ri for i ∈ {1, . . . , n}. Then the arborescent J-proof structure associated with π
is the J-proof structure R obtained by connecting all Ri together with a +I∈N -link with conclusion
⊕J∈N (⊗j∈J (Nj)) for i ∈ {1, . . . , n}.

• Let the last rule of π be a Mix rule with conclusions ⊢ Γ,∆ and premises respectively ⊢ Γ,⊢ ∆; let
R1, R2 be the arborescent J-proof structures associated by induction hypothesis respectively with
the proof π1, π2 of the premises of L; always by induction hypothesis, π1 (resp. π2) is the unique
sequentialization of R1 (resp. R2). Then the arborescent J-proof structure associated with π is the
union of R1, R2.

�

5.2 Sequentializing with jumps: the multiplicative case

Let us consider the multiplicative J-proof net R given in fig. 13.
Is easy to verify that R is sequentializable and that the proofs π1, π2 of section 2.3, are two sequentializations

of R.
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The order associated with R is not arborescent; to make it arborescent we add jumps between the leftmost
negative link and the middle positive link, and between the rightmost negative link and the leftmost positive
link, obtaining the J-proof structure R1 in fig 14;

Now we consider the partial order induced by R1 as a directed graph; the order is arborescent, so by Prop
9, R1 is sequentializable into a unique proof, which happens to be π1.

But adding jumps as in R1 is not the only way to retrieve an arborescent order; also the arborescent J-proof
structure R2 in fig 15 can be obtained from R by adding jumps. R2 is sequentializable into a unique proof,
namely π2.

The example above is purely multiplicative: adding jumps in presence of additives is a more delicate opera-
tion, which we will describe just below.

5.3 Sequentializing with jumps: the additive case

Let us consider the total J-proof net R in fig 16. It is easy to verify that R is sequentializable and that the
following two proofs, named respectively π1, π2 are two sequentializations of R:

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1})
⊢ 1,⊕(⊥1,⊥2)

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{2})
⊢ 1,⊕(⊥1,⊥2)

(−,{{1},{2}})
⊢ &(11, 12),⊕(⊥1,⊥2)

(+,{5})
⊢ ⊕((&(11, 12))5,⊥6),⊕(⊥1,⊥2)

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1})
⊢ 1,⊕(⊥1,⊥2)

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{2})
⊢ 1,⊕(⊥1,⊥2)

(−,{{1},{2}})
⊢ &(11, 12),⊕(⊥1,⊥2)

(+,{5})
⊢ ⊕((&(11, 12))5,⊥6),⊕(⊥1,⊥2)

(−,{{3},{4}})
⊢ ⊕((&(11, 12))5,⊥6),&((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4)

(+,{7})
⊢ ⊕((&(11, 12))5,⊥6),⊕((&(⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4)7,⊥8)
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Figure 16: The J-proof net R′.

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1})
⊢ 1,⊕(⊥1,⊥2)

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{1})
⊢ 1,⊕(⊥1,⊥2)

(−,{{3},{4}})
⊢ &((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4), 1

(+,{7})
⊢ ⊕((&((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4))7,⊥8), 1,

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{2})
⊢ 1,⊕(⊥1,⊥2)

(+,{})
⊢ 1

(−,{})
⊢ 1,⊥

(+,{2})
⊢ 1,⊕(⊥1,⊥2)

(−,{{3},{4}})
⊢ &((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4), 1

(+,{7})
⊢ ⊕((&((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4))7,⊥8), 1

(−,{{1},{2}})
⊢ &(11, 12),⊕((&((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4))7,⊥8)

(+,{5})
⊢ ⊕((&(11, 12))5,⊥6),⊕((&((⊕(⊥1,⊥2))3, (⊕(⊥1,⊥2))4))7,⊥8)

The arborescent J-proof structures R1, R2, which directly correspond respectively to π1, π2, are depicted in
fig. 17, 18. The fact that R1, R2 directly correspond to π1, π2 is evident if we look at their skeletons in fig. 19,
20 ; the order between links matches perfectly the order between rules.

Now, we must define a procedure to transform R in, for example, R1 using jumps. A first, naive approach
would be to add some jumps in R from the leftmost terminal positive link a to the elements of the rightmost
&-rule W . Unfortunately, this method is wrong: it can be easily verified that adding such jumps on R will
violate the coherence condition in the definition of J-proof structure. Moreover we have to deal with the fact
that some links of R must be duplicated in order to get a J-proof structure corresponding to the proof π1: the
naive approach does not take that into account.
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Figure 17: The J-proof net R1

So we refine our procedure in the following way: instead of adding jumps directly on R, we add the jumps
on the slices of R. Consider separately each of the four slices S1, S2, S3, S4 of R and add in each slice a jump
from a to the element of W which appears in the slice as in fig. 21 (we mark in red the jump added in each
slice). In this way we get four multiplicative J-proof structures S′

1, S
′
2, S

′
3, S

′
4; now if we superpose them we

retrieve exactly the J-proof structure R1 in fig. 17. Observe that superposing S′
1, S

′
2, S

′
3, S

′
4 duplicates the

leftmost positive terminal link in R1. We could as well add jumps in each of the slices S1, S2, S3, S4 from the
rightmost terminal positive link a′ to elements of the leftmost &-rule W ′ and then superpose, obtaining the
J-proof structure R2 in fig 18. Observe that this time is the rightmost terminal positive link which is duplicated
in R2.

5.4 Sequentializing with jumps: the general case

In the example above, we have considered only the case where the target of the jump we want to add belongs
to a terminal &-rule. To deal with the general case, we must take into account the fact that adding a jump
from a link a to a link b implies (by transitivity) implicitly adding a jump from a to every negative link b′ s.t.

b
+
−→ b′.

Definition 21 (Adding a jump) Let R be a total J-proof structure, and a (resp. b) a positive (resp. negative)
link of R. To add a jump from a to b we perform the following operations:

1. take the set of all the slices S1, . . . , Sn of R;

2. for each slice Si of R, modify Si into S′
i in the following way:

• if a does not belong to Si, then S′
i = Si;

• if both a, b belongs to Si, S
′
i is obtained by adding a jump from a to b in Si;

• if a belongs to Si and b does not, then there exists at least one & rule W such that b depends from W
in R (otherwise b would belong to Si). To get S′

i we add a jump from a to w, for all negative links
w in Si such that for some &-rule W in R, w ∈W and b depends from W .

The result of adding a jump from a to b is the J-prof structure R′ which is the superposition of S′
1, . . . , S

′
n.

Remark 3 It is straightforward that adding jumps on a multiplicative J-proof structure, as in the example of
subsection 5.2, is a special case of the procedure defined in Definition 21. In this special case the target of the
jump to be added does not depend from any &-rule.

Proposition 10 Let R be a total J-proof structure, a a positive link and b a negative link; then there exists a
unique total J-proof structure R′ obtained by adding a jump from a to b.
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Figure 18: The J-proof net R2

Proof.
Let S1, . . . , Sn be the slices of R and S′

1, . . . , S
′
n be the multiplicative J-proof structures obtained by adding

jumps following definition 21. To check that the superposition of S′
1, . . . , S

′
n is a total J-proof structure, by

proposition 7 we have just to check that compatibility condition on S′
1, . . . , S

′
n is respected.

Let us consider two positive links a′, a′′ respectively belonging to S′
j , S

′
k such that a′, a′′ are siblings.

Let us consider the occurrences2 of a′, a′′ in the slices Sj , Sk of R from which S′
j , S

′
k are build. We have to

prove that there exist two negative links w′ in S′
j w′′ in S′

k, such that a′
+
−→ w′ in Sj , a

′′ +
−→ w′′ in Sk and

w′, w′′ are siblings in S′
j , S

′
k. We have two cases:

1. Suppose a′ in Sj and a′′ in Sk are not siblings; first we show that a′ ≡ a′′ in Sj , Sk. In fact, let a′ in Sj

and a′′ in Sk be not siblings and suppose by absurd that a′ is not sharing equivalent to a′′ in Sj , Sk. Since
a′, a′′ are siblings in S′

j , S
′
k, then the link b′ which is the parent of a′ and the link b′′ which is the parent of

a′′ are sharing equivalent in S′
j , S

′
k. From the fact that a′, a′′ are neither siblings nor sharing equivalent in

Sj, Sk we must conclude that b′, b′′ are not sharing equivalent in Sj , Sk (otherwise a′, a′′ would be siblings
in Sj, Sk); but this would contradict the assumption that b′, b′′ are sharing equivalent in S′

j , S
′
k, because

two nodes which are not sharing equivalent in Sj , Sk cannot be sharing equivalent in S′
j, S

′
k (since the set

of predecessors of a link can only increase by adding jumps). We must conclude then that a′ ≡ a′′ in
Sj, Sk; then it is straightforward that a′, a′′ are two different occurences in Sj , Sk of the same link c of R.
Now the set of predecessors of c are different in S′

j and S′
k (since a′, a′′ are siblings in S′

j , S
′
k) so it must

be that c
+
−→ a, where a is the source of the jumps to be added in R. Now let us consider all the &-rules

b depends from in R. There must exists at least one &-rule Z such that b depends from Z in R, and for
two different elements z, z′ of Z z ∈ Sj , z

′ ∈ Sk; otherwise by definition 21, we would add the same jumps
from a in S′

j and in S′
k, and then a′, a′′ would be sharing equivalent in S′

j , S
′
k since a′ ≡ a′′ in Sj , Sk and

a′
+
−→ a in Sj (resp. a′′

+
−→ a in Sk). By the existence of z, z′ and by definition of adding jumps, a

+
−→ z′

in S′
j and a

+
−→ z′′ in S′

k; since z′, z′′ belong to the same &-rule in R, they are siblings in Sj , Sk; the set
of predecessors of z′ (resp. of z′′) is the same in Sj and in S′

j (resp. in Sk and in S′
k), so they are sibling

also in S′
j , S

′
k, and a′

+
−→ z′ in S′

j , a
′′ +
−→ z′′ in S′

k. We conclude that S′
j , S

′
k respect the compatibility

condition.

2. Suppose a′ in Sj and a′′ in Sk are siblings: then by contraction condition on R (and the equivalence
between compatibility and contraction condition) there exists respectively a negative link w′ in Sj s.t.

a′
+
−→ w′ and a negative link w′′ in Sk s.t. a′

+
−→ w′′ and w′, w′′ are siblings (so they belong to the same

&-rule W of R). Now we have two sub-cases:

• w′, w′′ are siblings also in S′
j , S

′
k. Then compatibility condition is respected.

2Since slices are subgraphs of a given graph, it makes sense to talk of different occurences of the same node in different slices.
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Figure 19: The skeleton of R1

• w′, w′′ are not siblings in S′
j , S

′
k. If this is the case, then w′ +

−→ a in Sj , w
′′ +
−→ a in Sk, and adding

the jump from a to b makes that in S′
j , S

′
k, w

′, w′′ are no more siblings. Now let us consider all the
&-rules b depends from in R; using the same argument used in point 1), we can prove that there
must exist a pair of negative links z′ in Sj , z

′′ in Sk s.t. z′, z′′ are two different elements of the same

&-rule Z of R, b depends from Z in R, a
+
−→ z′ in S′

j (but not in Sj) and a
+
−→ z′′ in S′

k (but not in
Sk). Since z′, z′′ belong to the same &-rule in R, they are siblings in Sj , Sk; by definition of adding
jumps, the set of predecessors of z′ (resp. of z′′) is the same in Sj and in S′

j (resp. in Sk and in S′
k),

so they are sibling also in S′
j , S

′
k, and a′

+
−→ z′ in S′

j ,a
′′ +
−→ z′′ in S′

k, and we are done.

Concerning totality of R′, is trivially preserved from totality of R. The result is a consequence of the
following observation: take a slice Si of R containing an element w of a &-rule W of R. Now if we choose a
different element w′ of W there exists (by totality of R) exactly one slice Sj of R containing w′ and such that
for any other &-rule Z of R, Si, Sj contain the same element z of Z. If we consider the multiplicative J-proof
structures S′

i, S
′
j corresponding respectively to Si, Sj , induced by the adding of jumps, it is easy to see that the

occurence of w in S′
i and the occurence of w′ in S′

j are siblings, so they belong to the same &-rule of R′.

�

Proposition 11 Let R,R′ be two total J-proof structure s.t. R′ is obtained from R by adding jumps and ≺R′

is arborescent. Then R is sequentializable.

Proof. By proposition 9, R′ is sequentializable into a unique proof π. We show that also R is sequentializable
into π, by proving that if a link sequentializes R′, then a corresponding link of R sequentializes R too.

We reason by induction on the number of links in R:

n = 1: in this case, R and R′ are composed by just a positive link without premises, trivially sequentializable;

n = k + 1: Suppose R,R′ have a negative conclusion. If it is the conclusion of a &-rule consider the corre-
sponding terminal &-rule W = {w1 . . . , wn} in R′; since R′ is sequentializable, W sequentializes R′ into
{R′

1, . . . R
′
n} arborescent, sequentializable J-proof structures. Now we take the corresponding terminal

negative rule W ′ = {w′
1 . . . , w

′
n} of R; for each element w′

i of W
′ by proposition 2 the graph R′

w′
i
obtained

by removing w′
i from the scope Rw′

i
is a total J-proof structure. Since R′ is obtained by adding jumps

on R, each slice S′ of R′ can be obtained from a unique slice S of R by adding jumps on it. It is not
difficult to prove then that each R′

i can be obtained by adding jumps on Rw′
i
, so Rw′

i
is sequentializable

by induction hypothesis, and W ′ sequentializes R. But then R is sequentializable.
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Figure 20: The skeleton of R2

If the negative conclusion of R,R′ is not the conclusion of a &-rule we consider the corresponding terminal
negative link c of R′; since R′ is sequentializable, c sequentializes R′ into an arborescent, sequentializable
J-proof structure R′

0; it is easy to check that the J-proof structure R0 obtained by removing the terminal
negative link c′ corresponding to c from R is a total J-proof structure and that R′

0 can be obtained by
adding jumps on R0, so by induction hypothesis R0 is sequentializable and c′ sequentializes R.

Otherwise, we reason by cases, depending if R′ is composed by one or more than one connected component:

• if R′ is composed by a single connected component, we consider the terminal positive link c of R′

which is minimal in ≺R′ ; c sequentializes R′ into {R′
1, . . . , R

′
n} arborescent, sequentializable J-proof

structures, so c is splitting for R. The corresponding terminal positive link c′ of R must be splitting
too (because adding jumps preserve connectedness) so it splits R into {R1, . . . , Rn} total J-proof
structures such that each R′

i can be obtained by adding jumps on Ri. But then {R1, . . . , Rn} are
sequentializable by induction hypothesis, and c′ sequentializes R, so R is sequentializable.

• if R′ is composed by {R′
1, . . . , R

′
n} connected components, each component R′

i is an arborescent,
sequentializable J-proof structure; is easy to verify in this case R can be divided into {R1, . . . , Rn}
disjoint, total J-proof structure and that each R′

i can be obtained by adding jumps on Ri, so each
Ri by induction hypothesis is sequentializable. Then R is sequentializable.

�

5.5 Sequentialization

Now all is set to proceed with the main result of this section, namely the proof of the sequentialization theorem.
To prove that a J-proof net is sequentializable, we use the following road map:

• given a J-proof net R, we iteratively add jumps on R until we get a J-proof net R′ which contains
a “maximal” amount of jumps; that is, any jump added on R′ either breaks the correctness criterion
(obtaining something which is not a J-proof net anymore) or is redudant (it does not increase the order
associated to R′ as a d.a.g.). J-proof nets as R′ are called saturated (we formally define them below).

• The order associated with a saturated J-proof net is arborescent (Lemma 3).

• If the order associated with R′ is arborescent, there exists a unique proof π which is the sequenzialization
of R′ (Prop. 9).

• if R′ sequentializes into π, R too is sequentializable into π (prop.11); so R is sequentializable.
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Figure 21: adding a jump on R



The crucial point is the proof of Lemma 3; a restricted version of Lemma 3 for the multiplicative fragment
was the main technical novelty introduced in [DGF06].

A major obstacle to the extension of Lemma 3 to additives is the possible presence of “legal” switching
cycles in additive J-proof nets, allowed by Cycles condition of the correctness criterion, but forbidden in the
multiplicative case.

The first step towards the proof of sequentialization will be then to prove that Lemma 3 still holds in presence
of additives; the auxiliary result allowing this will be Lemma 2, which states that any saturated J-proof net does
not contain switching cycles.

5.5.1 A saturated J-proof net is switching acyclic.

Definition 22 (Saturated J-proof net) A J-proof net R is saturated if for every J-proof structure R′ ob-
tained from R by adding a jump, either R′ is not a J-proof net or ≺R=≺R′ .

Given a J-proof net R, a saturation R′ of R is a saturated J-proof net obtained from R by adding jumps.

Definition 23 (Strong switching path) Given a negative link b of of a J-proof structure R, a strong

switching path 〈b, . . . , a〉 from a node b to a node a is a switching path which does not use any switching
edge of b (or of any other node b′ belonging to the same &-rule as b in R).

Proposition 12 Let a be a positive link, b a negative link and W any &-rule in a J-proof net R, s.t. b depends
from W . If there isn’t any strong switching path from b to a in R, then there isn’t any strong switching path
from w to a in R for any element w of W .

Proof. The proof is a direct consequence of the fact that, if there was a strong switching path from w to a,

then there would be also a strong switching path from b to a, since b depends from W , so b
+
−→ w for some

element w of W by Prop. 1; this would contradict the hypothesis, q.e.d. �

Proposition 13 Let R be a J-proof net, a be a positive link and b a negative link of R; if there isn’t any strong
switching path from b to a in R, then the J-proof structure R′ obtained by adding a jump from a to b in R, is a
J-proof net.

Proof. By proposition 10, we must only prove that Cycles condition holds. The property follows from the fact
that adding a jump from a to b cannot create new switching cycles: any new switching cycle in R′ should use
a jump from a which was not in R, and the conclusion of the link which is the target of the jump. A cycle like
that cannot exist in R′, by the hypothesis that there is not any strong switching path from b to a in R3, and
Prop. 12. �

Lemma 1 Let R be a J-proof net, C a union of switching cycles of R; then there exists an additive pair
w1, w2 ∈ W of R which breaks C and a positive link c ∈ C (we call such a positive link proper) s.t.

1. ¬(c
+
−→ w1) and ¬(c

+
−→ w2);

2. c belongs to a cycle C′ ∈ C s.t. there exists a node d ∈ C′ which is hereditarily above w1 or w2.

Proof.
The proof is by induction on the number n of cycles in C:

n = 1: Since n = 1, C is composed by a single switching cycle C; by the correctness criterion, there exists
an additive pair w1, w2 ∈ W which breaks C in R . Let’s suppose by absurd that every link of C is

above either w1 or w2; then we can partition the nodes of C in two sets, A = {a : a
+
−→ w1} and

B = {b : b
+
−→ w2}, disjoint by condition coherence of the definition of J-proof structure. Given any two

elements a ∈ A and b ∈ B, there exists a path r : 〈a . . . b〉 connecting them. We consider the first edge of
r starting from a which connects a node d of A with a node d′ of B; either it is an incident edge d→ d′,

and then d
+
−→ w1 and d

+
−→ w2, or it is an emergent edge d← d′, and then d′

+
−→ w1 and d′

+
−→ w2; in

any case we contradict the condition coherence of definition 3, so there exists some link c s.t. ¬(c
+
−→ wi)

for i = 1, 2. Furthermore there has to be at least one positive link which enjoys the property, otherwise C
would not be switching.

3It is not possible that adding a jump having has target b in R increases the number of strong switching paths starting from b

in R′ since such paths cannot use the switching edges of b (and a jump is a switching edge).



n > 1: We proceed ad absurdum and we suppose that for all additive pairs in R breaking C, C does not contain
a positive proper link.

Let us consider an additive pair w1, w2 ∈ W breaking C in R, which exists by the correctness criterion on
R.

Then by our hypothesis, by definition of proper link and by coherence condition on J-proof structures, we
can partition the cycles of C in three groups: C1 (the cycles with all elements above w1), C2 (the cycles
with all elements above w2) and C0 ( the cycles whose elements are neither above w1 or w2). Now by
induction hypothesis on C1 ∪ C0, there exists an additive pair w′

1, w
′
2 which breaks C1 ∪ C0 and a positive

link c′ belonging to some swithcing cycle C′ ∈ C1 ∪ C0 such that c′ is proper. Obviously neither w′
1 or

w′
2 can belong to C2; otherwise they would be above w2, and then either there would be some cycle in C1

which is above w1 and w2, contradicting our hypothesis on C1, or there would be some cycle in C0 which
is above w2, contradicting our hypothesis on C2. But then the additive pair w′

1, w
′
2 breaks C too, and c is

a proper link of C contradicting our hypothesis that, for all additive pairs breaking C, C does not contain
any proper positive link.

�

Lemma 2 Let R be a J-proof net; if R contains a switching cycle , then R is not saturated.

Proof.
We consider the union C of all the switching cycles of R (there is at least one by hypothesis).There exists,

by lemma 1, an additive pair w1, w2 which breaks C and a positive proper link c belonging to a cycle C′ ∈ C.
By the fact that c is proper there exists a node d belonging to the same cycle C′ ∈ C as c s.t. d is hereditarily
above w1 or w2 ; w.l.o.g., let us assume that d is hereditarily above w1. By the existence of d there exists a
switching path r′ from c to w1, composed by a switching path from c to d (containing only nodes of C′) and
nodes in a directed path from d ∈ C′ to w1.

Let’s suppose that w1 belong to a terminal &-rule W of R: in this case by proposition 13 we can add a jump
from c to W , this doesn’t create cycles and increases the order.

Otherwise W is not terminal; if this is the case, we show that there cannot be any strong switching path
from a link w′ in W to c. Let us suppose that there is a strong switching path r : 〈w′ . . . c〉 in R; now if r and r′

are disjoint by composing them we get a switching cycle intersecting W ; by correctness criterion, since w1, w2

break C and w1, w2 belong to W , W doesn’t intersect any switching cycle of C, and since C contains all the
switching cycles of R, we contradict the hypothesis that R is correct.

If r and r′ do intersect, let’s take the first point e starting from w′ and going down on r where r meets
C′ (if r doesn’t meet C′, this means that r and r′ intersect on the directed path from d in C′ to w1; then we
have a switching cycle intersecting W , contradicting correctness of R as above). The only interesting case is
if e is negative: by the fact that e is in a switching cycle where at least d is above w1, there exists a strong
switching path r′′ from e to w1, so we compose the subpath of r from w′ to e with r′′ and we get a switching
cycle intersecting W , contradicting correctness of R as above.

So there isn’t any strong switching path from w′ to c, then by proposition 13 we can add a jump from c to
W in R, and retrieve a J-proof net R′.

�

5.5.2 A saturated J-proof net is arborescent.

Lemma 3 (Arborisation) Let R be a J-proof net. If R is saturated then ≺R is arborescent.

Proof.
We prove that if ≺R is not arborescent, then there exists a negative and a positive link s.t. we can add a

jump between them which does not create cycles andmakes the order increase, the proof being just an adaption
to J-proof nets of the arborisation lemma of [DGF06].

If R contains some switching cycles, then we apply lemma 2 and we have done; so we can restrict ourselves
to the case where R doesn’t contain any switching cycle.

If ≺R is not arborescent, then in ≺R there exists a link a with two immediate predecessors b and c (they are
incomparable). Observe that b and c are immediately below a in Sk(R) and also in R, that a must be positive
and that b and c are two negative links which cannot depend from the same & rule, by condition coherence on
a.

We have two possibilities:



1. either b or c is terminal in R. Let assume that b is terminal; then c cannot be terminal ( by definition of
J-proof structure), and there is a positive link c′ which immediately precedes c. Then we can add a jump
between b and c′ (see fig 22).

a

b c

a

b c

c’

 

Figure 22: Case 1 in the proof of the arborisation lemma

2. Neither b or c are terminal in R. Each of them has an immediate positive predecessor, respectively b′ and
c′.

Now we want to prove that either we can add a jump from b′ to c, or we can add a jump from c′ to b.

Let’s suppose that we cannot add any jump in R from b′ to c; then by proposition 13 there is in R a strong
switching path r = 〈c, c′....b〉. If we cannot add a jump from c′ to b too, then there is a strong switching
path r′ = 〈b, b′...c〉 in R.

a

cb

c’

r’

b’

a

cb

c’ b’

 

a

cb

c’b’

r

Figure 23: Case 2 in the proof of the arborisation lemma, where the paths r, r′ are disjoint.

Assume that r and r′ are disjoint: we exhibit a switching cycle in R 〈c, c′...b, b′...c〉 by concatenation of r
and r′, contradicting the hypothesis that R has no switching cycles (see fig 23).

Assume that r and r′ are not disjoint. Let d be the first node (starting from b ) where r and r′ meets.
Observe that d must be negative (otherwise there would be a cycle). Each path uses one of the premises,
and the conclusion of d (hence the paths meet also in the node below d). From the fact that d is the first
point starting from b where r and r′ meet it follows that: (i) r′ enters in d using one of the switching
edges of d, and exits from its conclusion; (ii) each of r and r′ must use a different switching edge of d.
Then we distinguish two cases (see fig 24):

• r enters d from one of its switching edges; we build a switching cycle taking the sub path 〈b, ...., d〉
of r′ and the sub path 〈d, ...., b〉 of r.

• r enters d from the conclusion; then we build a switching cycle composing the sub path of r 〈c, ..., d〉
, the reversed sub path of r′ 〈d, ..., b〉 and the path 〈b, a, c〉.

�

Proof of Theorem 1 Proof. The left to right direction is trivial as usual; concerning the right to left
direction, let us consider a saturation R′ of R. By the arborisation lemma, ≺R′ is arborescent, so by proposition
9 R′ is sequentializable into a unique proof π. But then, by proposition 11, R too is sequentializable into π. �
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Figure 24: Case 2 in the proof of the arborisation lemma, where the paths r, r′ are not disjoint.

5.5.3 J-proof nets and Mix rule

The proof of sequentialization provided above, could be easily adjusted in order to characterize exactly the
J-proof nets whose sequentializations do not contain any occurence of the Mix rule. As usual in proof nets
syntax, this is done by properly introducing the notion of correction graph; we skip the proof, which does not
present any relevant difference w.r.t. the standard one (see [Gir87]).

Definition 24 (Correction graph) Given a J-proof net R, a switching s is the choice of a switching edge
for every & rule of R (and for every negative link which does not belong to a &-rule); a correction graph s(R)
is the graph obtained by erasing the switching edges of R not chosen by s.

Definition 25 (s-connected) A J-proof net R is s-connected if all its correction graphs are connected.

Theorem 2 Let R be a J-proof net which is s-connected; then R is sequentializable, and any proof π associated
with R does not make use of the Mix rule.

6 Cut elimination and semantics

In this section we study the dynamics of cut-reduction in J-proof structures.
First in subsection 6.1 we discuss about sequentialization in presence of cut-links.
Then in subsection 6.2 we define cut-elimination on J-proof structures. As in L-nets, reduction is performed

in parallel on each slice: so to reduce a J-proof structure R, we will decompose R in slices, perform reduction
separately on each of them, and then superpose all the cut free slices obtained in this way.

In subsection 6.3 we provide a denotational semantics of J-proof nets, using a variation of standard relational
semantics based on the notion of pointed set (i.e. a set A equipped with a special element called point of A).
The aim is to refine the relational model, in order to be able to semantically characterize sequential ordering,
which in our setting is represented by jumps ; as a matter of fact, jumps usually are not captured by relational
semantics.

Actually, our approach is inspired by [Bou04], where a step is made in the direction of developing a unified
framework for both static (sets, coherence spaces, etc) and dynamic (games) denotational semantics.

Finally, in 6.4 we solve the question, left opened in 6.1, of the stability of correctness under cut-reduction.

6.1 Cut and sequentialization

Unfortunately, we cannot straightforwardly extend our proof of sequentialization in presence of cut-links. The
problem relies in the definition of superposition of J-proof structures: as a matter of fact, superposing J-proof
structures in presence of cut links is quite difficult. This is not a novelty: actually, in the framework of sliced
polarized proof nets of [LTdF04], a similar problem is present, which makes hard to conciliate the presence of
cuts inside proof nets and sequentialization.

The way out is to consider only cut-free J-proof nets (for which we can prove sequentialization), compose
them using cut-links, and then reducing the J-proof net obtained until we reach the normal form (which is
cut-free, so that we can deal with it again).

The absence of “internal” cut links is not so restricting as it seems: as pointed out in [LTdF04], the “syn-
tactical” difference between considering or not “internal” cut links is the same as the “semantical” distinction
between “small steps“ and “big steps” operational semantics in computer science.



The central point of this argument is the preservation of the property of being sequentializable under cut
reduction; we prove this result in section 6.4 by using the injectivity property of pointed semantics with respect
to J-proof nets, that we state in subsection 6.3.2; actually, this strategy is the same used by Laurent and Tortora
de Falco for sliced polarized proof nets, using relational semantics.

6.2 Cut elimination

Now we define cut elimination on J-proof structures; we first begin by defining cut reduction for multiplicative
J-proof structures in subsection 6.2.1. In subsection 6.2.2 then we extend cut elimination to the general case.
In subsection 6.2.3 we prove that total J-proof structures are closed under cut-reduction, assuming a weaker
form of correctness (namely that all slices composing a J-proof structure are switching acyclic).

6.2.1 Cut elimination on J-proof structures: the multiplicative case

There are two kinds of cut-elimination steps (we denote by R R′ the relation “R reduces to R′”):

1. the +I∈N /−I∈N (where I = I) reduction step, which replaces the module β in R (depicted on top of Fig.
25) with the module γ (depicted on bottom of Fig. 25).

2. the +J∈N/−K∈N (where J 6= K) reduction step, which replaces R with the empty J-proof structure (see
Fig. 26).

Let R  R′; when a node a (resp. an edge l) of R′ comes from a (unique) node (resp. edge) ←−a (resp.
←−
l )

of R we say that ←−a (resp.
←−
l ) is the ancestor of a (resp. l) in R and that a (resp l) is a residue of ←−a (resp.

←−
l ) in R′. We denote sometimes the residues of a node b (resp. an edge r) by

−→
b (resp. −→r ).

Definition 26 (Correct multiplicative J-proof structure) A multiplicative J-proof structure is correct

iff it is switching acyclic.

Proposition 14 Let c be a cut link between a positive link a and a negative link b in R, such that for some

links a′, b′ of R, b′
+
−→ b and a

+
−→ a′; then if R R′ by reducing c with a +I∈N/−I∈N step, in R′ b′

+
−→ a′.

Proof. Straightforward from the definition of +I∈N /−I∈N step. �

With respect to the rewriting rules +I∈N /−I∈N , +K∈N/−J∈N , reduction enjoys the following properties:

+I∈N
−I∈N

⋆⋆

⋆⋆

Cut

Cut

Cut

Nn

N⊥
1

⊕I∈N (⊗i∈I(Ni))

NnN1N⊥
n

N⊥
1

N⊥
n

N1

&I∈N (Oi∈I (N
⊥
i ))

Figure 25: +I∈N /−I∈N cut reduction.



Theorem 3 (Preservation of correctness) Given a multiplicative J-proof structure R, if R is correct and
R R′, then R′ is correct.

Proof.
If the cut t to be reduced in R is reduced through a +K∈N /−J∈N step , the result is obvious. Otherwise, if

t is reduced through a +I∈N /−I∈N step, we proceed ad absurdum: we assume that there is a switching cycle
in R′, and we show that this contradicts the hypothesis that R is correct.

Now, if the cycle does not cross the module γ in R′, then the switching cycle is also in R and we are done.
Otherwise, it does cross γ: let us call c1, . . . , cn the cut links of R′ created by reducing t in R, ai being the

negative premise and bi being the positive premise of ci for i = 1, . . . , n; let us call f any negative link and g

any positive link in γ in R′ such that g jumps on f but ←−g does not jump on
←−
f in R.

The switching cycle may cross the module in different ways, using n new cuts and m new jumps created by
reducing t in R; we detail some relevant cases, showing that each of them brings to a contradiction.

1. Suppose the cycle crosses exactly one cut link ci of R
′ created by reducing t in R and no new jumps (so

n = 1 and m = 0); in this case, the cycle connects ai with bi with a path going outside the module γ in

R′. Then there is a switching cycle in R, obtained by choosing
←−
bi as a switching edge in R.

2. Suppose that the cycle crosses exactly two new cut links ci, cj of R′ created by reducing t in R and no
new jumps (so n = 2 and m = 0). Then we have two subcases:

• Suppose the cycle connects aj with bi and bj with ai (for j 6= i) with a path going outside the module
γ in R′; then we reason as in case 1, opportunely choosing a switching edge.

• Suppose the cycle connects ai with aj and bi with bj (for j 6= i) with a path going outside the module
γ in R′. Then it is easy to see that there is a switching cycle in R too, since ←−ai and

←−aj are connected
inside the module β in R.

If the cycle crosses more than two cut links of R′ created by reducing t in R and no new jumps (so n ≥ 2
and m = 0) the argument is completely analogous.

3. suppose the cycle does not cross any of the new cut links of R′ created by reducing t in R, but it does
cross one new created jump (so n = 0 and m = 1). In this case the cycle connects f with g outside the

module γ in R′. Then there is a switching path connecting ←−g with
←−
f outside the module β in R too,

and is easy to see that there is a switching cycle in R too (since ←−g and
←−
f are connected in the module β

in R). If the cycle crosses more than two new jumps created by reducing t in R and no new cut links (so
n = 0 and m ≥ 1) the argument is completely analogous.

4. suppose the cycle crosses at least one cut link ci of R
′ created by reducing t in R, and one new jump (so

n ≥ 1 and m = 1). In this case the cycle connects ai with f outside the module γ in R′. Then there

is a switching path connecting
←−
f with ←−ai outside the module β in R too, and is easy to see that there

is a switching cycle in R too (since
←−
f and ←−ai are connected in the module β in R). If the cycle crosses

more than two new jumps created by reducing t in R (so n ≥ 1 and m ≥ 1) the argument is completely
analogous.

In all cases, supposing that R′ contains a switching cycle implies that R contains a switching cycle, contra-
dicting the hypothesis that R is correct. So R′ is correct.

�

Theorem 4 (Strong normalization) For every correct multiplicative J-proof structure S, there is no infinite
sequences of reductions S  S1  S2 . . . Sn . . .

Proof.
Trivial by the fact that at each step the number of links decreases. �

Theorem 5 (Confluence) For every correct multiplicative J-proof structure S1, S2 and S3, such that S1  S2

and S1  S3, there is a slice S4, s.t. S2  S4 and S3  S4.

Proof.
It easily follows from confluence of standard multiplicative proof nets (see [Gir87]). �
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Figure 26: +K∈N /−J∈N cut reduction (with J 6= K).

6.2.2 Cut elimination on J-proof structures: the general case

Once defined reduction for multiplicative J-proof structures, reduction of a total J-proof structure R in the
general case follows these steps:

1. take the set of all the slices S1, . . . , Sn of R;

2. for each slice Si of R, reduce Si to reach its normal form S′
i:

3. take the J-prof structure R′ which is the superposition of S′
1, . . . , S

′
n.

One condition is necessary in order to well define reduction: the normal forms of the slices composing a
J-proof structure must be cut-free, otherwise it would be impossible to superpose them. For this purpose we
require that J-proof structures for being reduced satisfy a constraint called weakly correctness :

Definition 27 A J-proof structure is weakly correct when is total and all its slices are correct (that is switching
acyclic).

The fact that the normal form of a slice of a weakly correct J-proof structure is cut-free is a simple conse-
quence of Theorem 3.

Now we can formally define the normal form of a J-proof structure:

Definition 28 Let R be a weakly correct J-proof structure and {S1, . . . , Sn} be the set of the slices of R. If
S′
1, . . . , S

′
n are the cut-free slices obtained by reducing {S1, . . . , Sn} , we call normal form of R ( denoted by

[R]) the J-proof structure R′ which is the superposition of S′
1, . . . , S

′
n.

Example of cut elimination Let us consider the following J- proof structure R:

{1, 2}

{}

{3, 4}

{} {} {}

1 11 1

{1, 2} {3, 4}

{} {} {} {}

⊥ ⊥ ⊥ ⊥

{}

1

{5}

{6, 7}

↑ 15

{1, 2}

{}

{3, 4}

{} {} {}

1 11 1

cut⊕(⊗(⊥1 ,⊥2), ⊗(⊥3,⊥4)) &(O(11, 12), O(13, 14))

&(O(11, 12), O(13, 14))

⊗(↑ (15)6,&(O(11 , 12), O(13, 14))7)

To reduce it to normal form we consider each of the four slices of R.
The slice S1:



{1, 2}

{} {}

⊥ ⊥

{}

1

{5}

{6, 7}

↑ 15

{1, 2}

{} {}

1 1

cut

{}

{3, 4}

{}

1 1

⊗(↑ (15)6,&(O(11 , 12), O(13, 14))7)

⊕(⊗(⊥1, ⊥2), ⊗(⊥3,⊥4)) &(O(11, 12), O(13, 14))

&(O(11, 12), O(13, 14))

and the slice S2:

{3, 4}

{} {}

⊥ ⊥

{}

1

{5}

{6, 7}

↑ 15

{}

{3, 4}

{}

1 1

cut

{1, 2}

{} {}

1 1

&(O(11 , 12), O(13, 14))

⊗(↑ (15)6,&(O(11 , 12), O(13, 14))7)

⊕(⊗(⊥1, ⊥2), ⊗(⊥3, ⊥4)) &(O(11, 12), O(13, 14))

both reduce to the empty slice through a +K∈N /−J∈N step.
The slice S3:

{1, 2}

{} {}

⊥ ⊥

{}

1

{5}

{6, 7}

↑ 15

{1, 2}

{} {}

1 1

cut

{1, 2}

{} {}

1 1

⊗(↑ (15)6,&(O(11, 12), O(13, 14))7)

⊕(⊗(⊥1,⊥2), ⊗(⊥3, ⊥4)) &(O(11, 12), O(13, 14))

&(O(11, 12), O(13, 14))

reduces to the slice S′
3:



{}

1

{5}

{6, 7}

↑ 15

{1, 2}

{} {}

1 1

⊗(↑ (15)6,&(O(11, 12), O(13, 14))7)

&(O(11 , 12), O(13, 14))

the slice S4:

{3, 4}

{} {}

⊥ ⊥

{}

1

{5}

{6, 7}

↑ 15

{}

{3, 4}

{}

1 1

cut

{}

{3, 4}

{}

1 1

&(O(11, 12), O(13, 14))

⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4)) &(O(11, 12), O(13 , 14))

⊗(↑ (15)6,&(O(11, 12), O(13, 14))7)

reduces to the slice S′
4:

{}

1

{5}

{6, 7}

↑ 15

{}

{3, 4}

{}

1 1

&(O(11, 12), O(13, 14))

⊗(↑ (15)6,&(O(11 , 12), O(13, 14))7)

Now if we consider the superposition of the normal forms of S1, S2, S3, S4 we get the J-proof structure R′

below, which is the normal form of R:



{}

1

{5}

{6, 7}

↑ 15

{1, 2}

{}

{3, 4}

{} {} {}

1 11 1

&(O(11, 12), O(13, 14))

⊗(↑ (15)6,&(O(11 , 12), O(13, 14))7)

6.2.3 Preservation of weakly correctness

Now we want to prove that the normal form [R] of a weakly correct J-proof structure R is still a weakly correct
J-proof structure; the delicate part is proving that [R] is still a J-proof structure.

Given a link a of a J-proof structure R, we say that a belongs to the right (resp. left) branch of a cut-link c
iff there exists a directed path from a to c, which does not use jumps, entering c by its right (resp. left) port.

Given a J-proof structure R and a link a of R, we say that a is hidden by a cut link c (or simply hidden) if
a belongs to a branch of a cut link c of R, we call it visible otherwise.

A slice is persistent if it does not reduce itself to the empty slice.
If S is a persistent slice, and a is a link hidden by some cut-link c of S, the opposite link of a is the link b

in the opposite branch of c w.r.t. a, such that there exists a slice S′ obtained by a sequence of reduction from
S where the conclusion of a and the conclusion of b are premises of the same cut link c′ of S′.

Remark 4 Consider an hidden negative link a of a persistent slice S and its opposite link b; a and b belongs

to two different branches of the same cut-link c. Now if there are two links a′, b′ in S such that a′
+
−→ a and

b
+
−→ b′ and a′, b′ are not hidden by c, then by definition of +I∈N/−I∈N step, by proposition 14 and by definition

of opposite link, there is a slice S′ obtained by reducing S such that in S′ a′
+
−→ b′.

Lemma 4 Let S1, S2 be two persistent slices of a weakly correct J-proof structure R. Let a and b be a pair of

positive links of R, such that a
+
−→ w in S1 and b

+
−→ y in S2, where w, y are two negative links of R which

form an additive pair. Then there exists a finite sequence s = 〈(w1, y1), . . . , (wn, yn)〉 of additive pairs of R,
s.t.:

1. w1 = w, y1 = y;

2. for each i 6= n, wi, yi are hidden, their respectively opposite links a′, b′ are contracted in R and a′
+
−→ wi+1

in S1, b
′ +
−→ yi+1 in S2;

3. wn, yn are visible.

Proof. We proceed by induction on the lenght n of the sequence s. If n = 1, trivially w, y are visible.
Otherwise, wi, yi are hidden; then by persistence of S1, S2 the opposite link a′ of wi in S1 and the opposite link
b′ of yi in S2 must be two different contracted links of R (otherwise one of S1, S2 should reduce to the empty
slice). But then by contraction condition on R, there exists a negative link w′ in S′

1 (resp. a negative link y′

in S′
2) such that a

+
−→ w′ and b′

+
−→ y′ and w′, y′ form an additive pair in R; we take w′, y′ as wi+1, yi+1 in s.

Finiteness of s is a consequence of finiteness and correctness of S1, S2. �

Lemma 5 Let S1, S2 be two persistent slices of a weakly correct J-proof structure R. Let a and b be a pair of
positive links of S1, S2 respectively, such that a, b are two different occurences of the same visible link c of R

and c
+
−→ d for some hidden link d of R (so a

+
−→ d in S1, b

+
−→ d in S2). Then there exists a maximal finite

sequence of links s :〈c1, d1〉, . . . 〈cn, dn〉 where ci is a positive link of R, di is an hidden negative link of R, such
that:

• c1 = c (resp d1 = d);

• ci
+
−→ di in R;



• for each i, the opposite positive link of di in S1 (resp. the opposite positive link of di in S2) are both
occurences of ci+1 in S1, S2, and di, di+1 are not hidden by the same cut link c of R.

Proof. The proof is a simple induction on the lenght n of s. Finiteness of s is a consequence of weak correctness
and finiteness of R, and of the observation which follows. Given the final element 〈cn, dn〉 of s, by definition of
s and by maximality of s it must be that dn is hidden by a cut link m of R, and the opposite positive link a′ of
dn in S1 (resp. the opposite positive link b′ of dn in S2) are either occurences of two different contracted links
of R, or they are occurences of the same link c′ of R. In the latter case, there is not any negative link d′ hidden

by a cut link m′ 6= m such that c′
+
−→ d′ in R in R.

�

Proposition 15 Given a weakly correct J-proof structure R and a normal form [R] of R, [R] is a weakly correct
J-proof structure.

Proof.
We first have to check that [R] is a J-proof structure; by proposition 7, it is enough to check that the

compatibility condition of definition 18 is respected.
Consider the multiplicative, cut-free J-proof structures S′

j, S
′
k obtained by reducing two different persistent

slices Sj, Sk of R. Now let us suppose that there is a positive link a ∈ S′
j and a positive link b ∈ S′

k such that
a and b are siblings; a, b are clearly visible in Sj , Sk. We have to prove that there exist two negative links w′

in S′
j , w

′′ in S′
k, such that a

+
−→ w′ in S′

j , b
+
−→ w′′ in S′

k and w′, w′′ are siblings in S′
j, S

′
k. Now we have the

following cases:

1. Suppose that a
+
−→ wj in Sj and b

+
−→ wk in Sk, where wj , wk are two negative links which forms an

additive pair in R; then by lemma 4 there exist a finite sequence s = 〈(wj1 , wk1 ), . . . (wjn , wkn
)〉 of additive

pairs of R. We remark that every two different hidden elements (wji , wki
), (wjl , wkl

) of s are hidden by
two different cut links of R (by weakly correctness of R); the final pair wjn , wkn

of s is visible with wjn

belonging to Sj (resp wkn
belonging to Sk). By repeated applications of remark 4 and by theorem 5 it

follows that in S′
j a

+
−→ wjn ; similarly we can found that b

+
−→ wkn

in S′
k. We have two subcases:

(a) if wjn , wkn
are not above any cut link of R, then wjn , wkn

must be sibling in S′
j , S

′
k, and they form

an additive pair in [R] too. But then S′
j, S

′
k satisfy the compatibility condition.

(b) otherwise, there exists a negative hidden link d of R s.t. c
+
−→ d for the parent c of wjn , wkn

in R.
Since both Sj , Sk contains c, we can apply lemma 5 to obtain a maximal sequence 〈c1, d1〉, . . . 〈cn, dn〉
of links of R, as descripted in the statement of lemma 5. Let us consider the last element 〈cn, dn〉 of
the sequence. There are two possibilities:

i. If the opposite positive link d′ of dn in Sj and the opposite positive link d′′ of dn in Sk are two
occurences of the same link of R, then it is straightforward that after reduction the view of c in
S′
j and the view of c in S′

k will stay the same, so wjn , wkn
must be sibling in S′

j , S
′
k, and they

form an additive pair in [R], q.e.d.

ii. Otherwise, the opposite positive link d′ of dn in Sj and the opposite positive link d′′ of dn in Sk

are two different contracted links of R. In this case after reduction the view of c in S′
j and the

view of c in S′
k may differ, so wjn , wkn

could be not sibling in S′
j , S

′
k. Then we search for two new

negative sibling links: since d′ and d′′ are two different contracted links of R, then by contraction
condition on R, there exists a negative link w′′

j in Sj and a negative link w′′
k in Sk such that

w′′
j , w

′′
k form an additive pair in R and d′

+
−→ w′′

j in Sj (resp. d′′
+
−→ w′′

k in Sk). By repeated

applications of remark 4 and by theorem 5 it follows that in S′
j a

+
−→ w′′

j and that b
+
−→ w′′

k in
S′
k. If w′′

j , w
′′
k are not above any cut link of R, they must be sibling in S′

j , S
′
k; but then S′

j , S
′
k

satisfy the compatibility condition, q.e.d. Otherwise, we replicate on w′′
j , w

′′
k the same procedure

from the beginning of point 1. (replacing wj , wk with w′′
j , w

′′
k and a, b with d′, d′′), iterating the

applications of lemma 4 and lemma 5 until by finiteness of R we eventually found a proper visible
additive pair of R.

2. Suppose that there is no additive pair w1, w2 of R such that a
+
−→ w1 and b

+
−→ w2, then a, b cannot

be contracted in R (by contraction condition); so a, b must be two different occurrences of the same
link c of R in Sj , Sk. Then we can apply lemma 5 to obtain a sequence 〈c1, d1〉, . . . 〈cn, dn〉 of link of R,



as descripted in the statement of lemma 5. Such a sequence must terminate with an element 〈cn, dn〉
such that the opposite positive link d′ of dn in Sj and the opposite positive link d′′ of dn in Sk are two
different contracted links of R (otherwise, a would be sharing equivalent to b in S′

j , S
′
k, contradicting the

assumption that a, b are sibling in S′
j , S

′
k). But then by contraction condition on R there exists a negative

link w′′
j in Sj and a negative link w′′

k in Sk such that w′′
j , w

′′
k form an additive pair in R and d′

+
−→ w′′

j in

Sj (resp. d′′
+
−→ w′′

k in Sk). By remark 4 and theorem 5 it follows that in S′
j a

+
−→ w′′

j and that b
+
−→ w′′

k

in S′
k. Now we replicate on w′′

j , w
′′
k the same procedure from the beginning of point 1. (replacing wj , wk

with w′′
j , w

′′
k and a, b with d′, d′′), iterating the applications of lemma 4 and lemma 5 until by finiteness of

R we eventually found a proper visible additive pair of R.

Once proved that [R] is a J-proof structure, it remains to check that is weakly correct: switching acyclicity
slice by slice is trivially preserved, due to theorem 3. Preservation of totality is a simple consequence of the
following observation: take a non-persistent slice S of a J-proof structure R. Cut-reduction of S must end with
a +K∈N /−J∈N , with K 6= J . Then by totality of R there must exist a slice S′ of R such that:

• For all visible &-rules W of R, S′ contains the same element w as S;

• For all hidden &-rules W ′ of R, if an element w′ of W ′ chosen by S is the “active” link of a +K∈N/−J∈N

step reducing S to the empty slice, we choose in S′ another element w′′ of W ′ which gives rise instead to
a +I∈N/−I∈N step during the reduction of S′ (such an element exists by totality of R).

Such a slice S′ is clearly persistent, so for every non-persistent slice S of R there exists a persistent slice S′

of R which makes the same choices of elements as S on the visible &-rules of R. This is enough to conclude the
totality of [R].

�

Theorem 6 (Existence of a normal form) Given a weakly correct J-proof structure R, there exists a weakly
correct J-proof structure R′ such that R′ = [R].

Proof.
The proof is an easy consequence of theorem 4. �

Theorem 7 (Confluence) If R, R′, R′′ are weakly correct J-proof structures, such that R′, R′′ are normal
forms of R, then R′ = R′′.

Proof. Trivial, from theorem 5. �

6.3 Semantics

We focus now on semantics, following these steps: in subsection 6.3.1 we define the interpretation of a J-
proof structure in pointed sets using the notion of experiment and we prove that semantics is stable under
cut-reduction. Then in subsection 6.3.2, we prove that pointed sets semantics is injective with respect to total
J-proof structures, that is for any two total J-proof structures R,R′ , if R and R′ have the same interpretation,
then R = R′.

Experiments have been introduced by Girard in [Gir87], and extensively studied in [TdF00] by Tortora de
Falco, as a way to compute the interpretation of a proof net without resorting to sequentialization. Semantic
injectivity has been studied in the setting of linear logic mainly by Tortora (see [TdF00] and Pagani in [Pag06];
however, it is a traditional question in the denotational semantics of λ-calculus, and it is deeply related with the
one of syntactical separability stated in the Böhm theorem for pure λ-calculus ([Boh68]); furthermore, syntactical
separability is also one of the main properties in ludics (both of designs, see [Gir01], and more generally of L-nets,
see [FM05]).

By now we will denote sets by A,B,C, . . . and elements of a set by a, b, c, . . ..
A pointed set A∗ is given by a set A∪ {0A∗} where 0A∗ is a distinguished object which does not belong to A;

this object is called the point of A∗.
The pointed product A1⊛. . .⊛An of n sets A1, . . . ,An is the pointed set A1×. . .×An ∪{0A ⊛ An

} whose elements
are the tuples of the cartesian product A1× . . .×An together with a distinguished fresh object 0A1 ⊛...⊛ An

which
does not belong to A1 × . . .× An.

By A1 ⊎ . . . ⊎ An we denote the disjoint union of A1, . . . ,An.
In general, a formula is interpreted by a disjoint union (indexed by ramifications) of pointed products of

pointed sets.
More formally, the interpretation F of a formula F of HS is defined in the following way:



• a positive formula ⊕I∈N (⊗i∈I(Ni)) is interpreted by the set ⊎I∈N (⊛i∈I(N
∗
i));

• a negative formula &I∈N (Oi∈I(Pi)) is interpreted by the set ⊎I∈N (⊛i∈I(P
∗
i)).

6.3.1 Experiments

Given a J-proof structure R with conclusions C1, . . . , Cn, we define the interpretation JRK of R as a subset of
C
∗
1 ⊛ · · ·⊛ C

∗
n, which we define using the notion of experiment.

In the sequel, for simplicity’s sake and when it is clear from the context, given a pointed set A
∗ =

⊎I∈N (⊛i∈I(A
∗
i)) which interprets a formula &I∈N (Oi∈I(Ai)) (resp. a formula ⊕I∈N (⊗i∈I(Ai))), we will denote

the elements 〈I, 0⊛i∈I (A∗
i)〉 (for I ∈ N ) of A∗, simply by 0A∗ or by 0.

Definition 29 (Experiments) Let S be a multiplicative J-proof structure and e an application associating
with every edge a of type A of S an element of A∗; e is an experiment of S when the following conditions hold:

• if x, y are premises of a cut link with premises x and y, then e(x) = e(y).

• Suppose x is the conclusion of a negative link −I∈N with premises x1 of type P1, . . . , xn of type Pn. If
for all i ∈ {1, . . . , n} e(xi) = 0P∗

i
, then e(x) =< I,< 0P∗

1
, . . . , 0P∗

n
>> or e(x) =< I, 0P∗

1⊛...⊛P∗
n
>.

Otherwise e(x) =< I,< a1, . . . , an >>, where e(x1) = a1, . . . , e(xn) = an.

• Suppose x is the conclusion of a positive link +I∈N with premises x1 of type N1, . . . , xn of type Nn. If
for all i ∈ {1, . . . , n} e(xi) = 0N∗

i
, then e(x) =< I,< 0N∗

1
, . . . , 0N∗

n
>> or e(x) =< I, 0N∗

1⊛...⊛N∗
n
>.

Otherwise e(x) =< I,< a1, . . . , an >>, where e(x1) = a1, . . . , e(xn) = an.

• If a is a positive link with conclusion x of type A and b is a negative link with conclusion y of type B, and
there is a jump between b and a, then if e(x) 6= 0A∗ , e(y) 6= 0B∗.

If x1, . . . , xn of type respectively A1, . . . , An are the conclusions of S and e is an experiment of S such that
e(xi) = ai then we shall say that < a1, . . . , an > is the conclusion or the result of the experiment e of S, and
we will denote it by |e|. The set of the results of all experiments on S is the interpretation JSK of S; in case S
is empty , then its interpretation is the empty set.

Let R be a total J-proof structure and {S1, . . . , Sn} the set of slices of R; the interpretation JRK of R is the
union of JS1K, . . . , JSnK.

In figure 27, 28 we provide two examples of experiments on the slices of the J-proof structure in fig. 11.

({5}, <<>>)

<>
01 01

0⊥
0⊥

({3, 4}, 01⊛1)

({6, 7}, < ({5}, <<>>), ({3, 4}, 01⊛1) >)

({3, 4}, 0⊥⊛⊥)

{3, 4}{3, 4}

{} {} {} {}

1 1
⊥ ⊥

⊕(⊗(⊥1 ,⊥2), ⊗(⊥3,⊥4))

&(O(11 , 12), O(13, 14))

{}

{5}

{6, 7}

↑ 15

1

⊗(↑ (15)6,&(O(11, 12), O(13, 14))7)

Figure 27: example of experiment

Remark 5 We can consider experiments as a way to travel bottom-up on a J-proof structure R looking only
at its semantics; starting from an element of JRK, then it is possible to rebuild bottom-up R itself. Observe
that the “ 0” points introduced in pointed sets semantics, can be used in experiments as a sort of semantical
“traffic light”, forbidding bottom-up the access to a whole portion of R; in this way it becomes possible to recover
information about the sequential order contained in R.

Proposition 16 If S is a correct multiplicative J-proof structure, and S  S′, then JSK = JS′K.



{1, 2}{1, 2}

{} {} {} {}

1 1 ⊥ ⊥

⊕(⊗(⊥1,⊥2),⊗(⊥3,⊥4))

&(O(11, 12),O(13, 14))

{}

{5}

{6, 7}

<>01

({1, 2}, < 0⊥, <>>)

⊗(↑ (15)6,&(O(11, 12),O(13, 14))7)

({1, 2}, < 01, 01 >)

0⊥

({5}, <<>>)

↑ 15

<>

1
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Figure 28: example of experiment

Proof. We must show that for every experiment e on S′, there is an experiment e′ of S with the same result.
Having as reference fig. 25 let us suppose that S  S′ with a +I∈N/−I∈N step reducing a cut in S between

a positive link a with conclusion x and premises x1 of type N1, . . . , xn of type Nn, and a negative link b with
conclusion y and premises y1 of type P1, . . . , yn of type Pn; we denote the edges of type P1, . . . , Pn (resp.
N1, . . . , Nn) by y1, . . . , yn (resp. x1, . . . , xn). Suppose that a positive link c of typed conclusion z jumps on b,
and that a jumps on a negative link d with conclusion w.

The delicate part is the one dealing with jumps, the rest of the proof trivially following from the preservation
of relational semantics under cut reduction (see for instance [Gir87]).

Let us consider an experiment e of S′. The relevant cases to check are the following:

• if in S′ e(w) = 0, then e(z) = 0, e(y1) = 0, . . . , e(yn) = 0 by definition of experiment. We can then build
an experiment e′ of S with the same values on the corresponding edges of S by assigning e′(x) = 0 and
e′(y) = 0;

• suppose in S′ e(w) 6= 0, e(z) 6= 0 and e(y1) = 0, . . . , e(yn) = 0. We can then build an experiment e′

of S with the same values on the corresponding edges of S by assigning e′(y) =< 0P0
1
, . . . , 0P0

n
> and

e′(x) =< 0N∗
1
, . . . , 0N∗

n
>.

�

Proposition 17 If R,R′ are weakly correct J-proof structures, such that R′ = [R], then JRK = JR′K.

Proof. The proof is a consequence of proposition 16. �

6.3.2 Injectivity

We first prove injectivity with respect to multiplicative J-proof structures, then we extend the result to the
general case.

Multiplicative J-proof structures and injectivity.

Definition 30 (Relational result) Let S be a multiplicative J-proof structure and |e| the result of an experi-
ment on S; |e| is relational if it does not contain any occurrence of the element 0.

The set of relational results of experiments on a multiplicative J-proof structure S is called the relational
part of JSK; we will denote it by JSKRel.

Remark 6 Given two multiplicative J-proof structures S, S′, if JSK = JS′K then JSKRel = JS′KRel.

Remark 7 Let S be a multiplicative J-proof structure and e, e′ be two experiments of S. If |e| = |e′|, then
e = e′; in other words an experiment is completely determined by its result.



Remark 8 Given a multiplicative J-proof structure S, there exists a unique relational experiment e on S. In
fact the relational part JSKRel of JSK is a singleton, since the procedure of bulding an experiment is completely
deterministic, provided it never assign the label 0 to any edges.

Given a slice S, we denote by S− the graph obtained by erasing all the jumps of S.

Lemma 6 Let S, S′ be two multiplicative cut-free J-proof structures with the same conclusions; JSKRel = JS′KRel

iff S− = S′−.

Proof.
The proof can be obtained by a straightforward adaptation of the proof of injectivity of relational semantics

for MLL proof nets given by Tortora de Falco in [TdF03a]. Such a property implies that the unique relational
experiment of S (resp. S′) allows to completely reconstruct S (resp S′), up to jumps.

�

Lemma 7 Given a multiplicative J-proof structure S, a positive link a with typed conclusion x and a negative
link b with typed conclusion y, b ≺S a (that is, b precedes a in the order associated with S as a d.a.g.) iff for all
experiments e of R, e(x) 6= 0⇒ e(y) 6= 0.

Proof. The proof is an easy consequence of definition of experiment. �

Theorem 8 (Injectivity) Let S and S′ be two cut-free multiplicative J-proof structures with the same conclu-
sions. JSK = JS′K iff S = S′.

Proof.
The right to left direction is trivial.
Concerning the left to right direction, JSK = JS′K, so JSKRel = JS′KRel.
Since JSKRel = JS′KRel, by lemma 6, S− = S′−.
Now, by remark 7 , given an element γ of JSK (resp. JS′K) there exists a unique experiment e of S (resp. of

S′) such that |e| = γ.
Now, we build from S− (resp. S′−) a multiplicative J-proof structure SJ (resp. S′J) in the following way;

for any positive link a of typed conclusion x and for any negative link b of typed conclusion y, we check that
for every element γ of JSK, given the unique experiment e of S (resp. S′) induced by γ, e(x) 6= 0 ⇒ e(y) 6= 0;
if it is the case and a is not above b in S− (resp. in S′−) we make a jump on b. Using lemma 7, we can easily
conclude that SJ = S, and S′J = S′ (up to transitive jumps); since JSK = JS′K and S− = S′−, S = S′.

�

Proposition 18 Let S be a multiplicative cut free J-proof structure and S′ a multiplicative cut-free J-proof
structure with the same conclusions as S. S′ can be obtained by adding jumps on S iff JSKRel = JS′KRel and
JS′K ⊆ JSK.

Proof.
The left to right direction is trivial.
Concerning the right to left direction, by lemma 6, S− = S′−. Since JS′K ⊆ JSK, using lemma 7 we can say

that all the jumps of S are jumps of S′. In order to obtain S, we just add to S all the jumps of S′ which are
not jumps of S; in this way we obtain a J-proof structure SJ = S′.

�

Injectivity, general case. Given a J-proof structure R with conclusions Γ, an index assignment of R is a
function φ associating with any formula of type &I∈N (Oi∈I(Pi)) occurring in Γ a J ∈ N .

It is easy to check that if R is total, to any index assignment φ there is a unique slice Sφ of R, and to each
slice of R there is (at least one) index assignment φ.

Let us consider an element < J, δ > of ⊎I∈N (⊛i∈I(P
∗
i)), interpretation of a formula &I∈N (Oi∈I(Pi)), and an

element γ of the interpretation JRK of a total J-proof structure R with conclusions Γ; we say that γ is compatible
with an index assignment φ on Γ iff for any occurrence of < J, δ > in γ, on the corresponding occurrence of
&I∈N (Oi∈I(Pi)) in Γ, φ(&I∈N (Oi∈I(Pi))) = J .



Proposition 19 Given a total J-proof structure R, an element γ of JRK is compatible with an index assignment
φ, iff γ is the result of an experiment on Sφ.

Proof. Suppose γ is not the result of an experiment on Sφ; then it is the result of an experiment on another
slice S′ of R, which differs from Sφ for at least one component of a & rule. But then it is easy to observe that
γ cannot be compatible with S′. The other direction is trivial. �

Proposition 20 Given a total J-proof structure R and an index assignment φ, JSφK = {γ ∈ JRK|γ is compatible
with φ}.

Proof. Easy consequence of proposition 19. �

Theorem 9 (Injectivity) Let R and R′ be two cut-free total J-proof structures with the same conclusions Γ.
JRK = JR′K iff R = R′.

Proof.
The right to left direction is trivial.
Concerning the left to right direction, let us take the slice Sφ of R corresponding to the index assignment φ

of Γ, and suppose Sφ is not a slice of R′. By proposition 20 JSφK = {γ ∈ JRK|γ is compatible with φ}. Since
JRK = JR′K, {γ ∈ JRK|γ is compatible with φ} = {γ ∈ JR′K|γ is compatible with φ}; then for the unique slice S′φ

of R′ which corresponds to φ by proposition 20 JS′φK = {γ ∈ JR′K|γ is compatible with φ}, and JS′φK = JSφK;
but then by theorem 8 S′φ = Sφ so Sφ is a slice of R′, contradicting our hypothesis that Sφ was not a slice of
R′.

�

Proposition 21 Let R be a cut-free total J-proof structure and R′ a cut-free total J-proof structure with the
same conclusions as R. R′ is obtained by adding jumps on R iff JRKRel = JR′KRel and JR′K ⊆ JRK.

Proof.
The left to right direction is trivial.
Concerning the right to left direction, we prove that for every slice S of R there exists a slice S′ of R′ such

that S′ is obtained from S by adding jumps.
Let us take the slice Sφ of R corresponding to the index assignment φ of Γ, and suppose that for no slices

S′ of R′, S′ is obtained by adding jumps on Sφ). By proposition 20 JSφK = {γ ∈ JRK|γ is compatible with φ},
and JSφKRel = {γ ∈ JRKRel|γ is compatible with φ}.

Since JRKRel = JR′KRel, then {γ ∈ JRKRel|γ is compatible with φ} = {γ ∈ JR′KRel|γ is compatible with φ}
and since JRK ⊇ JR′K, {γ ∈ JRK|γ is compatible with φ} ⊇ {γ ∈ JR′K|γ is compatible with φ}; then for the
unique slice S′φ of R′ which corresponds to φ by proposition 20 JS′φK = {γ ∈ JR′K|γ is compatible with φ},
and JS′φKRel = {γ ∈ JR′KRel|γ is compatible with φ}; so JS′φKRel = JSφKRel, and JS′φK ⊆ JSφK; but then by
proposition 18 S′φ is obtained by adding jumps on Sφ), contradicting our hypothesis that for no slices S′ of R′,
S′ is obtained by adding jumps on Sφ).

Similarly, we can prove that for every slice S′ of R′ there exists a slice S of R such that S′ is obtained by
adding jumps on S; but then it is immediate that R′ can be obtained by adding jumps on R.

�

6.4 Correctness criterion is stable under reduction

Definition 31 Given two J-proof structures R1, R2 with conclusions respectively Γ, P and ∆, P⊥, the compo-

sition of R1, R2 is the J-proof structure with conclusion Γ,∆ obtained by connecting R1, R2 through a cut-link
with premises P, P⊥.

Remark 9 If R1, R2 are sequentializable then their composition R is sequentializable.

Proposition 22 Let R be the composition of two arborescent, weakly correct J-proof structures R1, R2; then
the normal form of R is arborescent.

Proof. The proof is a simple consequence of Proposition 14 and of the fact that the operation of superposition
of J-proof structures preserves arborescence (as it can be easily verified). �



Proposition 23 Let R1, R2 be two sequentializable cut-free J-proof structures, and R be their composition. The
normal form [R] of R is sequentializable.

Proof.
Since R1, R2 are sequentializable they are J-proof nets by Theorem 1. Then we consider two saturations

R′
1, R

′
2 of resp. R1, R2; they are arborescent by the arborisation lemma. We take their composition R′. Now we

reduce R to its normal form R0 and R′ to its normal form R′
0. We show that the following diagram commutes

(where vertical edges represents the addition of jumps, and horizontal edges stands for normalization).

R −−−−→ R0




y





y

R′ −−−−→ R′
0

Now by proposition 21, JR′K ⊆ JRK; by Proposition 17 JRK = JR0K and JR′K = JR′
0K, so JR′

0K ⊆ JR0K.
By Proposition 21 R′

0 is obtained by adding jumps on R0 and by Proposition 22 R′
0 is arborescent; So R′

0 is
sequentializable by Proposition 9 and R0 is sequentializable by Proposition 11.

�

Theorem 10 Let R1, R2 be two cut-free J-proof nets, and R be their composition. The normal form [R] of R
is a J-proof net.

Proof. A simple consequence of Proposition 23 and Theorem 1. �

7 Are J-proof nets canonical objects?

So far, we have defined a syntax placed somehow in-between focusing, hypersequentialized proofs and proof
nets, and we proved that the objects of such syntax have a good computational behaviour. We also proved
that we can characterize hypersequentialized proofs in our setting as saturated J-proof nets, that is objects
containing a maximal amount of sequential information. A natural question is then the following: if J-proof
nets with “maximal” sequentiality correspond to HS proofs, what is the correspondent of a J-proof net with
“minimal” sequentiality?

In this section we will try to answer to this question. First, in subsection 7.1 we will precisely define the notion
of parallel J-proof net and we will consider if such an object can be considered canonical ; then in subsection
7.2 we will refine our analysis of parallel J-proof nets through the notion of monomiality, introduced by Girard
in [Gir96]. Finally, in subsection 7.3 we will discuss the relation between J-proof nets and multifocalization (see
[CMS08]). For a thorough comparison between J-proof nets and polarized proof nets (see [Lau02]) we refer
instead to [Gia].

7.1 Parallel J-proof nets

Let us consider the following order relation on J- proof nets: given two J-proof nets R,R′ we say that R is more
sequential than R′ (denoted by R′ ≪ R) if R can be obtained from R′ by adding jumps.

It is easy to see that the relation ≪ is a partial order on the set of J-proof nets, whose maximal elements
are saturated J-proof nets; we call the mimal elements of the order parallel J-proof nets, defined as follows:

Definition 32 A parallel J-proof net is a J-proof net R such that, given any other J-proof net R′, cannot be
obtained by adding jumps on R′.

Given two J-proof nets R1, R2, we say that R1 is jump-permutable to R2 (denoted R1 ≈ R2) iff, for some
parallel J-proof net R, R≪ R1 and R≪ R2; informally R1 ≈ R2 if R2 can be obtained from R1 by “permutation
of jumps”, namely erasing jumps from R1 to get R and then adding jumps to R to get R2.

Given a parallel J-proof net R let us consider the set of J-proof nets E = {R′|R≪ R′}, that is the set of all
J-proof nets that can be obtained from R by adding jumps.

We want to know if :

1. the relation ≈ is an equivalence relation;

2. E can be considered an “equivalence class” for ≈;
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{}{}

{2}{1}

Figure 29: a parallel J-proof net R1

3. R can be considered a “canonical” representative of the J-proof nets in E.

A minimal requirement to satisfy these conditions would be the following: given any two parallel J-proof
nets R1, R2, there must not be a J-proof net R3 such that R1 ≪ R3 and R2 ≪ R3. Unfortunately, this is not
the case, as we can see in the following example.

Let us consider the parallel J-proof nets R1, R2 resp. in fig. 29, 30.
Both R1, R2 are parallel: we cannot remove any jump from them without violating the contraction condition.
The saturated J-proof net R3 in fig. 31 can be obtained by adding jumps both on R1, R2, so R1 ≪ R3

and R2 ≪ R3, but R1 and R2 are not comparable with respect to ≪. Moreover, since R3 is saturated, it
corresponds to an HS proof; so we can say that parallel J-proof nets fail to provide canonical representatives
w.r.t HS proofs.

7.2 J-proof nets and monomiality

Let us try to clarify the reason behind the presence of two different J-proof nets representing the same HS
proof with an example. In this example we will resort to boolean weights, a tool first introduced by Girard in
[Gir96] to study the dependency relation on the links of a proof net induced by the presence of additives.

Let us consider the two J-proof nets R1, R2 above. We can characterize the dependencies between the links
and the &-rules in R1, R2 in the following way: first we assign a boolean variable, p (resp q) to the leftmost
(resp. rightmost) &-rule.

Then we label the links with boolean weights, in such a way that if a link a depends from the left component
of the leftmost (resp. rightmost) &-rule then its weight contains the boolean variable p (resp. q); if instead a
depends from the right component of the leftmost (resp. rightmost) &-rule then its weight contains the negation
p̄ (resp. q̄) of the boolean variable p (resp. q). Assigning a value among 1, 0 to each of the boolean variable
p, q and erasing the links whose weight is equal to 0 yields a slice of R1 (resp. R2). In fig 32, 33 we represent
the J-proof nets R1, R2 labelled with boolean weights: we omit jumps, since we can retrieve them by looking
at dependencies induced by the weights of links.

We can observe that all weights labelling R1, R2 are monomials4. Now we know from [HVG03] that express-
ing additives dependencies trough monomials it is not enough to provide a unique canonical representative for
sequent calculus proofs equivalent modulo permutation of rules; this explains why there cannot be a J-proof
net ”quotienting” R1, R2. Such a J-proof net should satisfy the non-monomial labelling provided in fig 34; but
if we try to add the jumps in a way to satisfy the dependency relations induced by the non-monomial weights,
we get the structure R represented in fig. 29 which does not satisfy the contraction condition.

It is worth noticing that each evaluation of the boolean weights in R, produce nevertheless a slice which is
actually a multiplicative J-proof structure. An interesting point to develop (which we postpone to future work)

4Given a proper weight algebra (which takes into account the possible presence of n-ary &-rules), this observation is easily
generalized to all J-proof structures; we left the details to the reader.
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Figure 30: a parallel J-proof net R2
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↓ (&(13, 14)6)

Figure 31: a saturated J-proof net R3, which is obtained by adding jumps on R1, R2

should be to reformulate the contraction condition, in order to include also non-monomial structures (in the
spirit of Hughes and Van Glabbeek work, see [HVG03].)

7.3 J-proof nets and multifocusing

In [CMS08], Miller, Saurin and Chaudhuri have introduced a generalization of MALLfoc, the multiplica-
tive/additive fragment of Andreoli’s focusing calculus ; in such a calculus it is possible to focus on more than
one formula at a time, due to a rule called multifocalization. Such a rule has the following shape (we refer to
[CMS08] for a detailed description of the calculus):

⊢ Γ ⇓ ∆

⊢ Γ,∆ ⇑
[MF ]

where ∆ contains only positive formulas.
In the multifocusing calculus, as in MALLfoc, the sequent has a stoup, (the part of the sequent after ⇓)

which contains the formulas to be decomposed (bottom up) during focalization; but while in MALLfoc the
stoup contains a single formula, in the multifocusing calculus we may focus on more than one formula at a
time. All the formulas under focus will then be decomposed until only negative formulas remain, which will be
decomposed in the next negative phase until we reach their positive components; a new set of positive formulas
to focus on then will be chosen and so on.
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Figure 32: R1 labelled with boolean weights
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Figure 33: R2 labelled with boolean weights

An interesting feature of the multifocusing calculus is that it allows to graduate the “level” of focalization
of a proof, depending on how many formulas are included in the stoup on an application of the MF rule. In
the following we will show an example of how J-proof nets allow to capture such a “multifocalization” property.

For simplicity’s sake we will restrict our examples to the multiplicative case; nevertheless, our argument is
perfectly sound also in presence of additives.

Let us consider the following two focusing proofs, denoted respectively π1, π2 (to stress the order of applica-
tion of rules, we mark some of them with an integer), where the focus of the MF rule is a single formula:
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Figure 34: Non-monomial labelling
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Figure 35: jumps induced by the non monomial labelling

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1 ⇓ (⊥ ⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1, 1 ⇓ ((⊥ ⊗ ⊥)⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗]
⊢ 1, 1, 1, 1 ⇓ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1, 1, 1 ⇑)

[R⇑]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇑ 1, 1)

[O2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇑ 1O1)

[R⇓]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇓ 1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1, 1 ⇓ ((1O1)⊗ ⊥))

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1, 1 ⇑)

[R⇑]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇑ 1, 1)

[O1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇑ 1O1)

[R⇓]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇓ 1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1 ⇓ ((1O1)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1 ⇑



[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1 ⇓ (⊥ ⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1, 1 ⇓ ((⊥ ⊗ ⊥)⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗]
⊢ 1, 1, 1, 1 ⇓ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1, 1, 1 ⇑)

[R⇑]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇑ 1, 1)

[O1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇑ 1O1)

[R⇓]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇓ 1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1, 1 ⇓ ((1O1)⊗ ⊥))

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1, 1 ⇑)

[R⇑]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇑ 1, 1)

[O2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇑ 1O1)

[R⇓]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1 ⇓ 1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1 ⇓ ((1O1)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1 ⇑

In π1, the first passage in the stoup decomposes the bipole (⊗1,O1), and the second one the bipole (⊗2,O2),
while in π2 the order of passages in the stoup is reversed. Each of these proofs directly corresponds to a J-proof
net; since π1, π2 are focusing, they correspond respectively to the saturated J-proof net R1 in fig. 36 and R2

in fig. 37 (for simplicity’sake, we label edges with formulas of MALL and links with rules occuring in π1, π2);
in each of R1, R2 we can observe how jumps tell the order in which bipoles will be decomposed through the
stoup: at each step of sequentialization the minimal (w.r.t. the d.a.g. order) bipole of R1 (resp. R2) is the only
splitting one.
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⊗
O1

⊗1

O2

⊗2

Figure 36:
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⊥ 1
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⊗1
⊗2
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Figure 37:

Multifocalization allows for a third possibility: to decompose both bipoles (⊗1,O1), (⊗2,O2) in the stoup
at the same time, as in the following proof π3.



[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1 ⇓ (⊥ ⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

⊢ 1, 1, 1 ⇓ ((⊥ ⊗ ⊥)⊗ ⊥)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗]
⊢ 1, 1, 1, 1 ⇓ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1, 1, 1 ⇑)

[R⇑]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥) ⇑ 1, 1, 1, 1

[O1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥) ⇑ (1O1), 1, 1

[O2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥) ⇑ (1O1), (1O1)

[R⇓]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥) ⇓ (1O1), (1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗1]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1 ⇓ ((1O1)⊗ ⊥), 1O1)

[1]
⊢⇓ 1

[MF ]
⊢ 1 ⇑

[⊥]
⊢ 1 ⇑⊥

[R⇓]
⊢ 1 ⇓⊥

[⊗2]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), 1, 1 ⇓ ((1O1)⊗ ⊥), ((1O1)⊗ ⊥)

[MF ]
⊢ (((⊥ ⊗ ⊥)⊗ ⊥)⊗ ⊥), ((1O1)⊗ ⊥), ((1O1)⊗ ⊥), 1, 1 ⇑

Such a multifocalized proof π3 directly corresponds to the J-proof net R3 in fig. 38. In R3 too, the minimal
bipoles coincide exactly with the splitting ones, and in this case they are more than one: we can then sequentialize
R3 by removing at the same time both bipoles, decomposing them simultaneously in the stoup. The jumps
originating from the middle ⊗ link tell that it must wait for both (⊗1,O1), (⊗2,O2) to be decomposed in order
to enter the stoup.
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Figure 38:

As a future research direction, we plan to deepen the study of the relation between multifocalization and
J-proof nets, especially the connection between parallel J-proof nets and maximal multifocusing proofs.
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