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Stationary Couette flows of elastoviscoplastic fluids are

non-unique

I. Cheddadi, P. Saramito and F. Graner

Abstract

The Herschel-Bulkley rheological fluid model includes viscosity and plasticity. In
this classical model, under the yield stress the material is strictly rigid. Complementing
this model by including an elastic behavior under the yield stress leads to a descrip-
tion of elastoviscoplastic (EVP) materials such as suspensions or liquid foams. We
include this modification in a completely tensorial description of Couette shear flows.
Both the parameters of the model, at the scale of a representative volume element,
and the predictions (velocity, strain and stress fields), can be readily compared with
experiments. We perform a detailed study of the effect of the main parameters, espe-
cially the yield strain. We discuss the role of flow lines curvature in the apparition of
localisation; we determine the value of the localisation length and provide its approxi-
mate analytical expression. We then show that, in our tensorial EVP model of Couette
shear flows, normal stresses strongly influence velocity profiles, which can be smooth or
non-smooth according to the stress initial conditions. This feature can explain several
open debates regarding experimental measurements on Couette flows for various EVP
materials such as suspensions or liquid foams, including the non-reproducibility that
has been reported in flows of foams. We then discuss the suitability of Couette flows
to measure rheological properties of EVP materials.

Keywords: elastoviscoplastic / viscoelastoplastic fluids ; non-Newtonian fluids ; Couette
experiment ; liquid foam ; suspensions ; mathematical modelling ; numerical simulation.

Introduction

Localization is a phenomenon often observed in two- or three-dimensional shear flows of
complex materials: Coussot et al. (2002) observed it for emulsions, Salmon et al. (2003a)
for coloids, and Howell et al. (1999); Mueth et al. (2000); Losert et al. (2000); Huang et al.
(2005) for wet granular materials. It consists in a coexistence between a region localized
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near a moving boundary, where the material flows like a liquid, and another region where
the material is rigid like a solid.
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Figure 1: Experimental set-up for a two-dimensional circular shear flow of a foam confined
between two horizontal plates. (a) definition of the geometric and kinematic parameters ;
(b) picture of the confined bidimensional liquid foam (from Debrégeas et al. (2001)): the
internal radius is r0 = 71 mm.

Since the pioneering experiment of Debrégeas et al. (2001) (see Fig. 1), liquid foams (gas
bubbles dispersed within a continuous liquid phase, as explained by Weaire and Hutzler
(1999); Cantat et al. (2010)) have been widely used to study localization. As a matter of
fact, they are suitable for experimental, theoretical and numerical approaches, and direct
comparisons between them (for reviews see e.g. Höhler and Cohen-Addad (2005); Schall
and van Hecke (2010); Barry et al. (2011)). Their discrete units are the gas bubbles, which
are typically millimetric and thus accessible to direct observation. Moreover, they display
simultaneous elastic, viscous, plastic behaviors (referred to as elastoviscoplastic, or EVP),
thus covering a wide range of behaviors observed in many complex materials. Recently,
Coussot et al. (2002) used MRI methods to measure local velocity in 3D flows of other EVP
materials such as bentonite, carbopol, cement. Despite the apparent simplicity of shear
flows, a common description of these experiments is still lacking.

The aim of this paper is to show that including the elasticity in the classical viscoplastic
Herschel-Bulkley (VP) model in a simple manner leads to many improvements in the un-
derstanding of Couette flows of various complex fluids, such as suspensions, emulsions or
liquid foams. Cheddadi et al. (2008, 2009, 2011a) have previously explored this approach for
Couette flows of liquid foams and complex flows around an obstacle ; they have explained
the observations of normal stresses components measured by Janiaud and Graner (2005)
in experimental data by Debrégeas et al. (2001); Kabla (2003), that are not captured by
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non-tensorial (scalar) models.

In the present work, the theoretical predictions are compared with experimental measure-
ments, including shear and normal stresses when available. We propose an in-depth study
of the influence of the dimensionless rheological parameters, including the influence of the
Couette geometry confinement (see table 1). For simplicity, we focus here on the low ve-
locity regime corresponding to most published foam Couette flow experiments, and keep for
a future work the high velocity regime where viscous and friction effects are dominant (see
e.g. Katgert et al. (2008, 2009, 2010)). Being tensorial and EVP are two essential features of
the present modelling, leading to three predictions not captured by scalar and/or VP models.
First, we show that tensorial stresses that depend on the preparation of the material can
persist as residues even in the stationnary flow. Second, depending on shear and normal
stresses, velocity flow profiles are either smooth or non-smooth. Third, as a consequence of
both preceding results, Couette flows of EVP materials are non-unique, even in stationary
regime.

The outline of the paper is as follows. Section 1 reviews and discusses the main open
questions found in the literature, which we want to address here. Section 2 presents the
mathematical equations introduced by Saramito (2007, 2009), their solutions (Fig. 2) and
some of their main features completely absent from the VP model: effect of initial conditions,
memory effect, non-uniqueness, non-smooth solutions; it also explains how the model can be
compared to actual experimental data (section 2.3). Section 3 examines how variations of the
parameters of the model affect these flow features, and provides an approximate analytical
expression for the localisation length (eq. 6). Section 4 is devoted to a discussion and some
perspectives of both experimental and numerical modelling of foam flows.

symbol name definition physical meaning typical range

εY yield strain
τY
2µ

elastoplasticity [0, 0.5]

Bi Bingham
τY∆r

ηV
viscoplasticity [0, 100]

Co confinement
re − r0

re
curvature ]0, 1[

n power index shear thinning [0.3, 1]

We Weissenberg
ηV

µ∆r
=

2εY
Bi

viscoelasticity [0, 0.04]

Table 1: Four dimensionless numbers (εY , Bi, Co, n), or equivalently (We,Bi, Co, n), which
completely characterize the problem.
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1 Open questions

During the last ten years the literature has debated on the Couette flow of various complex
fluids, raising some theoretical questions (see eg. Schall and van Hecke (2010)):

• What is the physical origin of localization ?

• What is the position of the localization, defined as the position separating the flowing
region from the rigid one ?

• Why, at the transition between these regions, do some experiments report smooth
profiles and some others experiments report non-smooth ones ?

Before we examine the status of these questions, we first need to clarify the vocabulary used
in the literature. When comparing different articles, it is necessary to keep in mind that the
position of the localization, denoted as rc, admits several possible definitions (see section
7.3 of Weaire et al. (2010)). Gilbreth et al. (2006) explored also several ways to define rc
are investigated. Similarly, there are at least two different ways used to define the norm of
a tensor, and thus the von Mises criterion and the yield strain and stress (see eq. 2 and
discussion thereafter). Moreover, since the words “shear banding” are used according to
different definitions, we prefer not to use them. Finally, we assume here that the materials
can be described using continuum mechanics: this implies that there is a representative
volume element (RVE), smaller than the global flow, but large enough so that one can define
variables such as stresses, strains, velocity gradient, and parameters, such as elastic modulus,
yield strain and viscosity.

1.1 What is the physical origin of the localization ?

There are several explanations for the origin of the localization; many of them are reviewed
and discussed by Schall and van Hecke (2010).

Explanations invoking a non-monotonous constitutive equation.

In complex materials which display a shear-induced structural transition, the coexistence of
two different shear rates with the same stress, that is, if the shear stress versus shear rate
curve is multi-valued, see work by Berret et al. (1994); Porte et al. (1997); Decruppe et al.
(2001), is a possible source of localization. Alternatively, foams experiments led by Khan
et al. (1988) and simulations led by Kabla et al. (2007); Okuzono and Kawasaki (1995);
Raufaste et al. (2010), suggest that in the quasi-static regime the shear stress versus shear
strain curve passes through an overshoot before reaching a plateau, thus being multi-valued:
Clancy et al. (2006); Weaire et al. (2010) also suggest this as a possible cause of localization.
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We question the fact that this explanation could be general for foams involved in Couette
experiments: they usually contain at least a few percents of liquid, so that their yield strain
is lower (see Marmottant et al. (2008)) and the overshoot becomes impossible to observe
(see Raufaste et al. (2010)). Moreover, even in theory and simulations of dry foams, the
overshoot disappears if the foam is too disordered (see Raufaste et al. (2010)). Discussing
that point is beyond the scope of the present paper, where we explore the complex behavior
emerging from a simple EVP constitutive equation.

Explanations invoking a non-homogeneous σ. This mechanism arises in rheological
models that include a yield stress, like the VP model or the elastoviscoplastic (EVP) model
by Saramito (2007): in the case of a circular Couette geometry, the curvature induces a
spatial heterogeneity of the stress, the inner part being above the yield stress and flowing,
and the outer part being under the yield stress and non-flowing.

An alternative interpretation has been presented by Wang et al. (2006) for bidimensional
foams; they performed experiments with two configurations in a plane Couette geometry:
either bubbles floating on water (bubble raft), or bubbles confined between water and a
glass plate. They observed localization only in the first case, when glass plates are present.
Therefore, the competition between the internal viscosity of the foam and the external fric-
tion from the glass plates has been suggested by Janiaud et al. (2006) as a possible cause for
localization, even in the case of circular geometries (see Clancy et al. (2006)).

Cheddadi et al. (2008) have reconciled these views by performing a detailed comparison of
the Saramito (2007) EVP model with both stationary and transient regimes of the Debrégeas
et al. (2001) experiment of a bidimensional foam confined between two glass plates. They
have showed that the simple explanation of a non-homogeneous stress is still valid for such
systems. The curvature of flow lines and the friction on the glass plates are only two different
possible causes for stress heterogeneity.

In practice, we have also shown that the friction of glass plates is so small that is plays a
visible role only in the absence of flow line curvature, as in the plane geometry of Wang et al.
(2006). In cylindrical Couette flows, the available data are not compatible with this friction-
dominated interpretation, and are compatible with the stress heterogeneity that arises from
geometry. In what follows, we neglect the friction on plates, and use bidimensional foams as
model systems for other complex fluids.

1.2 What is the position of the localization rc ?

Weaire et al. (2010) have reviewed the current knowledge of the dependency of the position
of the localization with the cylinder velocity. They find that in the low velocity regime, it is
basically undetermined: there is a range of possible values for the position of the localization
and, moreover, the size of this range diverges when the velocity decreases. There is thus a
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double question: is there a hidden variable which fixes the position of localization ? for a
given experiment, is the position predictable ?

To answer this double question, we explicitly determine the position of localization and study
its dependence with initial conditions.

1.3 Why smooth and/or non-smooth profiles ?

The first observation of foam Couette flows by Debrégeas et al. (2001) reported a smooth
velocity profile (Fig. 3a).

However, in 2002, Coussot et al. (2002); da Cruz et al. (2002) rather observed discontinuous
shear rate profiles on Couette flows of emulsions and suspensions (Fig. 3b). A discontinuity
of the shear rate, denoted as γ̇c at r = rc, was measured: in that case, the velocity profile
is non-smooth at r = rc, since its derivative is related to the shear rate. Such non-smooth
profiles were confirmed until 2008 for various slurries and pastes by Huang et al. (2005), for
worm-like micelles by Salmon et al. (2003a), for lyotropic lamellar systems by Salmon et al.
(2003b), for Couette foam flows by Lauridsen et al. (2004); Gilbreth et al. (2006); Dennin
(2008); Krishan and Dennin (2008), and interpreted theoretically by Denkov et al. (2009);
Clancy et al. (2006); Weaire et al. (2010).

Surprisingly, experiments were published by Katgert et al. (2008, 2009, 2010); Coussot and
Ovarlez (2010); Ovarlez et al. (2010)in 2008-2010, reverting to smooth velocity profiles at
r = rc, and continuous shear rates (γ̇c = 0). This of course stirred a controversy, fuelled by
the facts that some papers with strictly opposed results shared either an author, P. Coussot,
in Coussot et al. (2002); da Cruz et al. (2002); Huang et al. (2005); Coussot and Ovarlez
(2010) or a set-up, the bubble raft, in Lauridsen et al. (2004); Gilbreth et al. (2006); Dennin
(2008); Krishan and Dennin (2008); Katgert et al. (2008, 2009, 2010).

The tendency was thus to question the quality of the experiments. Coussot and Ovarlez
(2010) explained this discrepancy between his own measurements as: ”previous data on a spe-
cific foam (Rodts et al. (2005)) were probably affected by experimental artefacts”. Similarly,
Ovarlez et al. (2010) explain that ”Our measurements demonstrate that three-dimensional
foams do not exhibit observable signatures of [discontinuous] shear banding. This contrasts
with the results of Rodts et al. (2005) and da Cruz et al. (2002) which we have shown to
pose several experimental problems” and have to mention that ”the case of bubble rafts is
still unclear”.

Our theoretical approach is an attempt to reconcile these measurements by finding a deeper
reason to explain why, in some case, either a smooth or a non-smooth profile could appear.
We point out the influence of the stress initial conditions. This could rehabilitate the quality
of the published data and rather point to the sensibility of the equations.
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2 Modelling

2.1 Equations

In 1926, Herschel and Bulkley (1926) proposed a power law variant of the viscoplastic Bing-
ham model ( Bingham (1922); Oldroyd (1947)):






τ = 2K|D|n−1D + τY
D

|D| when |D| 6= 0

|τd| ≤ τY otherwise
⇐⇒ max

(

0,
|τd| − τY
2K|τ |n

) 1

n

τ = D (1)

where τ is the stress tensor, D = (∇v +∇vT )/2 is the rate of deformation tensor, v is the
velocity, and ∇v = (∂jvi) is the velocity gradient. Here, τY > 0 the yield stress, K > 0 the
consistency parameter, and n > 0 is the power index. When n = 1 the model reduces to the
Bingham model. The shear thinning behavior is associated with 0 < n < 1 and the unusual
shear thickening behavior to n > 1.

The von Mises criterion |τd| ≥ τY involves the matrix norm of the deviatoric part of the
stress. In cylindrical coordinates it writes:

|τd| =
(

2τ 2rθ +
(τrr − τθθ)

2

2

)
1

2

(2)

Note that, favoring the shear stress, some authors uses a slightly different definition of the

norm: (τ 2rθ + (τrr − τθθ)
2/4)

1

2 . This alternative definition leads to an equivalent model: it
only changes by a 1/

√
2 factor the yield stress τY and by a power of two factor the consistency

K.

The VP model predicts localization in the circular Couette geometry, as a result of the
stress heterogeneity. Its position rc can be easily computed from a simple expression (see
appendix B, equation (12)).

For the Couette problem, V denotes the velocity of the inner cylinder and ∆r = re − r0
the width of the gap. Note that η = K(V/∆r)n−1 has the dimension of a viscosity, The
dimensionless Bingham number is:

Bi =
τY∆r

ηV

It compares the yield stress τY with a characteristic viscous stress ηV/∆r. Let us also
introduce the confinement dimensionless number

Co = 1− r0
re
,

that expresses the eccentricity of the Couette geometry: when the two radii are close, this
number is close to zero. Conversely, when the eccentricity is extreme, e.g. r0 becomes small,
this number tends to one.
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Saramito (2007, 2009) derived a three-dimensional combination elastoviscoplastic (EVP) of
the viscoelastic (VE) Oldroyd and viscoplastic (VP) Herschel-Bulkley model:

1

2µ

∇

τ +max

(

0,
|τ | − τY
2K|τ |n

) 1

n

τ = D (3)

where µ > 0 is the elasticity modulus. When 1/µ = 0 we obtain the VP model. Conversely,
when n = 1 and τY = 0 we obtain the Oldroyd viscoelastic model (Oldroyd (1950)). The

so-called upper-convected tensorial derivative
∇

τ is defined by:

∇

τ=
∂τ

∂t
+ v.∇τ − τ∇vT −∇vτ (4)

In addition to the dimensionless numbers (Bi, Co, n) already introduced for the VP model,
we define the elastic yield strain εY as

εY =
τY
2µ

.

This dimensionless parameter is a measure of the softness and deformability of the mate-
rial, it has been evidenced as the main parameter for the characterization of EVP materials
by Cheddadi et al. (2011a). In the case of foams, it is directly measurable from experi-
ments (Marmottant et al. (2008)). The elastic properties of the material can also be pa-
rameterized by the Weissenberg number We that compares the characteristic viscous stress
ηV/∆r with the elastic modulus µ; it allows to make the link with VE models such as Ol-
droyd one. Finally, the problem is completely characterized by four dimensionless numbers
(see table 1): namely (εY , Bi, Co, n), or equivalently, (We,Bi, Co, n).
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2.2 Overview of EVP solutions for Couette flows
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Figure 2: Comparison EVP/VP, stationary solution: (a) velocity, (b) normal stress, (c) shear
stress, (d) norm of the deviatoric stress. EVP solutions for the reference set of parameters
(eqn (5) and Fig. 3b): εY = 0.35, Bi = 27, Co = 1/3, n = 1, as on Fig. 3b, with different
initial conditions. Thick solid red line (denoted as EVP0): τ 0θθ = 0; thin dashed black line
(EVP+): τ 0θθ =

√
2Bi; thin dotted blue line (EVP−): τ 0θθ = −

√
2Bi; thick solid green line

(VP): Co = 1/3, Bi = 27, n = 1. We denote as r+c (resp. r−c ) the critical radius of solution
EVP+ (resp. EVP−).
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We now review some of the specificities brought by the tensorial EVP model, with an em-
phasis on the differences with scalar VP models. Fig. 2 shows all the components of some
solutions of the EVP model, for a set of parameters used as reference (eqn (5) and Fig. 3b),
and compares them to the Herschel-Bulkley VP model. The exploration of these parameters
in a much larger range will be presented in section 3.

Range of possible initial conditions. The EVP constitutive equation (3) includes deriva-
tives with respect to time of the elastic stress tensor and therefore allows the study of tran-
sient flows, as has been done by Cheddadi et al. (2008). This in turn requires to specify
an initial condition that reflects the preparation of the material before the beginning of the
experiment. In particular, the tensorial frameworks allows to study various initial normal
stresses.

Three different constant values for τθθ are chosen. We note EVP0 the case without initial
normal stress, τθθ(t = 0) = 0. We then explore two extreme limit cases, such that the
norm of the initial deviatoric stress tensor is |τd(t=0)| = τY , while other stress components
are zero τrθ(t = 0) = τrr(t = 0). We thus introduce the two cases EVP± corresponding to
initial stresses τθθ(t=0) = ±

√
2τY . We denote as r+c (resp. r−c ) the extreme critical radius,

corresponding to EVP+ (resp. EVP−).

Effect of the initial conditions.

Surprisingly, Fig. 2 shows that the stationary solution depends on the initial conditions.
We find that they lead to three different stationary solutions, both for the velocity profile
(Fig. 2a) and for the stress (Fig. 2b-d). For a given set of parameters (εY , Bi, Co, n), when the
initial condition varies the model predicts a continuous set of stationary solutions. Depending
on the initial condition, the critical radius rc can reach any value in the range [r−c , r

+
c ]; the

highest critical shear rate is reached for the solution with τθθ(t=0) = −
√
2τY .

Non-uniqueness. Here, we find that r+c = 2.33∆r is close to the value predicted by the
VP model, but r−c = 2.24∆r is significantly smaller, while the critical radius r0c = 2.28 for
EVP0 is in between. The EVP model contrasts dramatically with the the VP one, where the
(stationary) velocity is unique, the normal stress components are zero and the localization
length rc is also unique.

Memory effects. Unlike the VP model, the EVP model exhibits non-zero normal stresses
(Fig. 2b): in the flowing region (r < rc) where plastic rearrangement continuously occur
(|τd| > τY ), the normal stress is independent of the initial condition, the material loses
progressively memory of the initial condition. Conversely, in the non-flowing region (r > rc
and |τd| < τY ), the normal stress highly depends on the initial conditions. The material thus
keeps track of the initial condition through residual normal stresses.

Smooth and non-smooth solutions.
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Unlike the VP model, EVP solutions can exhibit either smooth (EVP+), or non-smooth
profiles (EVP0, EVP−): the velocity gradient and the normal stress can be discontinuous at
r = rc (Fig. 2a). We define the critical shear rate γ̇c as the jump of γ̇ = 2Drθ at r = rc, it is
directly related to the slope of the velocity (Fig. 2a). Compared to EVP0, EVP− exhibits a
stronger localization (r−c < r0c ), a higher γ̇c, and a higher jump of the normal stress (Fig. 2.c).

Comment on the non-uniqueness.

Let us analyze the source of the non-uniqueness of the solution. The VP model (1) contains
one non-linearity, related to the von Mises criteria. The EVP model (eq. (3)) adds a second
nonlinearity contained in the Oldroyd derivative (eq. (4)). Due to the expression of this
Oldroyd derivative, the stationary EVP equations do not reduce to the VP model. The
additional term couples the normal stresses components with the shear stress and the velocity
gradient (see appendix A). Therefore, even though the velocity gradient reduces here to the
shear component, the EVP stationary solution develops non-zero normal stresses.

This additional nonlinearity, interacting with the von Mises criteria, causes non-uniqueness
of the stresses at the vicinity of |τd| = Bi, i.e. at the vicinity of r = rc.

Of course, for each given initial condition, the corresponding time-dependent problem is
well-posed, its time-dependent solution is unique, and the associated stationary solution is
unique too.

2.3 Comparison with experiments: parameters identification

We explain here how the parameters of the model were chosen in order to fit the experimental
data shown in Fig. 3.
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Figure 3: Smooth and non-smooth velocity profiles. Experimental data are compared with
our model as discussed in section 2.3. (a) Smooth profile: comparison of experimental
data on a foam by Debrégeas et al. (2001) with the present theory (εY = 0.175, Bi = 10,
Co = 0.41803, n = 1/3); (b) Non-smooth profile: comparison of experimental data on a
bentonite-water suspension from Fig.1.a of Coussot et al. (2002), with the present theory
(εY = 0.35, Bi = 27, Co = 1/3, n = 1). Inset: zoom around r = rc.

Smooth profiles: the Debrégeas experiment

The first experiment was made with foam by Debrégeas et al. (2001) who measured with
image analysis technique the stationary velocity profiles; it was reanalyzed in 2005 by Janiaud
and Graner (2005); in particular, they measured the shear and normal components of the
local elastic strain, in the transient and stationary regime.

In the experiment, a stationary state is reached after a transient regime. The rotation
direction is then inverted, and after a new transient a new stationary state is reached: this
is when measurements are recorded (Debrégeas et al. (2001)). To perform a significant
comparison, we use the experimental stationary state as an initial condition, invert the
rotation, compute the numerical solution until a first stationary state is reached, then invert
again the rotation, and compare the corresponding stationary state with experiments.
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The confinement number is given by the geometry:

Co = 1− r0/re = 1− 71/122 ≈ 0.41803.

We have to adjust the value of the four remaining parameters: εY , Bi, n. We focus on the
stationary measurements of elastic strain and velocity.

We start with the yield strain εY ; this parameter is independent of the velocity and exerts
a large effect on the elastic strain εe = τrθ/(2µ) (see Cheddadi et al. (2011b)). We find that
εY = 0.175 allows a good fit of the measured value of the shear elastic strain (see Fig. 4a).
As a result, the initial normal components of the strain are not affected (see Fig. 4b) by the
successive rotations in the region r > rc, that remains under the yield strain εY : this region
undergoes reversible elastic deformations.

Then we have to adjust the value of Bi and n. These parameters have much less effect on
the profiles of εe than εY , but they affect more the localization length and the smoothness
of the solution (see Cheddadi et al. (2011b)). As this experiment exhibits a very smooth
transition from flowing to non-flowing region (exponential-like decrease of the velocity), it
seems relevant from our sensibility analysis (see below, section 3.4) to use a rather small
value of the shear-thinning index n: we choose the value n = 1/3. The localization length
can be measured from the experiment: rc − r0 ≈ 0.3 ∆r; we can use this information in the
EVP model, taking advantage of the fact that the localization is a VP effect and is mostly
determined by the underlying Herschel-Bulkley model. This last model yields a relation
between the values of rc, Bi, and n (see appendix B, equation (12)): with the chosen value
of Co and n = 1/3, it yields Bi ≈ 7.6. This value is slightly adjusted in the EVP model: we
obtain a better fit of the velocity profile with Bi = 10.
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Figure 4: The stress tensor: comparison of experimental measurements (Janiaud and Graner,
2005), as analyzed from (Debrégeas et al., 2001), with computations (εY = 0.175, Bi = 10,
Co = 0.41803, n = 1/3); (a) components; (b) norm of the tensor.

Non-smooth profiles: the Coussot experiment

The second experiment was made with a bentonite-water suspension by Coussot et al., using
MRI (Coussot et al., 2002). For this experiment, only the stationary velocity has been
measured, which makes more difficult to precisely evaluate the parameters of the model.
Since the normal stresses are not measured, we take an initial condition set to zero for the
sake of simplicity. As the velocity profile is quite abrupt at the vicinity of r = rc, we choose
n = 1 for the shear-thinning index. Then, as for the previous experiment, we evaluate the
Bingham number Bi such that the critical radius predicted by underlying Herschel-Bulkley
model matches the one of the experiment (rc − r0 = 0.28 ∆r). From this point, the slope
of velocity at r = rc (which is directly related to the critical shear rate) can be adjusted
through the yield strain εY . The best fit is obtained with εY = 0.35 and Bi = 27.
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3 Sensitivity to the parameters

Now, we study how the range [r−c , r
+
c ] and the critical shear rate γ̇c depend on the pa-

rameters of the model. We explore the parameters space with the dimensionless numbers
(εY , Bi, Co, n); it allows to probe the effect of the imposed velocity V (through the Bingham
number, as it is the only one that depends on V ); the geometry (through the confinement
number Co); and two material parameters, the yield strain εY , and the shear thinning index
n. These parameters are varied around a reference set of parameters used for the comparison
with (Coussot et al., 2002) (section 2.3, Fig. 3b):

εY = 0.35, Bi = 27, n = 1, Co = 1/3. (5)

3.1 Effect of the velocity
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Figure 5: Effect of the viscoplasticity Bi: (a) upon r−c and r+c ; (b) upon γ̇c. The solid black
line is the value predicted by the Herschel-Bulkley model with the same parameters except
that εY = 0. Black cross: parameters as (5) together with τ(t=0) = 0.

The effect of the imposed velocity V is probed through the Bingham number Bi = τY
ηV/L

that

is varied in the range [10, 60], around the reference value Bi = 27. If V0 is the velocity asso-
ciated to this reference value, the range of Bi corresponds roughly to the range [V0/3, V0 × 3]
for the velocity. Observe on Fig. 5a that, when the Bingham number Bi increases, rc de-
creases and the size of the zero velocity zone increases. The critical radius r+c almost matches
the critical radius predicted by the Herschel-Bulkley model. The flow becomes more localized
and the gap between r−c and r+c also decreases slowly. The marker represents our reference
solution (on Fig. 5a). We observe on Fig. 5b that γ̇c is almost constant when Bi varies.
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Varying the velocity affects the size of the zero velocity zone, but has few effects upon the
possible abruptness of the solution, nor on the range [r−c , r

+
c ].

3.2 Effect of the confinement Co
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Figure 6: Effect of the confinement Co: same caption as Fig. 5.

The Couette number Co explores the effect of the geometry confinement. Recall that Co → 0
corresponds to the plane Couette, with an homogeneous stress throughout the gap, while Co
close to one corresponds to an eccentric cylindrical Couette, with an highly heterogeneous
stress. Observe on Fig. 6 that the size of the zero velocity zone decreases when Co tends to
one. The critical radius r+c of the smooth solution is well predicted by the Herschel-Bulkley
model. Note also that the difference r+c −r−c decreases with Co: thus, when the flow is highly
localized, the effect of the initial condition is less visible on the localization length. Also the
maximal discontinuity γ̇c of the critical shear rate slightly increases with Co.

3.3 Effect of the elastoplasticity εY

The yield deformation εY has a large effect on the velocity profile of the extreme non-
smooth solution and few impact on the smooth one: r−c decreases and γ̇c increases, both
quasi-linearly, when εY increases. A linear regression leads to:
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Figure 7: Effect of the elastoplasticity εY : same caption as Fig. 5.

r−c
∆r

≈ −0.23 εY + 0.33

− V

∆r
γ̇c ≈ 5.5 εY . (6)

Note that both the range r+c − r−c and the discontinuity γ̇c increases with εY . Conversely,
when εY vanishes, r−c = r−c and γ̇c = 0: the solution is unique and smooth: there is no more
elasticity and the model reduces to the VP one.

3.4 Effect of the shear thinning n
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Figure 8: Effect of n: same caption as Fig. 5.
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From Fig. 8, the solution range r+c − r−c appears to be roughly constant while the size of the
yielded zone increases with n. The critical radius r+c decreases with n, as for the Herschel-
Bulkley model. The γ̇c discontinuity of the shear rate for the extreme non-smooth solution
decreases with n. These effects are not intuitive: another way to explore the effect of n is to
vary it while rc is held fixed. It can be approximatly achieved with the following procedure
that takes advantage of the fact that the critical radius rc is roughly given by the Herschel-
Bulkley model: it allows to predict rc as a function Bi, n, Co; conversely, for given values
of rc, n, Co, one obtains a unique value of Bi; this value is then used in the EVP model.

n 1 2/3 1/2 1/3
Bi 27 16.6489 12.7851 9.54785

Table 2: Effect of the shear thinning index n while rc remains fixed: values of n and corre-
sponding values of Bi (εY = 0.35, Co = 1/3).
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Figure 9: Effect of the shear thinning n at fixed rc: (a) smooth and (b) extreme non-smooth
velocity profiles, (c) γ̇c ; (d) smooth (dashed and black) and extreme non-smooth (continuous
and red) profiles for n = 1/3.

Based on this procedure, the values of n and Bi are varying as in table 2 in such a way that rc
remains constant. The solution is represented on Fig. 9. Fig. 9.a shows the smooth solution,
associated to r+c ≈ 0.3 while Fig. 9.b plots the extreme non-smooth one, with r−c ≈ 0.23.
Note that now, both r+c and r−c are roughly constant. Observe that the velocity profile is more
curved when n is small. Fig. 9.c represents γ̇c: observe also that the discontinuity decreases
rapidly for small n values. For n = 1/3, the non-smoothness becomes imperceptible, while
the smooth and extreme non-smooth profiles are very close and almost undiscernable, as
shown on the insert of Fig. 9.d. Note that, even when n = 1/3, there are still multiple
solutions, and the range for rc remains [r−c , r

+
c ] ≈ [0.23, 0.3], despite the fact that these

solution share very similar curved profiles.
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4 Discussion

With these results, we can now revisit several debates on Couette flows, mentioned in the
introduction.

4.1 Smooth and non-smooth profiles
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Figure 10: Foam with abrupt profile. Comparison of experimental data, from (Gilbreth
et al., 2006), Fig 1, with model (εY = 0.2, Bi = 1.3, Co = 0.63333, n = 1, α = 0.2) for both
extreme solutions: smooth EVP+ and non-smooth EVP− (τθθ(t=0) = ±

√
2Bi).

The debate between smooth and non-smooth velocity profiles is difficult to address experi-
mentally, for two reasons.

First, since the stationary solution is not unique, both smooth and non-smooth profiles can
be observed in the same experiment. This depends on the residual stresses due to initial
preparation, which are usually not reproducible, and are certainly difficult to suppress (Ra-
ufaste et al., 2010). That could explain the doubts expressed by one author regarding the
different results found at a few years interval, as reported on Fig. 1.b by Ovarlez et al. (2010).
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Second, the experiments in foams are not always precise enough to discriminate between
smooth and abrupt transitions. Fig. 10 compares experimental measurements and the two
extreme solutions: EVP+, the smooth one, with dashed lines, and EVP−, the extreme
non-smooth one, with solid lines. Experiments were performed with bubble rafts, and in
order to reflect the absence of top and bottom plates, the fluid viscosity is introduced as a
second Newtonian viscosity η2 with a viscosity ratio α = η/(η + η2) (see Saramito (2007,
2009)). In that case, the smooth solution predicts r+c = r0+0.65∆r and the non-smooth one
r−c = r0 + 0.43∆r together with a discontinuous shear rate γ̇c = 0.33(V/∆r). Observe that
both smooth and non-smooth solutions compare well with experimental measurements.

4.2 Is Couette flow suitable for EVP materials ?

Couette flows, due to their simple geometry, have a long history to probe the rheology of
several Newtonian liquids. They are also very suitable to probe complex liquids such as
VE or VP materials. However, the present study questions their use in EVP materials, and
especially in foams, which are usually excellent models to perform in-lab experiments. In
fact, in EVP materials, the initial conditions and the preparation method create residual
stresses which are difficult to remove, and affect the flow, which thus becomes non-unique
and poorly controlled. Care is necessary to interpret the results.

We thus recommend to study flows where residual stresses do not affect the understanding
and measurements. Other requirements should include well-defined boundary conditions;
good separation of scale between the discrete units, the representative volume element (RVE)
and the global flow scale; large variation of the control parameters such as velocity (and, in
foams: liquid fraction, dispersity of bubble sizes). We have shown using experiments and
models that a Stokes flow of foam (flow around an obstacle) meets these requirements (Ched-
dadi et al., 2011a).

Conclusion

We model here the Couette flow of elastic, viscous, plastic materials. We provide an approx-
imate expression of the rheology versus different material parameters. These parameters are
defined and measured at a mesoscopic scale, larger than discrete units, but smaller than
the flow scale. These are experimentally measurable such as viscosity η or the consistency
K, the elastic modulus µ and yield strain τY . In turn, our predictions are compared with
experiments. We have shown that there is a complex interplay between elasticity, viscosity
and plasticity, which together (but not separately) account for experimental observations.
We have also evidenced that even in such a simple geometry, the orientational effects are
important, so that a tensor (rather than scalar) description is necessary to capture many
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aspects of the physics.

The existence of localization in complex fluids can be predicted by the simple VP model.
It is related with the heterogeneity of stress (whatever its cause, for instance the curvature
of flow lines, or external friction): what matters is that the stress is either above or below
the yield stress τY . In a localized flow, there are two distinct zones. Above τY , the material
flows, below τY , the material remains rigid.

However, most subtle features, such as the effect of initial stresses conditions on the de-
termination of either a smooth or a non-smooth profile, are due to the combined effect of
the plasticity (the yield stress τY ) and the elasticity µ. The prediction of such features re-
quires an EVP model, for which the previous mechanism is qualitatively modified: above
τY , the material flows, , and the initial conditions are quickly erased by irreversible plastic
deformations. Conversely, below τY , the material remains solid and elastic, with bounded
deformations influenced by the initial stress conditions. The existence of normal stresses,
the persistence of residual stresses, even in stationary flow, and apparition of non-smooth
solutions in some situations can be predicted neither by VP models nor by VE models. The
non-uniqueness of the stationary flow is a consequence of the combined effect of plasticity
and elasticity in the fluid model.

We have computed numerically the value of the localization length versus different parame-
ters: it mainly depends on viscoplastic effects (the dimensionless Bingham number). Non-
smooth profiles are related to the appearance of a critical shear rate γ̇c. The effect of the
initial conditions are more visible for instance when εY is large; or when the dissipation ex-
ponent n is large; or when the velocity is large, but small enough to allow for a localization
within the gap; or when the heterogeneity from the geometry is small, but large enough to
allow for a localization within the gap.

Together, our results provide a validation of the continuous material description, a determi-
nation of EVP material parameters, and a in-depth understanding of their complex rheology.
We have established several quantitatively testable predictions, regarding the values of lo-
calization length rc and critical shear rates γ̇c (eq. 6). We have tested them against available
experimental data, but many more tests are feasible. Moreover, it should be possible to test
experimentally or numerically our main qualitative prediction: namely that initial conditions
affect the flow, and even modify the continuous or discontinuous nature of the localization.
Finally, it appears that the stationary Couette flow, which has stimulated so many debates,
is not robust nor unique. Despite its apparent simplicity, it involves numerous parameters,
such as initial stress tensor conditions, and is difficult to use in practice. We suggest that
flows with a stronger dependence in time and/or space will provide much easier comparisons
with simulations and models, and more stringent tests.
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A Equations in cylindrical geometry

The velocity field is v = (0, vθ, 0) in cylindrical (r, θ, z) coordinates. The elastoviscoplastic
constitutive equation in cylindrical coordinates writes:

1

2µ

∂τrr
∂t

+max

(

0,
|τ d| − τY
2K|τ d|n

) 1

n

τrr = 0, (7)

1

2µ

(

∂τrθ
∂t

− 2Drθτrr

)

+max

(

0,
|τ d| − τY
2K|τ d|n

) 1

n

τrθ = Drθ, (8)

1

2µ

(

∂τθθ
∂t

− 4Drθτrθ

)

+max

(

0,
|τ d| − τY
2K|τ d|n

) 1

n

τθθ = 0, , (9)

with |τ d| =
(

2τ 2rθ +
1
2
(τrr − τθθ)

2
)1/2

. Here, D = (∇v +∇vT )/2 is the rate of strain tenor,
K denotes a generalized viscosity (see Saramito (2009)). The conservation of momentum
writes:

∂p

∂r
− ∂τrr

∂r
− τrr − τθθ

r
= 0, (10)

− 1

r2
∂

∂r

(

r2τrθ
)

= 0 (11)

This system of equations is closed by boundary conditions for the velocity at the inner and
external cylinders, respectively r = r0 and r = re, (see Fig. 1a) and by initial conditions for
both the velocity vθ and the elastic stress τ .

B Herschel-Bulkley solution in cylindrical geometry

When εY = 0 the EVP model reduces to the VP one, and the velocity profile is given by

vθ(r) =

(√
2 r2c τY
K

) 1

n

r

∫ rc

r

1

s

(

1

s2
− 1

r2c

) 1

n

ds

In the case where the flow is driven by the inner boundary, the critical radius rc is given by
the following expression:
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K√
2 r2c
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.
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It expresses also in dimensionless variables:
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√
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)2
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) 1
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ds
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









n

, (12)

For fixed values of n and rc, the corresponding value of Bi for the VP model, denoted as
Bivp(n, rc), can be easily computed by using numerical integration. Conversely, for given
Bi and n, the value of rc associated to the the VP model, denoted as rc,vp(n,Bi), can be
obtained from a small numerical computation (see Fig. 11a).
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Figure 11: Herschel-Bulkley model (εY = 0, Co = 1/3): (a) localization rc = rc,hb(Bi, n) as
a function of the Bingham number Bi, for different values of the power index n ; (b) Index
βn vs n for the power law (rc(Bi, n)− r0)/∆r ≈ 1.82Biβn .

Fig. 11a plots rc as a function of the Bingham number Bi, for εY = 0 (VP model) and
Co = 1/3, and different values of the power index n. (see appendix B, equation (12) for
this short computation). Note that the value Co = 1/3 corresponds to the geometry of the
experiment by Coussot et al. (2002) as shown on Fig. 3b. In this geometry, the localization
is observed as long as rc/∆r < re/∆r = 1/Co. The VP model predicts that rc decreases
with the Bingham number: the zero-velocity zone develops and the localization effect is more
pronounced. Observe also that the localization effect is more pronounced when n decreases
at fixed values of Bi and Co. The value rc value associated to the VP model is denoted as
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rc,vp(n,Bi) and this inverse at fixed n as Bivp(n, rc). Since rc depends roughly as a power
law upon Bi at fixed n, e.g. (rc(Bi, n)− r0)/∆r ≈ 1.82Biβn , Fig. 11b represents βn vs n. A
nonlinear regression leads to βn ≈ −0.38n2 + 0.88n− 1.02, represented as a dotted line.

C Numerical method
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Figure 12: Convergence versus mesh refinement for the EVP− non-smooth solution (εY =
0.35, Bi = 27, Co = 1/3, n = 1) as on Fig. 2.

The velocity is approximated by continuous affine finite elements while the stress components
are piecewise constant over the mesh. The code is implemented by using the C ++ Rheolef
finite element library (Saramito, 2011). The stopping criteria for a stationary solution is
satisfied when the residual term is less than 10−8. Fig. 12 shows the convergence versus the
mesh size h at the vicinity of r = rc for the EVP

− non-smooth stationary solution presented
on Fig. 2. Observe that the numerical method presents excellent convergence properties,
despite the non-smoothness of the solution: the velocity is non-differentiable (Fig. 12a)
while normal stress is discontinuous (Fig. 12b).
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