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Multivariate wavelet kernel regression method

Samir Touzani, Daniel Busbya

aIFP Energies nouvelles, 92500 Rueil-Malmaison, France

Abstract

The purpose of this paper is to introduce a new penalized multivariate nonparametric
regression method, in the framework of wavelet decomposition. We call this method the wavelet
kernel ANOVA (WK-ANOVA), which is a wavelet based reproducing kernel Hilbert space
(RKHS) method with the penalty equal to the sum of blockwise RKHS norms. This method
does not require design points to be equispaced or of dyadic size thus making high-dimensional
wavelet estimation feasible. We also introduce a new iterative shrinkage algorithm to solve the
nonegative garrote optimization problem resulting in the variable selection step. Numerical
experiments on several test functions show that the WK-ANOVA provides competitive results
compared to other standard methods.

Keywords: Wavelet, Reproducing kernel, Nonparametric regression, ANOVA, Landweber
iterations.

1. Introduction

In this work we consider the classical multivariate nonparametric regression problem with
the aim of recovering an unknown function f from noisy data

yi = f(xi) + ǫi, i = 1, . . . , n

where xi = (xi1 , . . . , xid)
T is d dimensional vector of inputs, the ǫi are i.i.d. and N(0, σ2)

random errors.
The scope of this work is to take advantage of the multiresolution analysis provided by wavelet
decomposition in multivariate function estimation. Indeed, in recent years there has been an
important development in the application of wavelet methods in statistics, especially in signal
processing, in image and function representation methods, with many successes in the efficient
analysis and compression of noisy data.
The multiresolution analysis provides a good time frequency localization, which makes wavelet
methods particularly effective to estimate functions with sharp spikes, and discontinuities.
Thus wavelets are used in various nonparametric regression methods. However most of these
methods are implemented only for one (signal) or two (image) dimensional problems. The rea-
son for this is that these algorithms assumed that data is dyadic and with equally spaced points.
Several algorithms have been proposed to overcome the setting of non-dyadic and non-equispaced
design. Among them, Antoniadis et al. (1997) transforms the random design into equispaced
data via a binning method. Kovac and Silverman (2000) apply the linear transformation to
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the data to map it to a dyadic and equispaced set of points. Kerkyacharian and Picard (2004)
project the data on an unusual non-orthonormal basis, called warped wavelet basis. Amato
et al. (2006) suggested a regularization method relying on wavelet kernel reproducing Hilbert
spaces, which does not require a pre-processing of data. The method also achieves optimal
convergence rates in the Besov spaces when the estimation error is calculated at the design
points only no matter how irregular the design is. Given that, it seems that this method is
well adapted to be generalized for the multivariate regression using wavelets.
Inspired by the component selection and smoothing operator (COSSO) (Lin and Zhang, 2006),
which is based on ANOVA (ANalysis Of VAriance) decomposition, and the wavelet kernel pe-
nalized estimation for non-equispaced design regression proposed by Amato et al. (2006), we
introduce a new approach in the estimation of ANOVA components. Given a wavelet type
expansion of f we consider a class of wavelet estimators for the nonparametric regression prob-
lem using a penalized least-squares approach. The penalties are chosen in order to control the
smoothness of the resulting estimator. For this we use the same penalty as the one used for
COSSO, in other words the semi-norm penalty. So we take for penalty, a weighted sum of
wavelet details norms.
In this paper, we first shortly review some definitions on wavelet. Then we present a new
nonparametric regression method, named Wavelet Kernel ANOVA (WK-ANOVA). A new it-
erative projected shrinkage algorithm based on Landweber iterations is introduced in section
4. Finally, numerical tests are presented and discussed.

2. Multiresolution analysis and wavelet kernel

Consider the univariate regression problem:

yi = f(xi) + ǫi, i = 1, . . . , n (1)

where (xi)i=1,...,n is the irregular design, the ǫi are i.i.d. and N(0, σ2) random errors and f an
unknown regression function to be estimated.

2.1. Multiresolution analysis

We define a multi resolution analysis as a sequence of closed subspaces Vj , j ∈ Z in L2(R)
and which possesses the following properties:

1. ∩j∈ZVj = 0,

2. ∪j∈ZVj = L
2(R),

3. ∀f ∈ L
2(R), ∀j ∈ Z, f ∈ Vj if and only if f(2x) ∈ Vj+1;

4. ∀f ∈ L
2(R), ∀k ∈ Z, f ∈ V0 if and only if f(x− k) ∈ V0,

5. there exist a scaling function φ ∈ V0 whose integer-translates x 7→ φ(x− k)k∈(Z) span
the space V0.

If we define P jf as the projection of a function f onto the space Vj , this is expressed by

P jf = P j−1f + wj−1

where the function wj−1 represents the residual between the two approximations on V j and
on V j−1. This function can be written in terms of dilated and translated wavelets:

wj−1 =
∑

k∈Z

〈f, ψj−1,k〉ψj−1,k
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where {ψj,k(x) = 2j/2ψ(2jx − k); k ∈ Z} is a set of functions that are orthogonal to each
function of Vj and span the space Wj which is a detail space. Hence, an important property
of multiresolution analysis can be defined as:

Vj = Vj−1 ⊕Wj−1

By periodizing an orthonormal basis for L2(R) we construct an orthonormal wavelet basis for
L2([0, 1]) generated by dilatation and translation of compactly supported scaling function φper,
and a compactly supported wavelet ψper, where:

φper
j,k (x) =

∑

l∈Z

φj,k(x+ l), ψper
j,k (x) =

∑

l∈Z

ψj,k(x+ l)

and
V per

j = span{φper
j,k , k ∈ Z}, W per

j = span{ψper
j,k , k ∈ Z}

The resulting orthogonal basis provides an orthogonal decomposition

L2([0, 1]) = V per
0 ⊕W per

0 ⊕W per
1 ⊕ ...

where V per
0 (spanned by φ0,0 = ψ−1,0) consists of constant function andW per

j is a 2j dimensional
space. To enhance the interpretability we omit in what follows the index per.
For any integer j0 ≥ 0 any function f ∈ L2([0, 1]) is expressed in the form:

f(t) =
2j0−1
∑

k=0

αj0,kφj0,k(t) +
∑

j≥j0

2j0−1
∑

k=0

βj,kψj,k(t), t ∈ [0, 1]

where the scaling coefficients are αj0,k = 〈f, φj0,k〉 (k = 0, 1, ..., 2j0 − 1) and the wavelet coeffi-
cients are βj,k = 〈f, φj,k〉 (j ≥ j0, k = 0, 1, ..., 2j0 − 1).
For more details on the mathematical aspects of wavelets and their applications in statistical
settings we refer to Daubechies (1992), Vidakovic (1999), Ogden (1997) and Antoniadis et al.
(2001).

2.2. Wavelet kernel

Let G−1 = {−1} × {0}, G0 = {0} × {0, 1} and for each integer J ≥ 1 let GJ = {J} × {k ∈
{0, ..., 2J}; k/2 /∈ Z}, i.e. GJ is the index set of wavelets at resolution level J . The whole set
of indexes pairs (j, k) that describes all wavelets will be denoted by G =

⋃

j≥−1Gj . Therefore,
any function f ∈ L2([0, 1)) admits the infinite wavelet expansion:

f =
∑

g∈G

fgψg

where ψg is the wavelet basis function indexed by g ∈ G, fg is the corresponding expansion
coefficient and ψ−1,0 = φ0,0.
We now define a class of wavelet-based Hilbert spaces. For any function:

Γ : G→ [0,∞)
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define the Hilbert space:

HΓ = {f ∈ L2([0, 1]) :
∑

g∈G

Γ(g)|fg|
2 <∞}

with scalar product:

〈f, h〉Γ =
∑

g∈G

fghgΓ(g)

and let be ‖ · ‖Γ the associated norm. As GJ is a finite subset of G, we have VJ ⊂ HΓ for every
J ≥ 1 defined as:

VJ = V0 ⊕

J−1
⊕

j=0

Wj

Moreover, for any f ∈ HΓ,
lim

J→∞
‖f − P J(f)‖Γ = 0 (2)

where P J(f) is the projection of a function f into the space VJ . The space HΓ is a RKHS and
the corresponding reproducing kernels are given by:

KΓ(x, y) =
∑

g∈G

ψg(x)

Γ(g)
ψg(y), x, y ∈ [0, 1)

By definition of the index set G, the kernel K can also be written as a sum of the reproducing
kernels:

KΓ
j (x, y) =

2j−1
∑

k=0

ψj,k(x)

Γ(j, k)
ψj,k(y)

This implies that the RKHS HΓ, can be decomposed into a direct sum of wavelet RKHS’s
(spanned by a set of wavelets of scale j) as:

HΓ = V0 ⊕
⊕

j≥0

WΓ
j (3)

where each space WΓ
j is the RKHS associated to the kernel KΓ

j . This representation involves
an infinite decomposition of the detail space, in practice we truncate (3) up to a maximum
resolution J , in other words, the RKHS HJ,Γ = V0⊕

⊕J
j=0 W

Γ
j defines a multiresolution analysis

of HΓ and the associated kernel is:

KΓ
J (x, y) =

∑

g∈∪0≤j≤JGj

ψg(x)

Γ(g)
ψg(y), x, y ∈ [0, 1)

Furthermore, from (2)
lim

J→∞
‖KΓ −KΓ

J ‖∞ = 0

We assume that Γ is only a function of j and equals to 22js on Gj and s > 1/2, then HΓ equals
to the Sobolev space Bs

2,2([0, 1]) of index s. For more mathematical details we refer to Amato
et al. (2006).
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3. The wavelet kernel ANOVA

Consider now a multivariate regression problem:

yi = f(xi) + ǫi, i = 1, · · · , n

where xi = (xi1 , . . . , xid)
T is d dimensional vector of inputs, the ǫi are i.i.d. and N(0, σ2)

random errors and f an unknown multivariate regression function to be estimated.

3.1. Definition

The idea behind the well known smoothing spline ANOVA model (Wahba, 1990) is to
construct a RKHS F = {f ∈ L2([0, 1]d)} corresponding to the ANOVA decomposition:

f(X(1), · · · , X(d)) = f0 +
d

∑

l=1

fl(X
(l))+

∑

l<m

flm(X(l), X(m))+ . . .+f1,2,...,d(X
(1), · · · , X(d)) (4)

where f0 is a constant, fj ’s are univariate functions representing the main effects, fjl’s are
bivariate functions representing the two way interactions, and so on. Then the model space F
is the tensor product space of Hl

Γ:

F =

d
⊗

l=1

Hl
Γ = {1} ⊕

d
∑

l=1

H̄l
Γ ⊕

∑

l<m

[H̄l
Γ ⊗ H̄m

Γ ]... (5)

where Hl
Γ = {1} ⊕ H̄l

Γ and H̄l
Γ is the RKHS associated to the first-order component functions

fl of ANOVA expansion. The tensor products [H̄l
Γ ⊗ H̄m

Γ ] is associated to the second-order
component function flm. We denote by W l

j (a detail space at scale j) the RKHS associated to

wavelet kernel Kj =
∑2j−1

k=0 ψj,k(x)ψj,k(y) and the variate X(l), thereby for a fixed maximum
resolution J the function space Hl

Γ can be written as:

Hl
Γ = V0 ⊕

J−1
⊕

j=0

Γ−1
j W l

j (6)

and the tensor product [Hl
Γ ⊗Hm

Γ ] as:

Hl
Γ ⊗Hm

Γ = (V l
0 ⊗ V m

0 )
J−1
⊕

j=0

Γ−2
j (W l

j ⊗Wm
j ) (7)

It’s easy to see that V0 is also the subspace of L2([0, 1]) spanned by the constant function on
[0, 1], one has V0 = V l

0 ⊗ V m
0 = {1}.

Thus, the function space F , which is a wavelet-based RKHS, can also be written as:

F = {1} ⊕

q
⊕

γ=1

Fγ (8)

where the Fγ is an orthogonal subspaces of F and correspond to the subspaces H̄l
Γ, [H̄l

Γ⊗H̄m
Γ ],

etc. . . In the additive model q = d where d is the number of input parameters and in the model
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with two way interactions q = d(d+ 1)/2. We assume that a second order ANOVA expansion
gives a satisfactory approximation of f .
We denote by PΓ

γ f the orthogonal projection of f onto Γ−1
j Wj and ‖ · ‖ the norm in the RKHS

Γ−1
j Wj . Under the framework of smoothing spline ANOVA one way to estimate f is to find
f ∈ F that minimizes:

1

n

n
∑

i=1

{yi − f(xi)}
2 + λ2

q
∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

θ−1
γ,j,k‖P

Γ
γ,j,kf‖

2 (9)

where θγ,j,k ≥ 0. If θγ,j,k = 0, then the minimizer is taken to satisfy ‖PΓ
γ,j,kf‖

2 = 0, using
the convention 0/0 = 0. The parameter λ controls the trade-off between the first term in the
above expression which discourages the lack of fit of f and the second one which penalizes the
roughness of f .
In analogy with COSSO (Lin and Zhang, 2006) and wavelet kernel penalized estimation (Amato
et al., 2006) we propose the WK-ANOVA procedure, another way to estimate f , given by f ∈ F
that minimize:

1

n

n
∑

i=1

{yi − f(xi)}
2 + λ2Rq(f) (10)

with Rq(f) =
∑q

γ=1

∑J−1
j=0

∑2j−1
k=0 ‖PΓ

γ,j,kf‖ is a sum of wavelet-based RKHS norms, instead
of the squared RKHS norm employed in (9). We note that Rq(f) is not a norm in F but a
pseudo-norm in the following sense: Rq(f) ≥ 0, Rq(cf) = |c|Rq(f), Rq(f +h) ≤ Rq(f)+Rq(h)
∀ f, h ∈ F , and, Rq(f) > 0 for any non constant f ∈ F . Furthermore

B ≤ Rq(f)2 ≤ qB (11)

with

B =

q
∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

‖PΓ
γ,j,kf‖

2 (12)

Note that there is only one smoothing parameter λ which should be properly chosen, instead
of multiple smoothing parameters θ’s in (9).

The existence of the WK-ANOVA estimate, which is due to the convexity of (10), is guar-
anteed by adapting Theorem 1 of Lin and Zhang (2006).

Theorem 3.1. Let F be the wavelet-based RKHS of functions over [0, 1]d. Assume that F can
be decomposed as (8). There exists a minimizer of (10).

Define ‖ · ‖n as the Euclidian norm in R
n. Under our previous assumption, s > 1/2 and

Γj = 22sj . The following theorem is equivalent to theorem 2 of Lin and Zhang (2006) and shows
that the WK-ANOVA estimator in the additive model has a rate of convergence n−s/(2s+1),
where s is the order of smoothness of the components.

Theorem 3.2. Consider the regression model yi = f0(xi) + εi, i = 1, ..., n, where xi’s are
given deterministic points in [0, 1]d, and the εi’s are i.i.d. N(0, σ2) noise variables. Assume
f0 lies in F = {1} ⊕

⊕d
l=1 H

l
Γ, with Hγ

Γ = {1} ⊕ H̄γ
Γ being the Sobolev space Bs

2,2([0, 1])

of index s. Consider the WK-ANOVA estimator f̂ at the design points as defined by (10).
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Then (i) if f0 is not a constant, and λ−1
n = Op(n

s/(2s−1))R
(2s−1)/(4s+2)
q (f0), we have ‖f̂ −

f0‖n = Op(λn)R
1/2
q (f0); (ii) if f0 is a constant, we have ‖f̂ − f0‖n = Op(max{n

−s/(2s−1)

λ
−2/(2s−1)
n , n−1/2}).

The following Lemma shows that the solution of (10) is in finite dimensional space and the
WK-ANOVA estimate can be computed directly from (10) by linear programming techniques.

Lemma 3.3. Let f̂ = b̂ +
∑q

γ=1 f̂γ be a minimizer of (10), with fγ ∈ Fγ. Then f̂γ ∈
span{Kγ(xi, ·), i = 1, ..., n}, where Kγ is the reproducing kernel of the space Fγ

Using the suggestion of Antoniadis and Fan (2001) for solving penalized problems with
l1 penalty, we can give an equivalent formulation of (10) for computational consideration.
Consider the problem of finding θ = {θγ,j,k, γ = 1, ..., q; j = 0, ..., J − 1; k = 1, ..., 2j − 1} and
f ∈ F to minimize:

1

n

n
∑

i=1

{yi − f(xi)}
2 + λ0

q
∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

θ−1
γ,j,k‖P

Γ
γ,j,kf‖

2 + ν

q
∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

θγ,j,k (13)

subject to θγ,j,k ≥ 0, and where λ0 is a fixed positive constant and ν is a smoothing parameter.
We fix λ0 at some value. Then

Lemma 3.4. Set ν = λ4/(4λ0). (i) if f̂ minimizes (10), set θ̂γ,j,k = λ
1/2
0 ν−1/2‖PΓ

γ,j,kf‖, then

the pair (θ̂, f̂) minimizes (13). (ii) On the other hand, if a pair (θ̂, f̂) minimizes (13), then f̂

minimizes (10).

As already introduced by Amato et al. (2006) we can penalize the norm of coefficients by
blocks, which allows reducing the number of θ’s that need to be estimated and can provide a
better regularization. Hence, as defined before:

KΓ
jm(x, y) =

∑

k∈Tjm

ψj,k(x)

Γj
ψj,k(y)

where m = 1, ...,Mj with Mj denotes the number of blocks at resolution j, and Tjm the blocks
of length Ljm at resolution j. In the same way consider the decomposition:

Hl
Γ = V0 ⊕

J−1
⊕

j=0

∑

m

Γ−1
j W l

j,m

then replace (13) by:

1

n

n
∑

i=1

{yi − f(xi)}
2 + λ0

q
∑

γ=1

J−1
∑

j=0

Mj
∑

m=1

θ−1
γ,j,m‖PΓ

γ,j,mf‖
2 + ν

q
∑

γ=1

J−1
∑

j=0

Mj
∑

m=1

θγ,j,m (14)

We can note that the form of (14) is similar to the smoothing spline ANOVA (9) with multiple
smoothing parameters and an additional penalty on the θ’s. There is only one smoothing
parameter ν in (14) and θ’s are part of the estimate, rather than three smoothing parameters.
For the WK-ANOVA procedure the sparsity on the detail components is controlled by the
additional penalty on θ’s in (14) makes possible to have some θ’s to be zero, thus producing a
sparse kernel estimate in sense of Gunn and Kandola (2002).

7



3.2. Algorithm

We will use an iterative optimization algorithm which is equivalent to the one used in Lin
and Zhang (2006) and Amato et al. (2006). On each step of iteration, for any fixed θ we
minimize (14) with respect of f , and then for this choice of f we minimize (14) with respect
of θ. Note that for any fixed θ (14) is equivalent to the smoothing spline ANOVA procedure.
Therefore from Wahba (1990) the solution f of (14) has the following form

f(x) = b+

n
∑

i=1

ci

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,mK
Γ
γ,j,m(xi,x) (15)

Where c = (c1, ..., cn)T , b ∈ R, KΓ
γ,j,m is the reproducing kernel of Γ−1

j W l
γ,j,m if γ ≤ d and is

the reproducing kernel of Γ−2
j W l

γ,j,m ⊗Wp
γ,j,m else. In what follows, we denote by KΓ

γ,j,m the

n × n matrix {KΓ
γ,j,m(xi,xt)}, i = 1, ..., n, t = 1, ..., n, by KΓ

θ the matrix
∑q

γ=0

∑J−1
j=0

∑Mj

m=1

θγ,j,mK
Γ
γ,j,m(xi,x) and 1n be the column vector consisting of n ones. Then we can write

f = KΓ
θ c + b1n, it follows that (14) can be expressed as

1

n
‖Y −

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,mK
Γ
γ,j,mc − b1n‖

2
n + λ0c

TKΓ
θ c + ν

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,m (16)

where θγ,j,m ≥ 0, γ = 1, ..., q, j = 0, ..., J − 1, m = 1, ...,Mj .
If θ’s are fixed, then (16) can be written as

min
c,b

‖Y −KΓ
θ c − b1n‖

2
n + nλ0c

TKΓ
θ c (17)

which is similar to the smooting spline problem (a quadratic minimization problem) and the
solution satisfy (for more details see Wahba (1990)):

(KΓ
θ + nλ0I)c + b1n = Y

1T
nc = 0

where I is the identity matrix.
Let’s fix b and c at their values from (17), denote dγ,j,m = KΓ

γ,j,mc, and let D be the n ×

(
∑

γ

∑

j(2
j − 1)) matrix with the (γ, j,m)th column being dγ,j,m. The θ that minimizes (16)

is the same as the solution to

min
θ

‖z −Dθ‖2
n + nν

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,m subject to θγ,j,m ≥ 0 (18)

where z = Y − (1/2)nλ0c − b1n.
By starting from a simpler estimate such as the one obtained by penalized least squares with
quadratic penalties on the coefficients, a one step update procedure is sufficient to improve the
WK-ANOVA estimator. Then we propose a one step update procedure:

1. Initialization: Fix θγ,j,m = 1, γ = 1, ..., q, j = 0, ..., J − 1, m = 1, ...,Mj .

2. Tune λ0 using v-fold-cross-validation.

3. Solve for c and b with (17).
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4. For each fixed ν, solve (18) with the c and b obtained in step 3. Tune ν using v-fold-
cross-validation. The θ’s corresponding to the best ν are the final solution at this step.

5. With the new θ tune λ0 using v-fold-cross-validation.

6. With the new θ and λ0, solve for c and b with (17)

A discussion of a one step procedure and fully iterated procedure can be found in Antoniadis
and Fan (2001). The performance of the WK-ANOVA estimator depends on the smoothing
parameter ν and the chosen resolution J . The choice of these parameters obviously involves
an arbitrary decision. In our work we will fix J = log2n, but by varying the resolution level we
can explore features of the data arising on different scales. We will use v fold cross validation
to tune ν. It seems reasonable to take v equal to 5.
We also choose to use compactly supported wavelets, it follows that the numerical algorithm
for the kernel computation is based on Daubechies cascade procedures (Daubechies, 1992).
Specifically, the cascade algorithm computes the values of wavelets at dyadic points. In order
to evaluate the kernel matrices KΓ

γ,j,m the values of the wavelets have been computed on a
fine dyadic grid and stored in a table. Values of wavelets at arbitrary points, necessary for
evaluation of KΓ

γ,j,m, were then computed by considering the value at the closest point on the

tabulated grid. The table construction of wavelet kernel matrices requires O(n2S) elementary
operations where S denotes the length of the wavelet filter. However, the table is constructed
once and stored in memory. In addition, as the dimension of the problem grows, the number
of matrices KΓ

γ,j,m also grows as well, and because of the v-fold-cross-validation these matrices
must be re-computed several times. All this increases significantly the computational time,
and therefore it is necessary to compute the matrices once and stored them in memory.
The formulation in (18) is a high-dimensional nonnegative garrote (NNG) optimization prob-
lem introduced by Breiman (1995) for which there exists a variety of algorithms to find the
solution. However, we introduce in the next section a new iterative shrinkage algorithm. Even
if the number of iterations may be high to compete with modern high-dimensional optimiza-
tion algorithms, the proposed iterative algorithm is conceptually simple and easy to implement.

4. Iterative projected shrinkage algorithm

Recently, iterative shrinkage/theresholding (IST) algorithm tailored to solve the LASSO
regression problem (Tibshirani, 1996), has been proposed independently by several research
groups (among them Figueiredo and Nowak (2003) and Daubechies et al. (2004)). This algo-
rithm combines the Landweber iteration (Landweber, 1951) and the soft thresholding method.
The main advantages of this algorithm are its conceptual simplicity, its easiness of implemen-
tation and only involves matrix-vector multiplication.
In this section, we propose a modified version of IST algorithm that solves the NNG regression
problem.

4.1. Definition

Consider the (18) regression problem:

min
θ

‖z −Dθ‖2
n + nν

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,m subject to θγ,j,m ≥ 0

9



The functional (18) is convex since the matrix DTD is symmetric and positive semidefinite
and since the constraints θγ,j,m > 0 define also a convex feasible set. For the convex optimiza-
tion problem, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the

optimal solution θ
∗, where θ

∗ = argminθ‖z −Dθ‖2 + nν
∑q

γ=0

∑J−1
j=0

∑Mj

m=1 θγ,j,m subject to
θγ,j,m ≥ 0. This KKT conditions are defined as:

{−dT
γ,j,m(z −Dθ

∗) + ν}θ∗γ,j,m = 0

−dT
γ,j,m(z −Dθ

∗) + ν ≥ 0

θ∗γ,j,m ≥ 0

which is equivalent to

−dT
γ,j,m(z −Dθ

∗) + ν = 0, if θ∗γ,j,m 6= 0 (19)

−dT
γ,j,m(z −Dθ

∗) + ν > 0, if θ∗γ,j,m = 0 (20)

where dγ,j,m denotes the (γ, j,m)th column of D. Therefore, from (19) and (20) we can derive
the fixed-point equation:

θ
∗ = PΩ+(δSoft

ν (θ∗ +DT (z −Dθ
∗))) (21)

where PΩ+ is the nearest point projection operator onto the nonnegative orthant (closed convex

set) Ω+ = {x : x ≥ 0} and δSoft
λ is the soft-thresholding function defined as

δSoft
ν (x) =







0 if |x| ≤ ν
x− ν if x > ν
x+ ν if x < −ν

Thus, we propose an iterative algorithm that we name the iterative projected shrinkage algo-
rithm (IPS) and which is defined by

θ
[p+1] = PΩ+(δSoft

ν (θ[p] +DT (z −Dθ
[p]))) (22)

The following theorem concerns the convergences of IPS algorithm:

Theorem 4.1. IPS algorithm defined by (22) converge to the solution of (18), whenever such
solution exists, for any starting vector θ

[0].

The proof of this theorem can be found in the Appendix. We have assumed that λmax(DTD) ≤
1 (where λmax is the maximum eigenvalue). Otherwise we solve the equivalent minimization
problem

min
θ

‖
z

α
−
D

α
θ‖2 +

nν

α

q
∑

γ=0

J−1
∑

j=0

Mj
∑

m=1

θγ,j,m subject to θγ,j,m ≥ 0

where the positive constant α ensures that λmax(DTD) ≤ 1.

10



4.2. Stopping conditions

IPS algorithm is an iterative procedure which produces a sequence of solutions θ
[0],θ[0], . . . ,θ[p]

converging to the optimal solution θ
∗. There is a need to stop the algorithm when the solution

θ
[p] is sufficiently close to the optimal solution θ

∗. Several stopping conditions have been pro-
posed in the literature (for example Defrise and De Mol (1987)). We choose to use a stopping
condition based on the KKT conditions, which are easy to evaluate. This ǫ−KKT conditions
are defined as

dT
γ,j,m(Y −Dθ

∗) = ν − ǫ, if θ∗γ,j,m 6= 0

dT
γ,j,m(Y −Dθ

∗) ≤ ν − ǫ, if θ∗γ,j,m = 0

where ǫ > 0 is a constant which defines the precision of the solution.

5. Simulations

In this section we will study the empirical performance of WK-ANOVA, in terms of pre-
diction accuracy. The measure of the prediction accuracy is given by Q2 which is defined
as

Q2 = 1 −

∑ntest

i=1 (yi − f̂(xi))
2

∑ntest

i=1 (yi − ȳ)2
,with ntest = 500 (23)

where yi denotes the ith test observation of the test set, ȳ is their empirical mean and f̂(xi)
is the predicted value. We compare the obtained results with those obtained by COSSO and
Gaussian Process (GP) (Busby, 2009). We also compare the methods for different experimental
design sizes, uniformly distributed on [0, 1]d and built by Latin Hypercube Design procedure
(McKay et al., 1979) with maximin criterion (Santner et al., 2003) (maximinLHD). Moreover,
different signal to noise ratio were applied SNR ≡ 1 : 3 (high noise) SNR ≡ 1 : 7 (medium
noise) and SNR ≡ ∞ (without noise), with SNR = [V ar(f(X))]/σ2. For each setting of test
examples 2 and 3, we perform 50 times the test.
We fixed Mj = 2j − 1 for γ = 1, . . . , d and Mj = 1 for γ > d, in other words we penalize by
the translation parameter k for the main effects and by resolution j for the interaction. This
assumption permits us reducing significantly the computational time. The wavelets used in
our tests were Daubechies wavelets with 3 vanishing moments (Daubechies, 1992).
The WK-ANOVA was implemented using R. We run the simulations on a computer operated
by 32 bits-Windows OS, this latter imposes limits on the total memory allocation. Knowing
that the storage of the matrices KΓ

γ,j,m is memory consuming, we limit the dimension to our
examples to 8 and the sample size to estimate Q2 to 500. To fit COSSO models we have used
a modified version of the original Matlab code provided by Yi Lin and Hao Helen Zhang. We
made our modification of this algorithm to make it faster. The GP code was implemented
using R with a generalized power exponential Family (Busby, 2009).

5.1. Example 1

Let’s consider an additive model with X ∈ [0, 1]6, with the following function

f(X) = g1(X
(1)) + g2(X

(2)) + g3(X
(3)) + g4(X

(4))

where

g1(t) = t; g2(t) = (2t− 1)2; g3(t) =
sin(2πt)

2 − sin(2πt)
;
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g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

Therefore X(5), X(6) are uninformative. We use an experimental design of size n = 200, built
by maxminLHD, and SNR ≡ ∞. Figure 1 gives the plot of data observation with the true
ANOVA component fl and theirs WK-ANOVA estimates against inputs X(l), l = 1, . . . , 6.
The Q2 of this WK-ANOVA estimate is equal to 0.96 which is a good performance. However,
we can note that the estimation of the linear function component f1 does suffer from using a
wavelet method. Part of the reason is the boundary effects caused by using periodic wavelets.

5.2. Example 2

In this first test case, consider an additive model with X = [0, 1]8, with the following
function

f(X) = g1(X
(1)) + g2(X

(2)) + g3(X
(3)) + g4(X

(4)) + ǫ

where

g1(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

g2(t) = (2t− 1)2

g3(t) = | sin(3πt)| +
0.5| sin(5πt)|

2 − sin(4πt)

g4(t) =
| sin(2πt)|

2 − sin(2πt)

Therefore X(5), . . . , X(8) are uninformative. Note that all informative input of f have nonlinear
response, in addition g3 and g4 have discontinuities on the derivative. The true ANOVA
components fl, l = 1, . . . , n with their WK-ANOVA, COSSO and GP estimates are given
in figure 2. These estimates were built with an experimental design of size n = 200 and
with noise ratio SNR = 3. The WK-ANOVA has more fidelity to the reality than COSSO
and GP especially for the components f3 and f4. Indeed, WK-ANOVA captures more the
discontinuities of the components f3 and f4. This good fit is due to the properties of wavelets
analysis. In other words, our algorithm based on wavelets is well suited to this type of functions
(with discontinuities on the derevatives).
We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200)

and different signal to noise ratio SNR ≡ 1 : 3, SNR ≡ 1 : 7 and SNR ≡ ∞. The results are
summarized in figure 3 each panel is a boxplot of the 50 estimations of Q2. As expected, the
accuracy of WK-ANOVA estimates increases when the sample size raise. We can see that WK-
ANOVA procedure outperforms COSSO and GP in all the studied settings. Moreover, even
though there are much more parameters to estimate with WK-ANOVA comparing to COSSO,
this procedure does not seem to suffer from small sample size effect. For this example, WK-
ANOVA has shown better denoising properties and better predictivity. In addition, for n = 100
and n = 200 WK-ANOVA is the most robust.

5.3. Example 3

Consider the g-Sobol function, which is strongly nonlinear and is described by a non-
monotonic relationship. This function is a well-known test case in the studies of global sen-
sitivity analysis. Figure 4 illustrates the g-Sobol function against the two most influential
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Figure 1: Plot of the six true functional components, fl, l = 1, . . . , 4 along with the data observations and theirs
estimates given by WK-ANOVA for a realization from example 1
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realization from example 2
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Figure 3: Q2 results from example 2
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parameters X(1) and X(2). The g-Sobol function (Saltelli et al. (2000)) is defined for 8 inputs
factors as

gSobol(X
(1), . . . , X(8)) =

8
∏

k=1

gk(X
(k)) with gk(X

(k)) =

∣

∣4X(k) − 2
∣

∣ + ak

1 + ak

where {a1, . . . , a8} = {0, 1, 4.5, 9, 99, 99, 99, 99}. The contribution of each input X(k) to the
variability of the model output is represented by the weighting coefficient ak. The lower this
coefficient ak, the more significant the variable X(k). For example:























ak = 0 → x(k) is very important,

ak = 1 → x(k) is relatively important,

ak = 4.5 → x(k) is poorly important,

ak = 9 → x(k) is non important,

ak = 99 → x(k) is non significant.

We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200)
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Figure 4: Plot of g-Sobol function versus inputs X(1) and X(2) with other inputs fixed at 0.5

and different signal to noise ratio SNR ≡ 1 : 3, SNR ≡ 1 : 7 and SNR ≡ ∞. The results
are summarized in figure 5 each panel is a boxplot of the 50 estimations of Q2. We can see
that for all the tested experimental design sizes and noise ratios WK-ANOVA outperforms
COSSO and GP. Moreover, the accuracy of the prediction is very good (Q̄2 = 0.98, where Q̄2

is the average of the Q2’s) even with n = 50 for the setting without noise, when a design with
n = 200 design is necessary to perform a response surface with Q̄2 = 0.94 for GP and with
Q̄2 = 0.90 for COSSO. Clearly, for this example WK-ANOVA has the best results in term of
predictivity, denoising property and robustness.
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Figure 5: Q2 results from example 3
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6. Conclusion

In this article, we introduced a new regularized nonparametric regression method that we
named WK-ANOVA. Differently than other wavelet methods, WK-ANOVA does require nei-
ther an equispaced experimental design points, nor a dyadic size of data.
For the tested analytical examples which contains some discontinuities, WK-ANOVA outper-
forms COSSO and GP. However, in example 1 the wavelet methods have undesired boundary
effect in the case of the estimation of nonperiodic function, which results from the use of
periodic wavelets. One future investigation topic is to use boundary adapted wavelets.

Proofs

Proof of Theorem 3.1. Consider the following decomposition of the wavelet-based RKHS F

F = {1} ⊕Hq

where Hq =
⊕q

γ=1 Fγ . Denote by A(f) the functional to be minimized in (10). A(f) is
convex and continuous. By inequality (11) we have Rq(f) ≥ ‖f‖F for any f ∈ Hq. Let
KHq be the reproducing kernel on Hq and 〈·, ·〉Hq be the inner product of Hq. Denote by

en = maxn
i=1(KHq)

(1/2)(xi, xi). By the definition of the reproducing kernel and the properties
of Γ, we have for any f ∈ Hq and i = 1, ..., n

|f(xi)| = |〈f,KHq(xi,·)〉Hq | ≤ en‖f‖F ≤ enRq(f)

Let consider D a closed, convex and bounded set defined as:

D = {f ∈ F ; f = b+ f1, with b ∈ {1}, f1 ∈ Hq, Rq(f) ≤ v, |b| ≤ v1/2 + (en + 1)v}

where v = maxi{y
2
i + |yi| + 1}. Therefore by the theorem 4 of Tapia and Thomson (1978).

There exist a minimizer f of (10) in D and A(f) ≤ A(0) ≤ v.
On the other hand, for any f ∈ F with Rq(f) > v clearly A(f) ≥ Rq(f) > v; for any f ∈ F ,
f = b+ f1 with b ∈ {1}, f1 ∈ Hq, Rq(f) ≤ v and |b| > v1/2 + (en + 1)v, we therefore have

|b+ f1(xi) − yi| > (v1/2 + (en + 1)v) − env − v = v1/2

Hence A(f) > v, and for any f /∈ D, we have A(f) > A(f), wich proves that f is the minimizer
of (10) in F .

Proof of Theorem 3.2. The condition on the unknown regression function f0 are only active
for its wavelets coefficients and do not include the V0 scaling coefficients of f0. For any f ∈ F ,

write f(x) = b+ f1(x
(1))+ ...+ fd(x

(d)) = b+ g(x), such that
∑n

i=1 fl(x
(l)
i ) = 0, l = 1, ..., d and

where b ∈ {1} and g ∈
⊕d

l=1 H
l
Γ. Similarly, write f0(x) = b0 + g0(x), such that g0 ∈

⊕d
l=1 H

l
Γ.

By construction
∑n

i=1{g0(xi) − g(xi)} = 0, we can write A(f) as :

(b− b0)
2 +

2

n
(b− b0)

n
∑

i=1

εi +
1

n
)

n
∑

i=1

(g0(xi) + εi − g(xi))
2 + λ2

nRq(g)
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Therefore, the minimizing b̂ is b̂ = b0 + 1/n
∑n

i=1 εi, which shows that b̂ converges towards b0
at rate n−1/2. On the other hand, ĝ must minimize over

⊕d
l=1 H

l
Γ the functional

1

n

n
∑

i=1

{g0(xi) + εi − g(xi)}
2 + λ2

nRq(g)

Let G = {g ∈ F : g(x) = f1(x
(1)) + ... + fd(x

(d)), with
∑n

i=1 fl(x
(l)
i ) = 0, l = 1, ..., d}. then

g0 ∈ G and ĝ ∈ G. The conclusion of theorem 2 follows from the following Lemma.

Lemma Appendix .1. (Theorem 10.2 of Van De Geer (2000), lemma 5.1 of Amato et al.
(2006) and lemma 3 of Lin and Zhang (2006) )
Let H∞(δ,G) be the δ−entropy of G for the supremum norm. Then

H∞(δ, {g ∈ G : Rq(g) ≤ 1} ≤ Ad(s+1)/sδ−1/s,

for all δ > 0, n ≥ 1, and some A > 0 and 0 < 1/s < 2.

Proof of Lemma Appendix .1. Define Gl as the set of univariate function of x(l).

Gl = {fl ∈ Hl
Γ : Rq(fl) ≤ 1,

n
∑

i=1

fγ(xi)
(l) = 0}

It follows from Lemma 5.1 of (Amato et al., 2006) that

H∞(δ,Gl) ≤ Aδ−1/s

for all δ > 0, and n ≥ 1, some A > 0 and 0 < 1/s < 2. By definition of G we see that in terms
on the supreme norm, if each Gl, l = 1, .., d can be covered by N balls of radius δ, then the set
{g ∈ G : Rq(g) ≤ 1} can be covered byNd balls with radius dδ, and we get :

H∞(dδ, {g ∈ G : Rq(g) ≤ 1}) ≤ Adδ−1/s

Proof of Lemma 3.3. For any f ∈ F , write f = b+
∑q

γ=1

∑J−1
j=0

∑2j−1
k=0 fγ,j,k with b ∈ {1} and

fγ,j,k ∈ WΓ
γ,j,k. Let the projection of fγ,j,k onto span{KΓ

γ,j,k(xi, ·), i = 1, ..., n} ⊂ WΓ
γ,j,k be

denoted by αγ,j,k and the orthonormal complement by βγ,j,k. Then fγ,j,k = αγ,j,k + βγ,j,k and
(10) can be written as

1

n

n
∑

i=1

{yi − b−

q
∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

〈KΓ
γ,j,k(xi, ·), αγ,j,k〉}

2 + λ2
q

∑

γ=1

J−1
∑

j=0

2j−1
∑

k=0

(‖αγ,j,k‖
2 + ‖βγ,j,k‖

2)1/2

Therefore any minimizing f must be such that βγ,j,k = 0, and the result follows immediately.
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Proof of Lemma 3.4. Denote the functional in (14) by B(θ, f). For any γ = 1, ..., q; j =
0, ..., J − 1; k = 1, ..., 2j − 1, we have

λ0θ
−1
γ,j,k‖P

Γ
γ,j,kf‖

2
WΓ

γ,j,k

+ νθγ,j,k ≥ 2λ
1/2
0 ν1/2‖PΓ

γ,j,kf‖WΓ
γ,j,k

= λ2‖PΓ
γ,j,kf‖WΓ

γ,j,k
.

for any θγ,j,k ≥ 0 and f ∈ F , and the equality holds if and only if θγ,j,k = λ
1/2
0 ν−1/2‖PΓ

γ,j,kf‖WΓ
γ,j,k

.

Therefore B(θ, f) ≥ A(f), where A(f) denote the functional of (10) for any θγ,j,k ≥ 0,
γ = 1, ..., q; j = 0, ..., J − 1; k = 1, ..., 2j − 1 and f ∈ F , with the equality holds only if

θγ,j,k = λ
1/2
0 ν−1/2‖PΓ

γ,j,kf‖WΓ
γ,j,k

. The conclusion then follows.

Proof of Theorem 4.1. The orthogonal projection PΩx of x onto Ω+ is characterized by the
following useful inequality: for all a ∈ Ω+ and all x we have

〈a− PΩ+x,PΩ+x− x〉 ≥ 0 (.1)

From the inequality (.1) we can say that for any Ω+, x and z, we have

〈PΩ+z − PΩ+x,PΩ+x− x〉 ≥ 0 and 〈PΩ+z − PΩ+x, z − PΩ+z〉 ≥ 0 (.2)

Adding, we obtain
〈PΩ+z − PΩ+x, z − x〉 ≥ ‖PΩ+z − PΩ+x‖2 (.3)

From the Cauchy inequality we conclude that

‖PΩ+x− PΩ+z‖ ≤ ‖x− z‖ (.4)

Let E be nonempty set of all θ ∈ Ω+ at which the functional (18) attains its minimum value

over Ω+ and θ
∗ a member of E. Then θ

∗ = PΩ+(δSoft
ν (θ∗)) and

‖θ∗ − θ
[p+1]‖ = ‖PΩ+(δSoft

ν (θ∗)) − PΩ+(δSoft
ν (θ[p]))‖ ≤ ‖δSoft

ν (θ∗) − δSoft
ν (θ[p])‖ (.5)

The convergence of the IPS algorithm follows from the following Lemma.

Lemma Appendix .2. (Lemma 3.4 of Daubechies et al. (2004))
Sν is nonexpansive, i.e., for all x and z ∈ R,

‖δSoft
ν (x) − δSoft

ν (z)‖ ≤ ‖x− z‖ (.6)

Since (.9) is convex the Karush-Kuhn-Tucker theorem suggests that a necessary and suffi-
cient condition for θ

∗ to be the solution of model (18) is that there is λ ≥ 0 such that, for any
γ = 1, ..., q, j = 0, ..., J − 1, m = 1, ...,Mj

{−dT
γ,j,m(Y −Dθ

∗) + ν}θ∗γ,j,m = 0 (.7)

−dT
γ,j,m(Y −Dθ

∗) + ν ≥ 0 (.8)

θ∗γ,j,m ≥ 0 (.9)
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There are two possible value for θ
[p+1] in (22) :

θ
[p+1]
γ,j,m =

{

0

θ
[p]
γ,j,m + dT

γ,j,m(Y −Dθ
[p]) − ν

(.10)

It is not difficult to show that the KKT conditions are satisfied when θ
[p+1]
γ,j,m = 0 and that the

condition (.9) is always satisfied. Now we consider the second possibility. If θ∗γ,j,m is a fixed
point of the map T , with Tx = PΩ+(Sν(x)), that is, Tθ∗γ,j,m = θ∗γ,j,m. By (.10), we have

dT
γ,j,m(Y −Dθ

∗) − λ = 0

The conclusion follows immediately.
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