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Abstract—In this paper, we describe a new optimization
method which we call Multiple Birth and Cut (MBC). It
combines the recently developed Multiple Birth and Death
(MBD) algorithm and the Graph-Cut algorithm. MBD and MBC
optimization methods are applied to energy minimization of an
object based model, the marked point process. We compare
the MBC to the MBD showing their respective advantages and
drawbacks, where the most important advantage of the MBC
is the reduction of number of parameters. We demonstrate that
by proposing good candidates throughout the selection phase in
the birth step, the speed of convergence is increased. In this
selection phase, the best candidates are chosen from object sets
by a belief propagation algorithm. We validate our algorithm on
the flamingo counting problem in a colony and demonstrate that
our algorithm outperforms the MBD algorithm.

Index Terms—point process, multiple birth and cut, belief
propagation, graph cut, multiple object detection, object counting

I. INTRODUCTION

Automatic detection and counting of multiple objects is

a problem of major importance, that finds applications in

different domains such as evaluation of populations of trees,

animals, cells, cartography, urban planning and military in-

telligence. A recent object based method, embedded in a

marked point process (MPP) framework, proved to be efficient

for solving many challenging problems dealing with high

resolution images. This framework was first introduced in [1].

The MPP modeling is based on defining a configuration space

composed of object sets, to which a Gibbs energy function is

attached. The detection is then obtained by minimizing this

energy.

Initially, samplers of similar models like Markov random

fields (MRF), either stochastic or deterministic, were based

only on standard moves within the framework of Metropolis

Hasting dynamics, where only one pixel changes at a time.

During the last decade, multiple move methods emerged and

most of them are based on graph cut techniques [2].

Point process samplers have also evolved from simple

perturbations (standard moves) as in birth and death algo-

rithm, where at each iteration, one object is either added

to or removed from the current configuration [3], [4]. Such

algorithms are extremely slow in image processing. Therefore,

the Reverse Jump Markov Chain Monte Carlo algorithm [5]

has been widely used for MPP in image processing [6], [7], [8]

due to its flexibility, especially when using updating schemes

such as Metropolis Hasting [5]. On the birth step, we now add

moves such as split, translate, rotate, etc. The main limitation

is that it still treats one or two objects at a time and has a

rejection rate. Later, the Multiple Birth and Death algorithm

(MBD) was proposed allowing multiple perturbations [9].

The main contribution of this paper is the development of a

new multiple perturbation optimization technique, named Mul-

tiple Birth and Cut (MBC) [10]. It combines ideas from MBD

and the popular graph cut algorithm. The MBC’s algorithm

major advantage is the severely reduced number of parameters

as this algorithm does not involve the simulated annealing

scheme. We propose an iterative algorithm to explore the

configuration space. We choose between current objects and

newly proposed ones using binary graph cuts. In the second

part of this work, we propose some modifications to this first

algorithm in order to increase its speed of convergence. The

algorithm starts by proposing a dense configuration of objects

from which the best candidates are selected using the belief

propagation algorithm. Next, this candidate configuration is

combined with the current configuration using the binary graph

cut.

This paper is organized as follows: we start by briefly intro-

ducing the MPP model in section II. In section III, we describe

optimization algorithms, multiple birth and death algorithm

for MPP model optimization, then the Graph-Cut algorithm.

We then describe the new proposed algorithms, followed by

energy comparison of the different algorithms in section IV.

In section V we show detection results, a comparison between

the proposed algorithms and MBD. Conclusions are drawn in

section VI.

II. MARKED POINT PROCESS

Marked point process framework is suitable for defining

some probabilistic models on configuration spaces consisting

of an unknown number of parametric objects. Adding the

Markov property allows the introduction of local interactions

and the definition of a prior on the object distribution in the

scene. This framework can be interpreted as a generalization

of the MRF theory, where the number of random variables is

unknown. Moreover, an object is associated to each variable,

on which geometric constraints can be modeled.



A. Point Process

Definition. Point processes are mathematical models

for irregular or random point patterns. Let X denote a

point process living on K = [0, Imax] × [0, Jmax]. X is a

measurable mapping from a probability space (Υ,A,P) to

the set of unordered configurations of points in K. K is a

closed, connected subset of R
2. This mapping defines a point

process. Intuitively, a point process is a random variable

whose realizations are random point configurations.

Poisson Point Process. Poisson point process is the simplest

process, from which more complex models can be built.

It often serves as a reference model for complete spatial

randomness. Let’s consider a Poisson point process defined

on K and specified by the intensity function ρ : K → [0,∞).
We only consider simple point process1 x = {x1, . . . , xn}
is defined in the space defined by the locally finite point

configurations Nlf , which implies that n(xB) ≤ ∞ where

n() is a counting function and xB = x ∩ B, where B is a

bounded closed set. The intensity measure λ of the Poisson

process is given by:

λ(B) =

∫

B

ρ(ξ)d(ξ), B ⊆ K.

for ξ ∈ S. The Poisson probability measure on all B ⊂ Nlf

with intensity measure λ(.) on K, where λ(K) <∞, is given

by:

π(B) = e−λ(K)
(

1∅∈B +
∞
∑

n=1

πn(B)

n!

)

where

πn(B) =

∫

B

. . .

∫

B

1[{x1, . . . , xn} ∈ B]
(

n
∏

i=1

ρ(xi)
)

dx1 . . . dxn

The probability of having exactly n points is given by [4]:

p(x) = e−λ(K) λ(K)n

n!
,

where n is the number of points in the configuration.

Marked Point Process. Point processes were introduced

in image processing since they easily allow modeling scenes

made of multiple objects. Objects can have simple or com-

plex shapes: simple shapes like lines for road detection [6],

rectangles for buildings [11], ellipses for trees [7] and flamin-

gos [12]; complex shapes, using active contours for complex

forms, like tree crowns [13]. In this paper for instance, each

flamingo is modeled by an ellipse. Let M be the mark space,

M = [amin, amax] × [bmin, bmax] × [0, π[, where a and b
are the length of the major and the minor axes respectively,

for which we define a minimum and a maximum value2, and

θ ∈ [0, π[ is the orientation of the ellipse. The geometry of the

1Simple point process means two points of a given configuration must be
different.

2The min and max values of the major and minor axes are defined based on
the image resolution, and knowing that the maximum dimension of a flamingo
(from a top-view) is 80cm.

shape is represented by the mark mi associated to each point

xi. Therefore, an object is defined as ωi = (xi, mi) ∈ K×M .

We consider a marked point process with points in K and

marks in M , the configuration space is then defined as:

Ω =

∞
⋃

n=0

Ωn, Ωn = {{ω1, . . . , ωn}, ωi ⊂ K ×M} , (1)

where Ωn is the subset of configurations containing exactly

n objects, and ω = {ωi, i = 1, . . . , n}. We define a reference

measure as the product of the Poisson measure ν(x) on Υ and

the Lebesgue measures µ on the mark space:

dπr(ω) = dν(x)

n
∏

i=1

(dµ(mi)) .

The MPP is then defined by a density with respect to this

measure:

dπ(ω) = f(ω)dπr(ω). (2)

Markov Point Process. Among MPP, Markov (or Gibbs)

point process are of particular interest for applications in object

detection. It allows modeling interactions between the objects.

The density of the process is then written as the sum of

potentials over interacting object (cliques):

f(ω) =
1

Z
exp[−U(ω)] (3)

where [14]:

U(ω) =



V0 +
∑

ωi∈ω

V1(ωi) +
∑

{ωi,ωj}∈ω

V2(ωi, ωj) + . . .



 (4)

Z is the partition function (normalizing constant), and Vk the

potentials of order k. Minimizing the energy U(ω) corresponds

to the target configuration. This energy takes into account the

interactions between geometric objects Up (prior energy) and

a data energy Ud to fit the configuration onto the image:

U(ω) = Ud(ω) + γpUp(ω)

where γp is the weight assigned to the prior term which can

be estimated as in [15].

B. Prior

The possibility to introduce prior information is a major

advantage of the MPP framework. This regularizes the config-

uration to match the real objects taking into consideration the

image defects, due to, e.g., image resolution or noise. Since our

objects (flamingos) in reality should not overlap, we penalize

overlapping. Let A(ωi, ωj) ∈ [0, 1] represent the overlapping

coefficient between two objects, defined as the normalized area

of intersection, as shown in figure 1 and proposed by [12]:

A(ωi, ωj) =
A(ωi ∩ ωj)

min (A(ωi), A(ωj))
(5)

where A(ωi) is the area of object ωi. Let us consider a clique

{ωi, ωj}, then the prior energy of this local configuration is

given by:

up(ω) =

{

0 if A(ωi, ωj) < 0.1
∞ if A(ωi, ωj) ≥ 0.1

(6)



Fig. 1: The overlapping coefficient between two objects

which means that we do not allow a configuration with

an overlapping coefficient greater than 10%. The total prior

energy of the configuration is then given by:

Up(ω) =
∑

ωi∼ωj

up(ωi, ωj),

where ∼ is a symmetric reflexive relation used to determine

the neighborhood of an object, and defined by the intersection

of ellipses.

C. Data term

Assuming the independence of the data term of each object,

the data term energy of a configuration ω is given by:

Ud(ω) =
∑

ωi∈ω

ud(ωi) (7)

The term ud(ωi) is the output of a local filter, evaluating from

the data point of view the relevance of object ωi. The object

contains information on both its location and its shape. The

data term can, thus, be interpreted as an adaptive local filter

selecting or favoring a specific shape and object depending

locally on the data. For the selected flamingo example, as

presented in figure 2, each flamingo can be modeled as a

bright ellipse surrounded by a darker background. For an

object ωi = (xi, mi), with marks mi = (a, b, θ), we define the

boundary F(ωi) as the subset of K, between the ellipse ωi bor-

der and a concentric one ω′
i, with marks m′

i = (a+ρ, b+ρ, θ).
This boundary represents the background and we evaluate

the contrast between the ellipse interior and the background.

To evaluate the distance dB(ωi,F(ωi)), we assume that the

interior of the ellipse and its background have a Gaussian

distribution with parameters (µ1, σ1) and (µ2, σ2) respectively,

which are estimated from the image. We compute a modified

Bhattacharya distance between them as follows [12]:

dB(ωi,F(ωi)) =
(µ1 − µ2)

2

4
√

σ2
1 + σ2

2

−
1

2
log

2σ1σ2

σ2
1 + σ2

2

.

The data energy ud(ωi) associated to object ωi is then given

by:

ud(ωi) = Qd(dB(ωi),F(ωi))

Fig. 2: Ellipse modeling a flamingo and the background around

it to measure the relevance of the proposed object

where Qd(dB) ∈ [−1, 1] is a quality function which gives

positive values to small distances (weakly contrasted object)

and negative values (well contrasted) otherwise [12]:

Qd(dB) =

{

(1− dB

d0

) if dB < d0

exp(−dB−d0

D
)− 1 if dB ≥ d0,

where D is a scale parameter calibrated to 100 and d0 is

estimated either for the whole image or for each region, as

detailed in [12].

III. OPTIMIZATION ALGORITHMS

Once the density is defined, the next step is to optimize the

energy in order to obtain the corresponding realization. No

direct simulation is possible due to the unknown normalizing

constant.

A. Multiple Birth and Death

The Multiple Birth and Death (MBD) algorithm has been

recently proposed making possible multiple perturbations in

parallel [9]. The main idea is that, at each iteration n of the

algorithm, given the current configuration ω[n]
3, we add a new

random configuration ω′ (multiple objects) and we treat the

new configuration ω = ω[n] ∪ ω′ by removing non-fitting

objects with an associated probability which guarantees the

convergence to the right distribution. This method performs

the sampling of the process by considering a Markov chain

consisting of a discrete time multiple birth-and-death process

describing all possible transitions from the configuration ω[n]

to the elements of Ω. The authors in [9] demonstrated that

this Markov chain can be considered as an approximation of

a continuous-time reversible process and converge to it, which,

in a simulated annealing scheme, guarantees weak conver-

gence to the measure concentrated on the global minimum

of the energy function.

Here we only consider the discrete case of the MBD

algorithm, summarized in algorithm 1. Let δ be the intensity

of the process; first we initialize the algorithm (step 1 and 2),

by setting the starting values for δ and β (inverse temperature)

3The subscript [i] indicates the iteration number of the algorithm.



Algorithm 1 Multiple Birth and Death

1: n← 0 , ω[0] ← ∅
2: δ = δ[0] , β = β[0]

3: repeat

4: Birth: generate ω′, a realization of a Poisson process of

intensity δ
5: ω ← ω[n] ∪ ω′

6: Death: For each ωi ∈ ω, calculate the death

probability d(ωi) =
δaβ(ωi)

1+δaβ(ωi)
, where aβ(ωi) =

e−β(U(ω\ωi)−U(ω))

7: until Convergence, if not converged, set ω[n+1] = ω,

δ[n+1] = δ[n] × αδ , β[n+1] = β[n] × αβ , n ← n + 1
and go to ”Birth”

used for the simulated annealing scheme, αδ and αβ are

coefficients to decrease the intensity of the process and the

temperature respectively. Then the iterations start in step 3

till step 6, the algorithm keeps iterating until convergence. At

iteration n, a configuration ω is transformed into ω′′ = ω1∪ω2,

where ω1 ⊆ ω and ω2 is a configuration such that ω1∩ω2 = ∅.
The transition associated with the birth of an object in a small

volume ∆v ⊂ K is given by:

qδ(v) =

{

∆vδ if ω ← ω ∪ ωi

1−∆vδ if ω ← ω ( no birth in ∆v)

This transition is simulated by generating ω′, a realization of a

Poisson process of intensity δ. The death transition probability

of an object ωi from the configuration ω ∪ ω′ is given by:

pδ(ωi) =

{

δ aβ(ωi)
1+δa(ωi)

if ω ← ω \ ωi

1
1+δ aβ(ωi)

if ω ← ω (ωi survives)

where aβ(ωi) = exp
(

− β[U(ω \ {ωi}) − U(ω)]
)

, resulting

in ω′′ = ω1 ∪ ω2, where ω1 ⊆ ω and ω2 ⊆ ω′. This death

probability is calculated for every ωi ∈ ω, and the object ωi

is killed (removed) with probability pδ(ωi).

To speed up the process, we propose two ideas:

• We utilize a birth map which means we consider an

inhomogeneous birth rate to favor birth at locations where

the data tends to define an object. Thus, we decrease the

required number of iterations, while staying uniform over

the mark space M .

• The death test is applied on the objects sorted by their

data term, starting by objects with bad data term. The

order of the death test does not affect the final result, but

it has a great impact on the speed of convergence of the

algorithm.

B. Graph Cut

In the last few years, a new approach of energy minimization

based on graph cuts has emerged in computer vision. Graph

cuts efficiently solved the optimization problem of certain

energy families by finding either a global or a local minimum

with a very high speed of convergence. This technique is

based on a special graph construction from the energy function

to be minimized. Finding the minimum cut of this graph is

equivalent to minimizing the energy. The minimum cut is

efficiently calculated using the max flow algorithm.

The use of graph cuts in computer vision was first intro-

duced in [16]. The authors demonstrated how a Maximum a

Posteriori (MAP) estimate of a binary MRF can be exactly

calculated using the maximum flow algorithm. Then, it has

been extended to MRF with pairwise interactions with multiple

labels [17], [18].

This method has been extensively used to compute the

MAP solution for a large number of applications for discrete

pixel labeling. It has been applied to image segmentation

using geometric cues [19] and using regional cues based on

Gaussian mixture models [20], video segmentation [21] taking

advantage of the redundancy between video frames (dynamic

graph cuts), image restoration [22], stereo vision [23], [24].

Here we describe a simple example of graph cut algorithm

for solving an image processing problem. Many computer

vision problems can be formulated as energy minimization

problems. Energy minimization to solve the pixel labeling

problem (segmentation) can be represented as follows: given

an input set of pixels P = {p1, . . . , pn} and a set of labels

L = {l1, . . . , lm}, the goal is to find a labeling f : P → L
which minimizes some energy function. We are interested in

binary labeling, where L = {0, 1}. A standard form of the

energy function is [25]:

E(f) =
∑

p∈P

Dp(fp) +
∑

p,q∈N

Vp,q(fp, fq) (8)

where N represents pixel neighborhoods. Dp(fp) is a function

based on the observed data, it gives the cost of assigning the

label fp to pixel p. Vp,q(fp, fq) is the cost of assigning labels

(fp, fq) to pixels (p, q), where (p, q) are neighbors. Dp(fp)
is always referred to as the data term and Vp,q(fp, fq) as the

smoothness or prior term.

Let G = (V,E, C) be a directed graph which consists of

a finite set V of vertices, a set E ⊂ V 2 of edges and a cost

function C : E → R
+ ∪ {0}. This graph has two special

vertices, the source S and the sink T , also called terminal

nodes. An S−T cut is a partition (S,T) of the vertices (S∪T =
V and S ∩ T = ∅), such that S ∈ S and T ∈ T . The cost of

the S−T cut C(S, T ) is the sum of all costs of all edges that

go from S to T:

C(S, T ) =
∑

u∈S,v∈T :(u,v)∈E

C(u, v).

A minimal cut of the graph G is a cut whose cost is

minimal. In general it is an NP hard problem. This problem

is equivalent to the maximum flow from source to sink. Many

algorithms have been proposed to solve this problem based

on Ford and Fulkerson theorem or based on the Push-Relabel

algorithm. In this paper we use the Ford and Fulkerson

theorem which finds the problem’s solution in polynomial



TABLE I: Data Term
Config \ fs 0 1

ωi ∈ ω[n] ud(ωi) 1 − ud(ωi)
ωi ∈ ω′ 1 − ud(ωi) ud(ωi)

TABLE II: Prior Term
(fs, fr) Vsr(fs, fr)

(0,0) 0

(0,1) ∞
(1,0) 0

(1,1) 0

time with small constant [26]. For an S-T cut, and a labeling

f which maps from V to {0, 1} for a binary partition,

f(v) = 0 means that v ∈ S and f(v) = 1 means that v ∈ T .

In [25], the authors explained which class of energy function

can be minimized by graph cuts. One important result from

this paper is the submodularity condition which must be satis-

fied, it is a necessary and sufficient condition. This condition

represents the labeling homogeneity. For a two-neighbor pixel

configuration (i, j) for which we assign labels {0, 1}, the

condition is [25]:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (9)

which states that the energy required (cost) for assigning the

same label to neighbor pixels should be less than or equal to

the energy for assigning them different labels.

As stated in [16], it is possible to compute the global mini-

mum of submodular binary energies. This has been generalized

to multi-labels under condition on V (., .) [18], [27].

C. Multiple Birth and Cut

The main contribution of this paper is the introduction of

a new optimization algorithm that we call the Multiple Birth

and Cut (MBC) algorithm to minimize the energy function

of a point process. Although the MBD algorithm has been

proved to converge to a global minimum and has a good

convergence speed, it still has parameters to be tuned which

are the intensity of the field, how it decreases, the temperature

of the simulated annealing and its scheduling. Wrong selection

of those parameters will prevent proper convergence.

In [28], the authors presented an interesting graph model

for a mosaic problem. The main goal of their work was to

simulate classic mosaics from digital images. For good visual

appearance, mosaics should satisfy constraints such as non-

overlapping. They generate a set of candidate layers containing

tiles respecting the constraints and they “stitch” them in an

iterative way. In the “stitching process”, the selection between

tiles of the current layer and a new candidate layer is solved

by a graph cut algorithm. We generalize this idea to the

optimization of the energy function associated to a MPP.

The MBC algorithm is described in the sequel, using figure

3 and summarized in algorithm 2.

Initialization: In step (1) of the algorithm we initialize

our unique variable R, which represents the number of

objects to be proposed at each iteration. This parameter

R can easily be set, we set it to one fifth of the expected

population size. Different initializations only affect the speed

of convergence but not the detection results. In step (2), we

generate a candidate configuration ω′ which we set to an

initial configuration ω[0]. The set of non-overlapping ellipses

ω′ is generated as follows: each proposed object ωi (with

position and mark) is rejected if it intersects at least one

of the existing ellipses in the current ω′, otherwise it is

kept [29]. ω[0] = {a, b, c} is represented in figure 3(a) in

green. Now the algorithm starts iterating between the Birth

and the Cut steps until convergence.

Birth: In the birth step we propose a new configuration ω′,

e.g., ω′ = {d, e, f, g} of “non-overlapping” ellipses, which

are shown in figure 3(a) in blue. Note that objects {d, e} have

an overlapping of less than our defined threshold (10%), so

they are considered as non-overlapping, as stated in (6).

Cut:

• Graph construction: In the cut step, a graph is constructed

from ω = ω[n] ∪ ω′ as shown in figure 3(b), each node

represents an object (ωi), contrary to most graph cut

problems where each node represents one pixel4. Edge

weights are assigned as shown in tables I and II. Between

each object and the source (t-links), for ωi ∈ ω[n]

the weight to the source is the data term ud(ωi) and

1−ud(ωi) to the sink, while it is the inverse for ωi ∈ ω′,

it is 1−ud(ωi) to the source and ud(ωi) to the sink. For

the edges between objects (n-links), we assign the prior

term: ∞ if they are neighbor, otherwise it is zero.

• Optimizing: To this graph, we apply the graph cut

algorithm, to assign labels {0, 1}. The key element to

satisfy the submodularity condition (equation 9), is that

the labeling (generated by the graph cut optimization) is

differently interpreted for the current configuration ω[n]

and the newly proposed one ω′. Our energy contains

indeed supermodular terms, which are made submodular

by inverting label interpretations. Label ’1’ for ωi ∈ ω[n]

stands for ’keep’ this object, label ’0’ stands for ’kill’

(remove) this object whereas for ωi ∈ ω′ label ’1’ for

stands for ’kill’ this object and label ’0’ stands for to

’keep’ this object.

Based on this labeling interpretation, and on the defined

interaction cost from table II, the regularity condition

(9) is satisfied since the l.h.s. will always be less than

the r.h.s. which is equal to infinity.

Convergence test: The convergence for this type of models

with a highly non-convex function is harder to verify than

4In a standard graph cut binary image restoration problem, for an image
of size N2, the required graph is of size N2 (number of nodes). For a MPP
problem, for an image of size N2, the size of the graph is M (number of
objects), where M ≪ N .



(a)

(b)

Fig. 3: (a) Image containing a current configuration ω[n] in

green and a candidate configuration ω′ in blue. (b) The special

graph constructed for ω[n] ∪ ω′.

for convex models with gradient descent algorithms. Usually,

we consider that the algorithm has converged if the energy

has not decreased for ten successive iterations. The number

of objects also can be used in a similar way: if it stays

constant for n successive iterations, then the algorithm has

converged. An alternative is to use a fixed number of iterations.

Algorithm 2 Multiple Birth and Cut

1: n← 0 , R← const

2: generate ω′ , ω[0] ← ω′

3: repeat

4: Birth: generate ω′

5: ω ← ω[n] ∪ ω′

6: Cut: ω[n+1] ← Cut(ω[n]∪ω′) (optimize with graph cuts)

7: until converged

Speed of Convergence:

We present the energy evolution during the optimization

of both algorithms on a sample from a whole colony of

flamingos. In figure 4(a), we present the photo of the

whole colony with the selected rectangular sample, and in

figure 4(b), we present the detection result on this sample.

Curves shown in figure 5 present the energy evolution of

the process with respect to time of both MBC and MBD (two

runs) algorithms on the selected sample.

This graph presents the energy evolution of two runs of

the MBD algorithm with two sets of parameters. The energy

of the first run is presented by the blue curve, with the

following parameters: ∆δ = 0.9985, ∆β = 0.9975 and

for 4000 iterations, while the second run, presented by the

green curve has the following parameters: ∆δ = 0.9995 ,

∆β = 0.9985, with 10000 iterations. Both MBD runs have the

same initial intensity of the process δ = 2000 and temperature

T = 1
β

= 1/50. The MBC energy evolution curve is presented

by the red curve, and its unique parameter is R = 1000.

Both MBD runs follow a simulated annealing scheme.

They start by random configurations, then the algorithm keeps

organizing the configurations until it arrives at a saddle point,

where it performs small local refinement and the energy

decreases very fast.

We see from the energy evolution in figure 5 that setting

the optimal set of parameters for the MBD algorithm for

convergence is not trivial. The energy evolution curves

show that the second set of parameters gives better results

by reaching a lower minimum of energy, lower that the

MBC algorithm and even faster. The advantage of the MBC

algorithm is that it reaches a similar value of the energy

without any parameter tuning, but in a longer time.

Based on the energy evolution curve presented in figure 5,

we notice that the MBD algorithm is currently faster than our

algorithm, for three main reasons:

1) During the algorithm iterations, each proposed configu-

ration ω′ in the MBD algorithm can be very dense but

in our algorithm, it has to respect the non-overlapping

constraint.

2) Although the size of the used graph is small, we con-

struct a new graph at each iteration.

3) The birth map is not integrated.

D. Optimized MBC using Belief Propagation

From the reasons mentioned above about the speed limita-

tion of the MBC algorithm, we can summarize reason 1 and

3 by saying that the main limitation comes from the quality

of the proposed configuration at each iteration. Since the

proposed configuration respects the non-overlapping constraint

from the beginning, it can not take a real advantage of using

the birth map and consequently requires a large number of

iterations.

We propose to insert a selection phase in the birth step,

which allows adding more relevant objects in the birth step,

thus reducing the number of iterations (time to converge). In

the sequel we explain the modified MBC algorithm, which is

summarized in algorithm 3.



(a)

(b)

Fig. 4: (a) An aerial image of a full colony c©Tour du Valat,

with a highlighted rectangle. (b) Detection result using MBC

algorithm in the highlighted rectangle, where each flamingo is

surrounding by an ellipse c©Ariana/INRIA.

Algorithm 3 Multiple Birth and Cut

1: n← 0 , R← const

2: generate ω′ , ω[0] ← ω′

3: repeat

4: Birth: generate Γ
5: ω′ ← Select from(Γ)

6: Cut: ω[n+1] ← Cut(ω[n] ∪ ω′)

7: n← n + 1
8: until converged

Selection Phase: In the birth step, the new algorithm

generates a dense configuration Γ. This configuration has

a special organization, where Γ = {X1, X2, . . . , Xn} and

Xi = {ω1
i , ω2

i , . . . , ωl
i}. Each Xi encodes l candidates from

which only one will be kept, see figure 6(b). The aim of this

organization is, instead of proposing a single object ωi to

detect a given object oj , to propose many objects at a similar

location represented by Xi at each iteration and then select

Fig. 5: Energy evolution of the configuration during the

optimization with respect to time.

the most relevant object in Xi during the selection phase. The

generation of Γ elements takes advantage of the birth map to

speed up the process.

Now rises the question of how to select the best candidate

inside each Xi. If all the Xi were independent, then the

selection of every ωj
i ∈ Xi could simply be calculated based

on the data term ud(ω
j
i ). However, if we consider a dense

configuration of objects during the birth step, the independence

hypothesis does not hold.

We propose the optimal selection of ω′ from an almost very

dense configuration Γ. The idea is to generate Γ such that the

interaction graph between sets Xi remains a tree (with no

loops). The global optimum ω′ can then be inferred rapidly

on this tree using belief propagation [30].

Belief propagation is a particular case of dynamic pro-

gramming, more precisely, it is a variation of Dynamic Time

Warping suitable to trees instead of chains, often formulated

with message passing. The core of the algorithm relies on the

tree structure of the interactions between variables, i.e. if ω1

is a leaf, it interacts with only one variable, ω2:

inf
ω1,ω2,...,ωn

[

∑

i

ud(ωi) +
∑

i∼j

up(ωi, ωj)

]

=

= inf
ω2,ω3,...,ωn

[

∑

i>1

vd(ωi) +
∑

i∼j>1

up(ωi, ωj)

]

where vd = ud except for vd(ω2) = ud(ω2)+infω1
{ud(ω1)+

up(ω1, ω2)}. This optimization over ω1 given ω2 is easy to

perform and rewrites the problem into a similar one but with

one fewer variable. Repeating this trick n times solves the

problem, with linear complexity in the number of variables.

Once a configuration Γ is generated, we apply belief

propagation to select the best candidate inside each Xi,

which gives the global optimum ω′ of this configuration Γ.

While generating Γ, the algorithm keeps track of the created

neighborhood to verify that it always represents a tree.



(a) (b)

(c) (d)

(e)

Fig. 6: (a) Current configuration ω[n] in green. (b) Proposed

dense configuration Γ. (c) Selected ω[n] from the candidates

of Γ. (d) The configuration ω = ω[n] ∪ω′ on which the graph

is constructed for the Cut step. (e) A forest of trees of a large

configuration from which we select on object per node using

belief propagation.

The generation and selection phase schedules are

presented on figure 6. On figure 6(a), we present the current

configuration ω[n] = {a, b, c}. In figure 6(b), the algorithm

generates a dense configuration Γ = {X1, X2, X3, X4}. We

apply the belief propagation on Γ to select only one (the

best one) from each Xi candidates ({ω0
i , ω1

i , . . . , ωl
i}) as on

figure 6(c) by ω′ = {d, e, f, g}. On figure 6(d), we present the

combination of the current configuration ω[n] and the newly

proposed and selected ω′ by ω = ω[n]∪ω′ on which the graph

is constructed for the Cut step. In figure 6(e) we present the

tree structure (forest) for a much larger configuration, showing

each Xi as a node, and the existing connections between

them representing the neighborhood of each object (no loops).

On figure 7(a) we present a sample from another flamingo

colony and on 7(b) the detection result using optimized-MBC

algorithm, showing the quality of the detection.

IV. ENERGY COMPARISON

In this section, we verify that after this modification of the

data term (10), we still minimize the same energy using graph

(a) (b)

Fig. 7: (a) A sample from a flamingo colony c©Tour du Valat.

(b) The detection result, each flamingo is surrounded by a pink

ellipse c©Ariana/INRIA.

cut at each iteration.

For the graph cut algorithm, edge weights have to be non-

negative, so we normalize the data term Qd(dB) ∈ [0, 1]. For

each ωi, the data term becomes:

uGC
d (ωi) =

1 + ud(ωi)

2
. (10)

Let UCG be the energy given by the graph cut, with

ω = {ω[n] ∪ ω′} where ω[n] = {ω1, . . . , ωp} and ω′ =
{ωp+1, . . . , ωq}. The energy of the whole graph is the sum

of the data term edges and prior term edges:

UGC(ω) = UGC
d (ω) + UGC

p (ω)

where the data term is given by:

U
GC
d (ω) =
p

∑

i=1

[(

1 + ud(ωi)

2

)

δf(ωi)=0 +

(

1 − ud(ωi)

2

)

δf(ωi)=1

]

+

q
∑

i=p+1

[(

1 − ud(ωi)

2

)

δf(ωi)=0 +

(

1 + ud(ωi)

2

)

δf(ωi)=1

]

and the prior term is given by:

UGC
p (ω) =

p
∑

i=1

q
∑

j=p+1

up(ωi, ωj)δf(ωi)=0δf(ωj)=1 .

up(ωi, ωj) is defined as in table II, then UGC
p (ω) = Up(ω).

The graph cut energy for the data term is given by:

UGC
d (ω) =

∑

M

(

1 + ud(ωi)

2

)

+
∑

D

(

1− ud(ωi)

2

)

=
∑

M

ud(ωi) +
∑

M∪D

(

1− ud(ωi)

2

)

= Ud(ω) +
∑

M∪D

(

1− ud(ωi)

2

)

= Ud(ω) +K(ω)

where after optimization M is the set of objects that we keep

and D is the set of objects that we kill. Thus minimizing



UGC
d (ω) is equivalent to minimizing Ud(ω) plus a constant

K(ω), function of the configuration ω but not of M . It

becomes:

argmin
ω

UGC(ω) = argmin
H

U(ω)

where H = {u ∈ Ω|u ⊂ ω}.

1) Convergence: The algorithm keeps iterating until con-

vergence. Convergence can be evaluated by monitoring the

number of objects or the energy of the configuration: when it

becomes stable, we consider that the algorithm has converged.

Using graph cut, we obtain the global minimum for a

configuration ω = ω[n] ∪ ω′ at each iteration. Let the en-

ergy of the configuration ω at the nth iteration be U [n](ω),
U [n](ω) ≤ U [n−1](ω), it is monotonically decreasing. The

non-overlapping prior and the finite size of the image induce

that the energy is lower-bounded. Therefore, we have a suf-

ficient condition for our algorithm to converge at least to a

local minimum.

V. RESULTS

In this section we present results of flamingo detection from

aerial images comparing MBC, Optimized-MBC (using belief

propagation) and MBD algorithm. First we present results on

four different colonies. In table III, data is composed of two

to three samples from each of the four colonies. We show the

percentage of correct detection of flamingos, negative false

and positive false. These results are validated by ecologists5.

Results in table III show that the newly proposed algorithms

outperform the MBD algorithm for the detection. For the

detection rate, MBC outperforms MBD, and Optimized-MBC

outperforms both of them. Both MBC algorithms have lower

negative and positive rates for the majority of the samples.

Secondly, we present the energy evolution during the op-

timization using MBD, the basic MBC and the optimized

MBC algorithms while presenting at the same time the object

detection rates. We compare the three algorithms on three

samples of different size, the approximate number of flamingos

in those samples are 250, 1900, and 3200 (computed from

evaluation). Figures 8(a,c,e) show the energy evolution with

respect to time of the three algorithms for the first, second and

third samples respectively. We conclude that MBD can reach a

lower minimum of the energy faster than MBC, but optimized

MBC reaches lower minimum, whatever the size of the colony.

For the detection rate, as presented in figure 8(b,d,f), MBD

has the lowest detection rate because of the difficulty of

parameter tuning; MBC has the highest detection rate for small

configuration size, while for average size, it becomes similar

to the optimized MBC, and for large colonies, optimized

MBC has the highest detection rate; knowing that both MBC

algorithms give very small negative false rates.

We used the graph-cut code developed by Olga Veksler [25],

[31], [2].

5Ecologists from La Tour du Valat.

TABLE III: Comparison between MBC, optimized MBC and

MBD
Image Qualifiers MBC Opt. MBC MBD

Fang02 sample 1
Good detection 93 90 87

Neg. false 0.07 0.08 0.13
Pos. false 0.16 0.12 0.09

Fang02 sample 2
Good detection 98 98 96

Neg. false 0.02 0.02 0.04
Pos. false 0 0.11 2

Fang05 sample 1
Good detection 86 85 82

Neg. false 0.14 0.15 0.18
Pos. false 0.1 0.2 0.07

Fang05 sample 2
Good detection 97 97 90

Neg. false 0.03 0.03 0.1
Pos. false 0.08 0.07 0.14

Fang05 sample 3
Good detection 94 95 90

Neg. false 0.1 0.40 0.1
Pos. false 0.06 0.13 0.14

Tuz04 sample 1
Good detection 100 100 99

Neg. false 0.0 0.0 0.01
Pos. false 0.04 0.01 0.01

Tuz04 sample 2
Good detection 98 98 98

Neg. false 0 0 0
Pos. false 0.04 0.04 0.04

Tuz04 sample 3
Good detection 100 100 100

Neg. false 0 0 0
Pos. false 0.02 0 0

Tuz06 sample 1
Good detection 100 100 100

Neg. false 0 0 0
Pos. false 0.01 0 0

Tuz06 sample 2
Good detection 98 100 95

Neg. false 0 0 0.04
Pos. false 0.09 0 0.06

Tuz06 sample 3
Good detection 99 99 95

Neg. false 0.01 0.01 0.04
Pos. false 0.12 0.12 0.08

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an efficient optimization al-

gorithm to minimize a highly non-convex energy function

which was previously optimized within a simulated annealing

scheme.

We avoid the difficult task of setting the temperature and

cooling parameters of the simulated annealing. We showed

the quality of the detection on many test samples of four

different data-sets. The basic MBC algorithm reaches a lower

energy level than MBD but requires more computation time.

We also presented an optimized version of the MBC algorithm,

using belief propagation to optimize the newly proposed

configuration at each iteration in order to obtain a relevant

proposed configuration. The results show that the optimized

MBC is substantially faster than the basic MBC algorithm.

We demonstrated how our algorithm, defined in the MPP

framework, can be used to efficiently solve the flamingo

counting problem as one of many possible applications. More

specifically, flamingo colonies consist of thousands of objectss

which makes the use of our algorithm advantageous for the

application.

We are currently studying the minimum energy obtained via

our algorithm. We are investigating possible options for graph



re-usage instead of constructing a graph at each iteration, and

also the possibility to use parallelization techniques.
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Fig. 8: (a, c and e) show the energy evolution for the three samples of around 250, 1900 and 3200 flamingos. (b, d and f)

show the flamingo detection rate for the same samples.


