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Introduction

In this work we consider the classical multivariate nonparametric regression problem with the aim of recovering an unknown function f from noisy data y i = f (x i ) + ǫ i , i = 1, . . . , n where x i = (x i 1 , . . . , x i d ) T is d dimensional vector of inputs, the ǫ i are i.i.d. and N (0, σ 2 ) random errors. The scope of this work is to take advantage of the multiresolution analysis provided by wavelet decomposition in multivariate function estimation. Indeed, in recent years there has been an important development in the application of wavelet methods in statistics, especially in signal processing, in image and function representation methods, with many successes in the efficient analysis and compression of noisy data. The multiresolution analysis provides a good time frequency localization, which makes wavelet methods particularly effective to estimate functions with sharp spikes, and discontinuities. Thus wavelets are used in various nonparametric regression methods. However most of these methods are implemented only for one (signal) or two (image) dimensional problems. The reason for this is that these algorithms assumed that data is dyadic and with equally spaced points. Several algorithms have been proposed to overcome the setting of non-dyadic and non-equispaced design. Among them, [START_REF] Antoniadis | Random design wavelet curve smoothing[END_REF] transforms the random design into equispaced data via a binning method. [START_REF] Kovac | Extending the scope of wavelet regression methods by coefficient-dependent thresholding[END_REF] apply the linear transformation to Email addresses: samirtouzani.phd@gmail.com (Samir Touzani), daniel.busby@ifpen.fr (Daniel Busby) the data to map it to a dyadic and equispaced set of points. [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] project the data on an unusual non-orthonormal basis, called warped wavelet basis. [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF] suggested a regularization method relying on wavelet kernel reproducing Hilbert spaces, which does not require a pre-processing of data. The method also achieves optimal convergence rates in the Besov spaces when the estimation error is calculated at the design points only no matter how irregular the design is. Given that, it seems that this method is well adapted to be generalized for the multivariate regression using wavelets. Inspired by the component selection and smoothing operator (COSSO) [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF], which is based on ANOVA (ANalysis Of VAriance) decomposition, and the wavelet kernel penalized estimation for non-equispaced design regression proposed by [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF], we introduce a new approach in the estimation of ANOVA components. Given a wavelet type expansion of f we consider a class of wavelet estimators for the nonparametric regression problem using a penalized least-squares approach. The penalties are chosen in order to control the smoothness of the resulting estimator. For this we use the same penalty as the one used for COSSO, in other words the semi-norm penalty. So we take for penalty, a weighted sum of wavelet details norms. In this paper, we first shortly review some definitions on wavelet. Then we present a new nonparametric regression method, named Wavelet Kernel ANOVA (WK-ANOVA). A new iterative projected shrinkage algorithm based on Landweber iterations is introduced in section 4. Finally, numerical tests are presented and discussed.

Multiresolution analysis and wavelet kernel

Consider the univariate regression problem:

y i = f (x i ) + ǫ i , i = 1, . . . , n (1) 
where (x i ) i=1,...,n is the irregular design, the ǫ i are i.i.d. and N (0, σ 2 ) random errors and f an unknown regression function to be estimated.

Multiresolution analysis

We define a multi resolution analysis as a sequence of closed subspaces V j , j ∈ Z in L 2 (R) and which possesses the following properties:

1. ∩ j∈Z V j = 0, 2. ∪ j∈Z V j = L 2 (R), 3. ∀f ∈ L 2 (R), ∀j ∈ Z, f ∈ V j if and only if f (2x) ∈ V j+1 ; 4. ∀f ∈ L 2 (R), ∀k ∈ Z, f ∈ V 0 if and only if f (x -k) ∈ V 0 , 5. there exist a scaling function φ ∈ V 0 whose integer-translates x → φ(x -k) k∈(Z) span the space V 0 .
If we define P j f as the projection of a function f onto the space V j , this is expressed by

P j f = P j-1 f + w j-1
where the function w j-1 represents the residual between the two approximations on V j and on V j-1 . This function can be written in terms of dilated and translated wavelets:

w j-1 = k∈Z f, ψ j-1,k ψ j-1,k
where {ψ j,k (x) = 2 j/2 ψ(2 j x -k); k ∈ Z} is a set of functions that are orthogonal to each function of V j and span the space W j which is a detail space. Hence, an important property of multiresolution analysis can be defined as:

V j = V j-1 ⊕ W j-1
By periodizing an orthonormal basis for L 2 (R) we construct an orthonormal wavelet basis for L 2 ([0, 1]) generated by dilatation and translation of compactly supported scaling function φ per , and a compactly supported wavelet ψ per , where:

φ per j,k (x) = l∈Z φ j,k (x + l), ψ per j,k (x) = l∈Z ψ j,k (x + l) and V per j = span{φ per j,k , k ∈ Z}, W per j = span{ψ per j,k , k ∈ Z} The resulting orthogonal basis provides an orthogonal decomposition L 2 ([0, 1]) = V per 0 ⊕ W per 0 ⊕ W per 1 ⊕ ...
where V per 0 (spanned by φ 0,0 = ψ -1,0 ) consists of constant function and W per j is a 2 j dimensional space. To enhance the interpretability we omit in what follows the index per. For any integer j 0 ≥ 0 any function f ∈ L 2 ([0, 1]) is expressed in the form:

f (t) = 2 j 0 -1 k=0 α j 0 ,k φ j 0 ,k (t) + j≥j 0 2 j 0 -1 k=0 β j,k ψ j,k (t), t ∈ [0, 1]
where the scaling coefficients are α j 0 ,k = f, φ j 0 ,k (k = 0, 1, ..., 2 j 0 -1) and the wavelet coefficients are β j,k = f, φ j,k (j ≥ j 0 , k = 0, 1, ..., 2 j 0 -1). For more details on the mathematical aspects of wavelets and their applications in statistical settings we refer to [START_REF] Daubechies | Ten lectures on wavelets[END_REF], [START_REF] Vidakovic | Statistical modeling by wavelets[END_REF], [START_REF] Ogden | Essential wavelets for statistical applications and data analysis[END_REF] and Antoniadis et al. (2001).

Wavelet kernel

Let

G -1 = {-1} × {0}, G 0 = {0} × {0, 1} and for each integer J ≥ 1 let G J = {J} × {k ∈ {0, ..., 2 J }; k/2 /
∈ Z}, i.e. G J is the index set of wavelets at resolution level J. The whole set of indexes pairs (j, k) that describes all wavelets will be denoted by G = j≥-1 G j . Therefore, any function f ∈ L 2 ([0, 1)) admits the infinite wavelet expansion:

f = g∈G f g ψ g
where ψ g is the wavelet basis function indexed by g ∈ G, f g is the corresponding expansion coefficient and ψ -1,0 = φ 0,0 . We now define a class of wavelet-based Hilbert spaces. For any function:

Γ : G → [0, ∞)
define the Hilbert space:

H Γ = {f ∈ L 2 ([0, 1]) : g∈G Γ(g)|f g | 2 < ∞} with scalar product: f, h Γ = g∈G f g h g Γ(g)
and let be • Γ the associated norm. As G J is a finite subset of G, we have V J ⊂ H Γ for every J ≥ 1 defined as:

V J = V 0 ⊕ J-1 j=0 W j Moreover, for any f ∈ H Γ , lim J→∞ f -P J (f ) Γ = 0 ( 2 
)
where P J (f ) is the projection of a function f into the space V J . The space H Γ is a RKHS and the corresponding reproducing kernels are given by:

K Γ (x, y) = g∈G ψ g (x) Γ(g) ψ g (y), x, y ∈ [0, 1)
By definition of the index set G, the kernel K can also be written as a sum of the reproducing kernels:

K Γ j (x, y) = 2 j -1 k=0 ψ j,k (x) Γ(j, k) ψ j,k (y) 
This implies that the RKHS H Γ , can be decomposed into a direct sum of wavelet RKHS's (spanned by a set of wavelets of scale j) as:

H Γ = V 0 ⊕ j≥0 W Γ j (3)
where each space W Γ j is the RKHS associated to the kernel K Γ j . This representation involves an infinite decomposition of the detail space, in practice we truncate (3) up to a maximum resolution J, in other words, the RKHS H J,Γ = V 0 ⊕ J j=0 W Γ j defines a multiresolution analysis of H Γ and the associated kernel is:

K Γ J (x, y) = g∈∪ 0≤j≤J G j ψ g (x) Γ(g) ψ g (y), x, y ∈ [0, 1) Furthermore, from (2) lim J→∞ K Γ -K Γ J ∞ = 0
We assume that Γ is only a function of j and equals to 2 2js on G j and s > 1/2, then H Γ equals to the Sobolev space B s 2,2 ([0, 1]) of index s. For more mathematical details we refer to [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF].

The wavelet kernel ANOVA

Consider now a multivariate regression problem:

y i = f (x i ) + ǫ i , i = 1, • • • , n
where x i = (x i 1 , . . . , x i d ) T is d dimensional vector of inputs, the ǫ i are i.i.d. and N (0, σ 2 ) random errors and f an unknown multivariate regression function to be estimated.

Definition

The idea behind the well known smoothing spline ANOVA model [START_REF] Wahba | Spline models for observational data[END_REF] is to construct a RKHS F = {f ∈ L 2 ([0, 1] d )} corresponding to the ANOVA decomposition:

f (X (1) , • • • , X (d) ) = f 0 + d l=1 f l (X (l) ) + l<m f lm (X (l) , X (m) ) + . . . + f 1,2,...,d (X (1) , • • • , X (d) ) (4)
where f 0 is a constant, f j 's are univariate functions representing the main effects, f jl 's are bivariate functions representing the two way interactions, and so on. Then the model space F is the tensor product space of H l Γ :

F = d l=1 H l Γ = {1} ⊕ H l Γ ⊗ H m Γ = (V l 0 ⊗ V m 0 ) J-1 j=0 Γ -2 j (W l j ⊗ W m j ) (7) 
It's easy to see that V 0 is also the subspace of L 2 ([0, 1]) spanned by the constant function on [0, 1], one has V 0 = V l 0 ⊗ V m 0 = {1}. Thus, the function space F, which is a wavelet-based RKHS, can also be written as:

F = {1} ⊕ q γ=1 F γ (8)
where the F γ is an orthogonal subspaces of F and correspond to the subspaces Hl Γ , [ Hl Γ ⊗ Hm Γ ], etc. . . In the additive model q = d where d is the number of input parameters and in the model with two way interactions q = d(d + 1)/2. We assume that a second order ANOVA expansion gives a satisfactory approximation of f . We denote by P Γ γ f the orthogonal projection of f onto Γ -1 j W j and • the norm in the RKHS Γ -1 j W j . Under the framework of smoothing spline ANOVA one way to estimate f is to find f ∈ F that minimizes:

1 n n i=1 {y i -f (x i )} 2 + λ 2 q γ=1 J-1 j=0 2 j -1 k=0 θ -1 γ,j,k P Γ γ,j,k f 2 (9)
where θ γ,j,k ≥ 0. If θ γ,j,k = 0, then the minimizer is taken to satisfy P Γ γ,j,k f 2 = 0, using the convention 0/0 = 0. The parameter λ controls the trade-off between the first term in the above expression which discourages the lack of fit of f and the second one which penalizes the roughness of f . In analogy with COSSO [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF] and wavelet kernel penalized estimation [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF] we propose the WK-ANOVA procedure, another way to estimate f , given by f ∈ F that minimize:

1

n n i=1 {y i -f (x i )} 2 + λ 2 R q (f ) (10) with R q (f ) = q γ=1 J-1 j=0 2 j -1 k=0 P Γ γ,j,k f is a sum of wavelet-based RKHS norms, instead of the squared RKHS norm employed in (9). We note that R q (f ) is not a norm in F but a pseudo-norm in the following sense: R q (f ) ≥ 0, R q (cf ) = |c|R q (f ), R q (f + h) ≤ R q (f ) + R q (h) ∀ f, h ∈ F, and, R q (f ) > 0 for any non constant f ∈ F. Furthermore B ≤ R q (f ) 2 ≤ qB (11) with B = q γ=1 J-1 j=0 2 j -1 k=0 P Γ γ,j,k f 2 (12)
Note that there is only one smoothing parameter λ which should be properly chosen, instead of multiple smoothing parameters θ's in (9).

The existence of the WK-ANOVA estimate, which is due to the convexity of ( 10), is guaranteed by adapting Theorem 1 of [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF].

Theorem 3.1. Let F be the wavelet-based RKHS of functions over [0, 1] d . Assume that F can be decomposed as ( 8). There exists a minimizer of ( 10). Define • n as the Euclidian norm in R n . Under our previous assumption, s > 1/2 and Γ j = 2 2sj . The following theorem is equivalent to theorem 2 of [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF] and shows that the WK-ANOVA estimator in the additive model has a rate of convergence n -s/(2s+1) , where s is the order of smoothness of the components.

Theorem 3.2. Consider the regression model y

i = f 0 (x i ) + ε i , i = 1, ..., n, where x i 's are given deterministic points in [0, 1] d , and the ε i 's are i.i.d. N (0, σ 2 ) noise variables. Assume f 0 lies in F = {1} ⊕ d l=1 H l Γ , with H γ Γ = {1} ⊕ Hγ Γ being the Sobolev space B s 2,2 ([0, 1]) of index s.
Consider the WK-ANOVA estimator f at the design points as defined by (10).

Then (i) if f 0 is not a constant, and λ -1 n = O p (n s/(2s-1) )R (2s-1)/(4s+2) q (f 0 ), we have f - f 0 n = O p (λ n )R 1/2 q (f 0 ); (ii) if f 0 is a constant, we have f -f 0 n = O p (max{n -s/(2s-1) λ -2/(2s-1) n , n -1/2 }).
The following Lemma shows that the solution of ( 10) is in finite dimensional space and the WK-ANOVA estimate can be computed directly from (10) by linear programming techniques.

Lemma 3.3. Let f = b + q γ=1 fγ be a minimizer of ( 10), with f γ ∈ F γ . Then fγ ∈ span{K γ (x i , •), i = 1, ..., n}, where K γ is the reproducing kernel of the space F γ Using the suggestion of [START_REF] Antoniadis | Regularization of wavelet approximations[END_REF] for solving penalized problems with l 1 penalty, we can give an equivalent formulation of (10) for computational consideration. Consider the problem of finding θ = {θ γ,j,k , γ = 1, ..., q; j = 0, ..., J -1; k = 1, ..., 2 j -1} and f ∈ F to minimize:

1 n n i=1 {y i -f (x i )} 2 + λ 0 q γ=1 J-1 j=0 2 j -1 k=0 θ -1 γ,j,k P Γ γ,j,k f 2 + ν q γ=1 J-1 j=0 2 j -1 k=0 θ γ,j,k (13) 
subject to θ γ,j,k ≥ 0, and where λ 0 is a fixed positive constant and ν is a smoothing parameter.

We fix λ 0 at some value. Then 13). (ii) On the other hand, if a pair ( θ, f ) minimizes ( 13), then f minimizes (10).

Lemma 3.4. Set ν = λ 4 /(4λ 0 ). (i) if f minimizes (10), set θγ,j,k = λ 1/2 0 ν -1/2 P Γ γ,j,k f , then the pair ( θ, f ) minimizes (
As already introduced by Amato et al. ( 2006) we can penalize the norm of coefficients by blocks, which allows reducing the number of θ's that need to be estimated and can provide a better regularization. Hence, as defined before:

K Γ jm (x, y) = k∈T jm ψ j,k (x) Γ j ψ j,k (y) 
where m = 1, ..., M j with M j denotes the number of blocks at resolution j, and T jm the blocks of length L jm at resolution j. In the same way consider the decomposition:

H l Γ = V 0 ⊕ J-1 j=0 m Γ -1 j W l j,m
then replace (13) by:

1 n n i=1 {y i -f (x i )} 2 + λ 0 q γ=1 J-1 j=0 M j m=1 θ -1 γ,j,m P Γ γ,j,m f 2 + ν q γ=1 J-1 j=0 M j m=1 θ γ,j,m (14) 
We can note that the form of ( 14) is similar to the smoothing spline ANOVA (9) with multiple smoothing parameters and an additional penalty on the θ's. There is only one smoothing parameter ν in ( 14) and θ's are part of the estimate, rather than three smoothing parameters.

For the WK-ANOVA procedure the sparsity on the detail components is controlled by the additional penalty on θ's in ( 14) makes possible to have some θ's to be zero, thus producing a sparse kernel estimate in sense of [START_REF] Gunn | Structural modeling with sparse kernels[END_REF].

Algorithm

We will use an iterative optimization algorithm which is equivalent to the one used in [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF] and [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF]. On each step of iteration, for any fixed θ we minimize ( 14) with respect of f , and then for this choice of f we minimize ( 14) with respect of θ. Note that for any fixed θ (14) is equivalent to the smoothing spline ANOVA procedure. Therefore from [START_REF] Wahba | Spline models for observational data[END_REF] the solution f of ( 14) has the following form

f (x) = b + n i=1 c i q γ=0 J-1 j=0 M j m=1 θ γ,j,m K Γ γ,j,m (x i , x) (15) 
Where

c = (c 1 , ..., c n ) T , b ∈ R, K Γ γ,j,m is the reproducing kernel of Γ -1 j W l γ,j,m if γ ≤ d and is the reproducing kernel of Γ -2 j W l γ,j,m ⊗ W p γ,j,m else.
In what follows, we denote by

K Γ γ,j,m the n × n matrix {K Γ γ,j,m (x i , x t )}, i = 1, ..., n, t = 1, ..., n, by K Γ θ the matrix q γ=0 J-1 j=0 M j m=1 θ γ,j,m K Γ γ,j,m (x i , x
) and 1 n be the column vector consisting of n ones. Then we can write f = K Γ θ c + b1 n , it follows that ( 14) can be expressed as

1 n Y - q γ=0 J-1 j=0 M j m=1 θ γ,j,m K Γ γ,j,m c -b1 n 2 n + λ 0 c T K Γ θ c + ν q γ=0 J-1 j=0 M j m=1 θ γ,j,m (16) 
where θ γ,j,m ≥ 0, γ = 1, ..., q, j = 0, ..., J -1, m = 1, ..., M j . If θ's are fixed, then ( 16) can be written as

min c,b Y -K Γ θ c -b1 n 2 n + nλ 0 c T K Γ θ c (17) 
which is similar to the smooting spline problem (a quadratic minimization problem) and the solution satisfy (for more details see [START_REF] Wahba | Spline models for observational data[END_REF]):

(K Γ θ + nλ 0 I)c + b1 n = Y 1 T n c = 0
where I is the identity matrix. Let's fix b and c at their values from (17), denote d γ,j,m = K Γ γ,j,m c, and let D be the n × ( γ j (2 j -1)) matrix with the (γ, j, m)th column being d γ,j,m . The θ that minimizes ( 16) is the same as the solution to

min θ z -Dθ 2 n + nν q γ=0 J-1 j=0 M j m=1 θ γ,j,m subject to θ γ,j,m ≥ 0 ( 18 
)
where

z = Y -(1/2)nλ 0 c -b1 n .
By starting from a simpler estimate such as the one obtained by penalized least squares with quadratic penalties on the coefficients, a one step update procedure is sufficient to improve the WK-ANOVA estimator. Then we propose a one step update procedure:

1. Initialization: Fix θ γ,j,m = 1, γ = 1, ..., q, j = 0, ..., J -1, m = 1, ..., M j . 2. Tune λ 0 using v-fold-cross-validation.

3. Solve for c and b with (17).

4. For each fixed ν, solve (18) with the c and b obtained in step 3. Tune ν using v-foldcross-validation. The θ's corresponding to the best ν are the final solution at this step. 5. With the new θ tune λ 0 using v-fold-cross-validation. 6. With the new θ and λ 0 , solve for c and b with (17)

A discussion of a one step procedure and fully iterated procedure can be found in [START_REF] Antoniadis | Regularization of wavelet approximations[END_REF]. The performance of the WK-ANOVA estimator depends on the smoothing parameter ν and the chosen resolution J. The choice of these parameters obviously involves an arbitrary decision. In our work we will fix J = log 2 n, but by varying the resolution level we can explore features of the data arising on different scales. We will use v fold cross validation to tune ν. It seems reasonable to take v equal to 5. We also choose to use compactly supported wavelets, it follows that the numerical algorithm for the kernel computation is based on Daubechies cascade procedures [START_REF] Daubechies | Ten lectures on wavelets[END_REF]. Specifically, the cascade algorithm computes the values of wavelets at dyadic points. In order to evaluate the kernel matrices K Γ γ,j,m the values of the wavelets have been computed on a fine dyadic grid and stored in a table. Values of wavelets at arbitrary points, necessary for evaluation of K Γ γ,j,m , were then computed by considering the value at the closest point on the tabulated grid. The table construction of wavelet kernel matrices requires O(n 2 S) elementary operations where S denotes the length of the wavelet filter. However, the table is constructed once and stored in memory. In addition, as the dimension of the problem grows, the number of matrices K Γ γ,j,m also grows as well, and because of the v-fold-cross-validation these matrices must be re-computed several times. All this increases significantly the computational time, and therefore it is necessary to compute the matrices once and stored them in memory. The formulation in ( 18) is a high-dimensional nonnegative garrote (NNG) optimization problem introduced by [START_REF] Breiman | Better subset regression using the nonnegative garrote[END_REF] for which there exists a variety of algorithms to find the solution. However, we introduce in the next section a new iterative shrinkage algorithm. Even if the number of iterations may be high to compete with modern high-dimensional optimization algorithms, the proposed iterative algorithm is conceptually simple and easy to implement.

Iterative projected shrinkage algorithm

Recently, iterative shrinkage/theresholding (IST) algorithm tailored to solve the LASSO regression problem [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], has been proposed independently by several research groups (among them [START_REF] Figueiredo | An em algorithm for wavelet-based image restoration[END_REF] and [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]). This algorithm combines the Landweber iteration [START_REF] Landweber | An iterative formula for fredholm integral equations of the first kind[END_REF] and the soft thresholding method. The main advantages of this algorithm are its conceptual simplicity, its easiness of implementation and only involves matrix-vector multiplication. In this section, we propose a modified version of IST algorithm that solves the NNG regression problem.

Definition

Consider the (18) regression problem:

min θ z -Dθ 2 n + nν q γ=0 J-1 j=0 M j m=1
θ γ,j,m subject to θ γ,j,m ≥ 0

The functional ( 18) is convex since matrix D T D is symmetric and positive semidefinite and since the constraints θ γ,j,m > 0 define also a convex feasible set. For the convex optimization problem, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the optimal solution θ * , where θ * = argmin θ z -Dθ 2 + nν q γ=0 J-1 j=0 M j m=1 θ γ,j,m subject to θ γ,j,m ≥ 0. This KKT conditions are defined as:

{-d T γ,j,m (z -Dθ * ) + ν}θ * γ,j,m = 0 -d T γ,j,m (z -Dθ * ) + ν ≥ 0 θ * γ,j,m ≥ 0 which is equivalent to -d T γ,j,m (z -Dθ * ) + ν = 0, if θ * γ,j,m = 0 (19) -d T γ,j,m (z -Dθ * ) + ν > 0, if θ * γ,j,m = 0 ( 20 
)
where d γ,j,m denotes the (γ, j, m)th column of D. Therefore, from ( 19) and ( 20) we can derive the fixed-point equation:

θ * = P Ω + (δ Sof t ν (θ * + D T (z -Dθ * ))) (21) 
where P Ω + is the nearest point projection operator onto the nonnegative orthant (closed convex set) Ω + = {x : x ≥ 0} and δ Sof t λ is the soft-thresholding function defined as

δ Sof t ν (x) =    0 if |x| ≤ ν x -ν if x > ν x + ν if x < -ν
Thus, we propose an iterative algorithm that we name the iterative projected shrinkage algorithm (IPS) and which is defined by

θ [p+1] = P Ω + (δ Sof t ν (θ [p] + D T (z -Dθ [p] ))) (22) 
The following theorem concerns the convergences of IPS algorithm:

Theorem 4.1. IPS algorithm defined by ( 22) converge to the solution of ( 18), whenever such solution exists, for any starting vector θ [0] .

The proof of this theorem can be found in the Appendix. We have assumed that λ max (D T D) ≤ 1 (where λ max is the maximum eigenvalue). Otherwise we solve the equivalent minimization problem

min θ z α - D α θ 2 + nν α q γ=0 J-1 j=0 M j m=1 θ γ,j,m subject to θ γ,j,m ≥ 0
where the positive constant α ensures that λ max (D T D) ≤ 1.

Stopping conditions IPS algorithm is an iterative procedure which produces a sequence of solutions θ [0] , θ [0] , . . . , θ [p] converging to the optimal solution θ * . There is a need to stop the algorithm when the solution θ [p] is sufficiently close to the optimal solution θ * . Several stopping conditions have been proposed in the literature (for example [START_REF] Defrise | A note on stopping rules for iterative regularization methods and filtered svd[END_REF]). We choose to use a stopping condition based on the KKT conditions, which are easy to evaluate. This ǫ-KKT conditions are defined as

d T γ,j,m (Y -Dθ * ) = ν -ǫ, if θ * γ,j,m = 0 d T γ,j,m (Y -Dθ * ) ≤ ν -ǫ, if θ * γ,j,m = 0
where ǫ > 0 is a constant which defines the precision of the solution.

Simulations

In this section we will study the empirical performance of WK-ANOVA, in terms of prediction accuracy. The measure of the prediction accuracy is given by Q 2 which is defined as

Q 2 = 1 - ntest i=1 (y i -f (x i )) 2 ntest i=1 (y i -ȳ) 2 , with n test = 500 (23)
where y i denotes the ith test observation of the test set, ȳ is their empirical mean and f (x i ) is the predicted value. We compare the obtained results with those obtained by COSSO and Gaussian Process (GP) [START_REF] Busby | Hierarchical adaptive experimental design for gaussian process emulators[END_REF]. We also compare the methods for different experimental design sizes, uniformly distributed on [0, 1] d and built by Latin Hypercube Design procedure [START_REF] Mckay | A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[END_REF] with maximin criterion (Santner et al., 2003) (maximinLHD). Moreover, different signal to noise ratio were applied SN R ≡ 1 : 3 (high noise) SN R ≡ 1 : 7 (medium noise) and SN R ≡ ∞ (without noise), with SN R = [V ar(f (X))]/σ 2 . For each setting of test examples 2 and 3, we perform 50 times the test. We fixed M j = 2 j -1 for γ = 1, . . . , d and M j = 1 for γ > d, in other words we penalize by the translation parameter k for the main effects and by resolution j for the interaction. This assumption permits us reducing significantly the computational time. The wavelets used in our tests were Daubechies wavelets with 3 vanishing moments [START_REF] Daubechies | Ten lectures on wavelets[END_REF]. The WK-ANOVA was implemented using R. We run the simulations on a computer operated by 32 bits-Windows OS, this latter imposes limits on the total memory allocation. Knowing that the storage of the matrices K Γ γ,j,m is memory consuming, we limit the dimension to our examples to 8 and the sample size to estimate Q 2 to 500. To fit COSSO models we have used a modified version of the original Matlab code provided by Yi Lin and Hao Helen Zhang. We made our modification of this algorithm to make it faster. The GP code was implemented using R with a generalized power exponential Family [START_REF] Busby | Hierarchical adaptive experimental design for gaussian process emulators[END_REF].

Example 1

Let's consider an additive model with X ∈ [0, 1] 6 , with the following function

f (X) = g 1 (X (1) ) + g 2 (X (2) ) + g 3 (X (3) ) + g 4 (X (4) )
where g 1 (t) = t; g 2 (t) = (2t -1) 2 ; g 3 (t) = sin(2πt) 2 -sin(2πt) ;

g 4 (t) = 0.1 sin(2πt) 0.2 cos(2πt) + 0.3 sin 2 (2πt) + 0.4 cos 3 (2πt) + 0.5 sin 3 (2πt) Therefore X (5) , X (6) are uninformative. We use an experimental design of size n = 200, built by maxminLHD, and SN R ≡ ∞. Figure 1 gives the plot of data observation with the true ANOVA component f l and theirs WK-ANOVA estimates against inputs X (l) , l = 1, . . . , 6.

The Q 2 of this WK-ANOVA estimate is equal to 0.96 which is a good performance. However, we can note that the estimation of the linear function component f 1 does suffer from using a wavelet method. Part of the reason is the boundary effects caused by using periodic wavelets.

Example 2

In this first test case, consider an additive model with X = [0, 1] 8 , with the following function

f (X) = g 1 (X (1) ) + g 2 (X (2) ) + g 3 (X (3) ) + g 4 (X (4) ) + ǫ
where g 1 (t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt) + 0.4 cos 3 (2πt) + 0.5 sin 3 (2πt)

g 2 (t) = (2t -1) 2 g 3 (t) = | sin(3πt)| + 0.5| sin(5πt)| 2 -sin(4πt) g 4 (t) = | sin(2πt)| 2 -sin(2πt)
Therefore X (5) , . . . , X (8) are uninformative. Note that all informative input of f have nonlinear response, in addition g 3 and g 4 have discontinuities on the derivative. The true ANOVA components f l , l = 1, . . . , n with their WK-ANOVA, COSSO and GP estimates are given in figure 2. These estimates were built with an experimental design of size n = 200 and with noise ratio SN R = 3. The WK-ANOVA has more fidelity to the reality than COSSO and GP especially for the components f 3 and f 4 . Indeed, WK-ANOVA captures more the discontinuities of the components f 3 and f 4 . This good fit is due to the properties of wavelets analysis. In other words, our algorithm based on wavelets is well suited to this type of functions (with discontinuities on the derevatives). We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200) and different signal to noise ratio SN R ≡ 1 : 3, SN R ≡ 1 : 7 and SN R ≡ ∞. The results are summarized in figure 3 each panel is a boxplot of the 50 estimations of Q 2 . As expected, the accuracy of WK-ANOVA estimates increases when the sample size raise. We can see that WK-ANOVA procedure outperforms COSSO and GP in all the studied settings. Moreover, even though there are much more parameters to estimate with WK-ANOVA comparing to COSSO, this procedure does not seem to suffer from small sample size effect. For this example, WK-ANOVA has shown better denoising properties and better predictivity. In addition, for n = 100 and n = 200 WK-ANOVA is the most robust.

Example 3

Consider the g-Sobol function, which is strongly nonlinear and is described by a nonmonotonic relationship. This function is a well-known test case in the studies of global sensitivity analysis. Figure 4 illustrates the g-Sobol function against the two most influential x ( (
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WK parameters X (1) and X (2) . The g-Sobol function [START_REF] Saltelli | Sensitivity analysis[END_REF]) is defined for 8 inputs factors as

g Sobol (X (1) , . . . , X (8) ) = 8 k=1 g k (X (k) ) with g k (X (k) ) = 4X (k) -2 + a k 1 + a k
where {a 1 , . . . , a 8 } = {0, 1, 4.5, 9, 99, 99, 99, 99}. The contribution of each input X (k) to the variability of the model is represented by the weighting coefficient a k . The lower this coefficient a k , the more significant the variable X (k) . For example: k) is non significant.

           a k = 0 → x (k) is very important, a k = 1 → x (k) is relatively important, a k = 4.5 → x (k) is poorly important, a k = 9 → x (k) is non important, a k = 99 → x (
We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200) and different signal to noise ratio SN R ≡ 1 : 3, SN R ≡ 1 : 7 and SN R ≡ ∞. The results are summarized in figure 5 each panel is a boxplot of the 50 estimations of Q 2 . We can see that for all the tested experimental design sizes and noise ratios WK-ANOVA outperforms COSSO and GP. Moreover, the accuracy of the prediction is very good ( Q2 = 0.98, where Q2 is the average of the Q 2 's) even with n = 50 for the setting without noise, when a design with n = 200 design is necessary to perform a response surface with Q2 = 0.94 for GP and with Q2 = 0.90 for COSSO. Clearly, for this example WK-ANOVA has the best results in term of predictivity, denoising property and robustness. 

Conclusion

In this article, we introduced a new regularized nonparametric regression method that we named WK-ANOVA. Differently than other wavelet methods, WK-ANOVA does require neither an equispaced experimental design points, nor a dyadic size of data. For the tested analytical examples which contains some discontinuities, WK-ANOVA outperforms COSSO and GP. However, in example 1 the wavelet methods have undesired boundary in the case of the estimation of nonperiodic function, which results from the use of periodic wavelets. One future investigation topic is to use boundary adapted wavelets.

Proofs

Proof of Theorem 3.1. Consider the following decomposition of the wavelet-based RKHS F F = {1} ⊕ H q where H q = q γ=1 F γ . Denote by A(f ) the functional to be minimized in (10). A(f ) is convex and continuous. By inequality (11) we have R q (f ) ≥ f F for any f ∈ H q . Let K Hq be the reproducing kernel on H q and •, • Hq be the inner product of H q . Denote by e n = max n i=1 (K Hq ) (1/2) (x i , x i ). By the definition of the reproducing kernel and the properties of Γ, we have for any f ∈ H q and i = 1, ..., n

|f (x i )| = | f, K Hq(x i ,•) Hq | ≤ e n f F ≤ e n R q (f )
Let consider D a closed, convex and bounded set defined as:

D = {f ∈ F; f = b + f 1 , with b ∈ {1}, f 1 ∈ H q , R q (f ) ≤ v, |b| ≤ v 1/2 + (e n + 1)v} where v = max i {y 2 i + |y i | + 1}.
Therefore by the theorem 4 of [START_REF] Tapia | Nomparametric Probability Density Estimation[END_REF]. There exist a minimizer f of (10) in D and A(f ) ≤ A(0) ≤ v. On the other hand, for any f

∈ F with R q (f ) > v clearly A(f ) ≥ R q (f ) > v; for any f ∈ F, f = b + f 1 with b ∈ {1}, f 1 ∈ H q , R q (f ) ≤ v and |b| > v 1/2 + (e n + 1)v, we therefore have |b + f 1 (x i ) -y i | > (v 1/2 + (e n + 1)v) -e n v -v = v 1/2
Hence A(f ) > v, and for any f / ∈ D, we have A(f ) > A(f ), wich proves that f is the minimizer of (10) in F.

Proof of Theorem 3.2. The condition on the unknown regression function f 0 are only active for its wavelets coefficients and do not include the V 0 scaling coefficients of f 0 . For any f ∈ F, write f

(x) = b + f 1 (x (1) ) + ... + f d (x (d) ) = b + g(x), such that n i=1 f l (x (l) i ) = 0, l = 1, ..., d and where b ∈ {1} and g ∈ d l=1 H l Γ . Similarly, write f 0 (x) = b 0 + g 0 (x), such that g 0 ∈ d l=1 H l Γ . By construction n i=1 {g 0 (x i ) -g(x i )} = 0, we can write A(f ) as : (b -b 0 ) 2 + 2 n (b -b 0 ) n i=1 ε i + 1 n ) n i=1 (g 0 (x i ) + ε i -g(x i )) 2 + λ 2 n R q (g)
Therefore, the minimizing b is b = b 0 + 1/n n i=1 ε i , which shows that b converges towards b 0 at rate n -1/2 . On the other hand, ĝ must minimize over d l=1 H l Γ the functional

1 n n i=1 {g 0 (x i ) + ε i -g(x i )} 2 + λ n R q (g) Let G = {g ∈ F : g(x) = f 1 (x (1) ) + ... + f d (x (d) ), with n i=1 f l (x (l) 
i ) = 0, l = 1, ..., d}. then g 0 ∈ G and ĝ ∈ G. The conclusion of theorem 2 follows from the following Lemma.

Lemma Appendix .1. (Theorem 10.2 of [START_REF] Van De Geer | Empirical Processes in M-Estimation[END_REF], lemma 5.1 of [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF] and lemma 3 of [START_REF] Lin | Component selection and smoothing in smoothing spline analysis of variance models[END_REF] ) Let H ∞ (δ, G) be the δ-entropy of G for the supremum norm. Then H ∞ (δ, {g ∈ G : R q (g) ≤ 1} ≤ Ad (s+1)/s δ -1/s , for all δ > 0, n ≥ 1, and some A > 0 and 0 < 1/s < 2.

Proof of Lemma Appendix .1. Define G l as the set of univariate function of x (l) .

G l = {f l ∈ H l Γ : R q (f l ) ≤ 1, n i=1 f γ (x i ) (l) = 0}
It follows from Lemma 5.1 of [START_REF] Amato | Wavelet kernel penalized estimation for nonequispaced design regression[END_REF] that

H ∞ (δ, G l ) ≤ Aδ -1/s
for all δ > 0, and n ≥ 1, some A > 0 and 0 < 1/s < 2. By definition of G we see that in terms on the supreme norm, if each G l , l = 1, .., d can be covered by N balls of radius δ, then the set {g ∈ G : R q (g) ≤ 1} can be covered byN d balls with radius dδ, and we get :

H ∞ (dδ, {g ∈ G : R q (g) ≤ 1}) ≤ Adδ -1/s

Proof of Lemma 3.3. For any f ∈ F, write f = b + q γ=1 J-1 j=0

2 j -1 k=0 f γ,j,k with b ∈ {1} and f γ,j,k ∈ W Γ γ,j,k . Let the projection of f γ,j,k onto span{K Γ γ,j,k (x i , •), i = 1, ..., n} ⊂ W Γ γ,j,k be denoted by α γ,j,k and the orthonormal complement by β γ,j,k . Then f γ,j,k = α γ,j,k + β γ,j,k and (10) can be written as

1 n n i=1 {y i -b - q γ=1 J-1 j=0 2 j -1 k=0 K Γ γ,j,k (x i , •), α γ,j,k } 2 + λ 2 q γ=1 J-1 j=0 2 j -1 k=0 ( α γ,j,k 2 + β γ,j,k 2 ) 1/2
Therefore any minimizing f must be such that β γ,j,k = 0, and the result follows immediately.

Proof of Lemma 3.4. Denote the functional in ( 14) by B(θ, f ). For any γ = 1, ..., q; j = 0, ..., J -1; k = 1, ..., 2 j -1, we have

λ 0 θ -1 γ,j,k P Γ γ,j,k f 2 W Γ γ,j,k + νθ γ,j,k ≥ 2λ 1/2 0 ν 1/2 P Γ γ,j,k f Γ γ,j,k = λ 2 P Γ γ,j,k f W Γ γ,j,k
.

for any θ γ,j,k ≥ 0 and f ∈ F, and the equality holds if and only if θ γ,j,k = λ 1/2 0 ν -1/2 P Γ γ,j,k f W Γ γ,j,k . Therefore B(θ, f ) ≥ A(f ), where A(f ) denote the functional of (10) for any θ γ,j,k ≥ 0, γ = 1, ..., q; j = 0, ..., J -1; k = 1, ..., 2 j -1 and f ∈ F, with the equality holds only if θ γ,j,k = λ 1/2 0 ν -1/2 P Γ γ,j,k f W Γ γ,j,k

. The conclusion then follows.

Proof of Theorem 4.1. The orthogonal projection P Ω x of x onto Ω + is characterized by the following useful inequality: for all a ∈ Ω + and all x we have a -P Ω + x, P Ω + x -x ≥ 0 (.1)

From the inequality (.1) we can say that for any Ω + , x and z, we have P Ω + z -P Ω + x, P Ω + x -x ≥ 0 and P Ω + z -P Ω + x, z -P Ω + z ≥ 0 (.2)

Adding, we obtain P Ω + z -P Ω + x, z -x ≥ P Ω + z -P Ω + x 2 (.3)

From the Cauchy inequality we conclude that The convergence of the IPS algorithm follows from the following Lemma.

Lemma Appendix .2. (Lemma 3.4 of [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF]) S ν is nonexpansive, i.e., for all x and z ∈ R,

δ Sof t ν (x) -δ Sof t ν (z) ≤ x -z (.6)
Since (.9) is convex the Karush-Kuhn-Tucker theorem suggests that a necessary and sufficient condition for θ * to be the solution of model ( 18) is that there is λ ≥ 0 such that, for any γ = 1, ..., q, j = 0, ... γ,j,m = 0 and that the condition (.9) is always satisfied. Now we consider the second possibility. If θ * γ,j,m is a fixed of the map T , with T x = P Ω + (S ν (x)), that is, T θ * γ,j,m = θ * γ,j,m . By (.10), we have

d T γ,j,m (Y -Dθ * ) -λ = 0
The conclusion follows immediately.
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 1 Figure1: Plot of the six true functional components, f l , l = 1, . . . , 4 along with the data observations and theirs estimates given by WK-ANOVA for a realization from example 1
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 23 Figure 2: Plot of f l , l = 1, . . . 4 along with theirs estimates given by WK-ANOVA, COSSO and GP for a realization from example 2
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 4 Figure4: Plot of g-Sobol function versus inputs X (1) and X (2) with other inputs fixed at 0.5
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 5 Figure 5: Q2 results from example 3
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  Ω + x -P Ω + z ≤ x -z (.4) Let E be nonempty set of all θ ∈ Ω + at which the functional (18) attains its minimum value over Ω + and θ * a member of E. Then θ * = P Ω + (δ Sof t ν (θ * )) andθ *θ [p+1] = P Ω + (δ Sof t ν (θ * )) -P Ω + (δ Sof t ν (θ [p] )) ≤ δ Sof t ν (θ * ) -δ Sof t ν (θ [p] ) (.5)

  , J -1, m = 1, ..., M j {-d T γ,j,m (Y -Dθ * ) + ν}θ * γ,m + d T γ,j,m (Y -Dθ [p] ) -ν (.10)It is not difficult to show that the KKT conditions are satisfied when θ [p+1]

d l=1 Hl Γ ⊕ l<m [ Hl Γ ⊗ Hm Γ ]...(5)where H l Γ = {1} ⊕ Hl Γ and Hl Γ is the RKHS associated to the first-order component functions f l of ANOVA expansion. The tensor products [ Hl Γ ⊗ Hm Γ ] is associated to the second-order component function f lm . We denote by W l j (a detail space at scale j) the RKHS associated to wavelet kernel K j = 2 j -1 k=0 ψ j,k (x)ψ j,k (y) and the variate X (l) , thereby for a fixed maximum resolution J the function space H l Γ can be written as:H l Γ = V 0 ⊕ J-1 j=0 Γ -1 j W l j(6)and the tensor product [H l Γ ⊗ H m Γ ] as:
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