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30
Abstract:31
Although density-dependent dispersal and relative dispersal (the difference in dispersal rates 32
between species) have been documented in natural systems, their effects on the stability of 33
metacommunities are poorly understood. Here we investigate the effects of intra- and 34
interspecific density-dependent dispersal on the regional stability in a predator-prey 35
metacommunity model. We show that, when the dynamics of the populations reach 36
equilibrium, the stability of the metacommunity is not affected by density-dependent 37
dispersal. However, the regional stability, measured as the regional variability or the 38
persistence, can be modified by density-dependent dispersal when local populations 39
fluctuate over time. Moreover these effects depend on the relative dispersal of the predator 40
and the prey. Regional stability is modified through changes in spatial synchrony. 41
Interspecific density-dependent dispersal always desynchronises local dynamics, whereas 42
intraspecific density-dependent dispersal may either synchronise or desynchronise it 43
depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal 44
strengthen the top-down control of the prey by the predator at intermediate dispersal rates. 45
As a consequence the regional stability of the metacommunity is increased at intermediate 46
dispersal rates. Our results show that density-dependent dispersal and relative dispersal of 47
species are keys to understanding the response of ecosystems to fragmentation. 48

49
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 2 

INTRODUCTION 1 

 2 

Understanding the mechanisms that govern the stability of metacommunities is a key 3 

challenge to understand the response of ecosystems to fragmentation. Metacommunities are 4 

regional sets of local communities linked by dispersal, i.e., by the movement of individuals 5 

from a patch (emigration) to another (immigration) (Leibold et al. 2004). Both local and 6 

regional processes affect the stability of metacommunities. For instance, in predator-prey 7 

metacommunities, local processes such as local density regulation mechanisms drive local 8 

predator-prey population fluctuations, which may lead to local extinctions when 9 

communities are isolated (Gause 1934; Lotka 1925; Rosenzweig and MacArthur 1963; 10 

Volterra 1926). But dispersal, which is a regional process, may allow regional persistence of 11 

the prey and the predator (Huffaker 1958) because it allows recolonization of vacant patches 12 

(Levins 1970) or rescue effects (Brown and Kodric-Brown 1977). This positive effect of 13 

dispersal on the regional stability of predator-prey metacommunities requires that dynamics 14 

are spatially asynchronous. If local populations fluctuate strongly and synchronously, the 15 

whole metapopulation may go extinct because of simultaneous extinction of local 16 

populations. But if fluctuations of local densities are asynchronous, recolonizations or 17 

rescue effects can occur and the persistence and stability of the metacommunity is improved 18 

(Comins and Blatt 1974; Hassell et al. 1991; Jansen 2001).  19 

 20 

But dispersal and synchrony between communities are not independent processes. 21 

On the one hand, dispersal may increase spatial synchrony because exchanges of individuals 22 

between communities tend to reduce differences in population sizes, especially when 23 

dispersal is high (Bjornstad et al. 1999). On the other hand, weak dispersal may also 24 

synchronise dynamics in predator-prey metacommunities with nonlinear density regulation 25 

(Bjornstad 2000; Jansen 1999). Thus, both dispersal and local density regulation can 26 



 3 

synchronise community dynamics. Since there is empirical evidence for asynchronous 1 

spatial dynamics in predator-prey metacommunities (Holyoak and Lawler 1996a; Holyoak 2 

and Lawler 1996b; Janssen et al. 1997; Nachman 1991; van de Klashorst et al. 1992), some 3 

mechanisms maintain persistent differences between local densities and counteract the 4 

synchronising effect of dispersal. These mechanisms have been explored using a number of 5 

models, and involve either stochastic or deterministic processes. Asynchrony between 6 

patches of the same quality can be due to independent stochastic local factors (Taylor 1990), 7 

such as demographic stochasticity in small populations (Nachman 1987a) and stochasticity 8 

of dispersal between patches or of environmental variations in population parameters 9 

(Crowley 1981; Reeve 1988; Reeve 1990). These models show that an intermediate 10 

dispersal intensity of the prey and the predator insures metacommunity persistence 11 

(Crowley 1981; Nachman 1987b; Nachman 1991; Reeve 1988; Zeigler 1977 reviewed in 12 

Holyoak and Lawler 1996b). Dispersal must be sufficiently high to allow recolonization of 13 

extinct patches, but sufficiently low to maintain the desynchronising effect of stochastic 14 

local processes. Spatial asynchrony can also emerge from the interaction between local 15 

dynamics and dispersal (Jansen 1995). In deterministic predator-prey metacommunities with 16 

nonlinear density regulation, spatial asynchrony between patches arises when dispersal rates 17 

are either low or intermediate. In these models, population dynamics are synchronous when 18 

dispersal is high, and temporal variation in regional densities is decreased when dispersal 19 

rates are decreased. 20 

 21 

In this paper, we investigate the influence of two key aspects of dispersal behaviours 22 

on the stability of predator-prey metacommunities: the density dependence in dispersal, and 23 

the ratio of predator and prey dispersal rates, which we name "relative dispersal". Density-24 

dependent dispersal, i.e. dispersal changes in response to changes of species densities in the 25 

donor patch, has been observed in several experimental systems (see for instance Bernstein 26 



 4 

1984; French and Travis 2001; Hauzy et al. 2007). It implies a direct effect of local 1 

processes (population dynamics) on regional processes (dispersal). A species’ population 2 

density can affect its own dispersal (intraspecific density-dependent dispersal) or the 3 

dispersal of another species (interspecific density-dependent dispersal). Recent models 4 

including density-dependent dispersal in predator-prey metacommunities yielded contrasted 5 

results. McCann et al. (2000) suggested that local predator population outbreaks do not 6 

depend on interspecific density-dependent dispersal. By contrast, Li et al. (2005) showed 7 

that interspecific density-dependent dispersal can reduce spatial synchrony in both the prey 8 

and the predator. Most of these studies, however, have assumed that prey and predator 9 

dispersal rates are equal. But empirical data suggest that dispersal abilities of prey and 10 

predator can be very different. The large range of predator-prey body-size ratios observed in 11 

real food webs (Brose et al. 2006) and the allometric relationship between body size and the 12 

scale of species’ movements (Rooney et al. 2008) or dispersal abilities (Jenkins et al. 2007) 13 

suggest that the relative dispersal rate of the predator compared to the prey can vary within a 14 

large range. In some ecosystems, scale of movement is strongly positively related to trophic 15 

position, suggesting a higher dispersal rate for the predator than for the prey. In other 16 

systems, predators can even be less mobile than their prey, suggesting a higher dispersal rate 17 

for the prey than for the predator. Differences in the dispersal abilities of the prey and the 18 

predator can have important consequences, and yet have received little attention so far.  19 

 20 

Here we develop a deterministic metacommunity model of a prey and a predator that 21 

includes density-dependent dispersal. We compare the effects of both intra- and 22 

interspecific density-dependent dispersal on the dynamics and the stability of the prey and 23 

the predator at the regional scale with those of constant dispersal. We study the effects of 24 

density-dependent dispersal in two contrasting cases of relative dispersal: either predator 25 

dispersal is distinctly higher than prey dispersal or prey dispersal is distinctly higher than 26 
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predator dispersal. These comparisons allow us to assess the effects of density-dependent 1 

dispersal and relative dispersal on the relationship between dispersal and the stability of 2 

predator-prey metacommunities. 3 

 4 

 5 

6 



 6 

THE MODEL 1 

 2 

We consider a patchy landscape consisting of several localities. Each locality is 3 

occupied by a local predator-prey community. Within each community, local dynamics 4 

follow a Rosenzweig–MacArthur predator-prey model (Rosenzweig and MacArthur 1963): 5 

prey growth is logistic, the predator has a Holling type II functional response and its 6 

mortality rate is constant. Local communities are linked by dispersal of both species from 7 

one patch to another. A collection of such communities constitutes a predator-prey 8 

metacommunity. For the sake of simplicity, and following Jansen (1995, 2001), we study a 9 

2-patch predator-prey metacommunity in which the two patches are identical. The dynamics 10 

of the prey and the predator in the two patches (1 and 2) are given by a system of ordinary 11 

differential equations: 12 

  13 
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 15 

where Ni and Pi denote the population densities of the prey and the predator, respectively, in 16 

patch i =1, 2. As patches are identical, species parameters are the same in both patches. r 17 

and K denote the growth rate and carrying capacity of the prey; b and c are the saturation 18 

value and the half-saturation constant of the predator functional response; m is the predator 19 

mortality rate. Conversion efficiency from prey to predator has been set to 1. This does not 20 
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constitute an ecological assumption but arises from a simple mathematical rescaling of Ni or 1 

Pi.  2 

 3 

The last two terms of equations describe dispersal from and to each patch. We make 4 

the ecological hypothesis that migration is not costly; as a consequence, the emigration term 5 

in one patch corresponds exactly to the immigration term in the other. This assumption fits 6 

in well with dispersal through corridors that allow fast moves with limited mortality risks. 7 

Dispersal rates are determined locally: the per capita dispersal rates from patch i of the prey 8 

Dn(Ni, Pi) and of the predator Dp(Ni, Pi) are functions of species densities in the donor patch 9 

i only. The dispersal rate of each species may depend on its own local density, which we 10 

refer to as "intraspecific density-dependent dispersal", and on the local density of the other 11 

species, which we refer to as "interspecific density-dependent dispersal" (Hauzy et al. 12 

2007). Our mathematical analysis deals with the general model, but our numerical 13 

simulations investigate the separate effects of intraspecific and interspecific density 14 

dependence in dispersal. The dispersal rates then simplify into Dn(Ni) or Dn(Pi) and Dp(Pi) 15 

or Dp(Ni). In numerical simulations, density dependence in dispersal is modelled through 16 

Hill functions, which have been chosen for their convenient plasticity: the per capita 17 

dispersal rate from patch i of the prey writes 18 

( )
nn

nn nn
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and the per capita dispersal rate of the predators writes  20 
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.  21 

 22 

These formulations imply several assumptions. Species have a maximal per capita 23 

dispersal rate dn for the prey, and dp for the predator (fig. 1). These parameters can reflect 24 



 8 

the ability of the species to disperse or the distance between patches. The half-saturation 1 

parameters Sαβ are the densities of species β (prey: β stands for "n"; or predators: β stands 2 

for "p") for which the per capita dispersal rates D� of species α (α = "n", "p") is half of the 3 

maximal per capita dispersal rate dα. Parameters xαβ determine the shape of density 4 

dependence in dispersal. When xαβ = 0, dispersal is independent of density and occurs at a 5 

constant per capita rate dα/2; when xαβ > 0, the dispersal rates increase with density; 6 

whereas when xαβ < 0, they decrease with density. The absolute value of xαβ determines the 7 

steepness of density dependence: when |xαβ| = 1, dispersal rates are concave functions of 8 

density up to their saturation level (cyrtoid shape), whereas they are sigmoidal when |xαβ| > 1 9 

(the inflexion point of the dispersal function then occurs at the threshold density Sαβ); high 10 

values of |xαβ| model step-like sigmoid curves, whereas low values model smoother 11 

variations in dispersal with population density. 12 

 13 

In this paper, we explore density-dependent dispersal behaviours that mimic those 14 

observed in several experiments (Bernstein 1984; French and Travis 2001; Hauzy et al. 15 

2007), i.e., prey dispersal increases with prey and predator densities (positive intra- and 16 

interspecific density-dependent dispersal in the prey), and predator dispersal increases with 17 

predator density (positive intraspecific density-dependent dispersal in the predator) and 18 

decreases with prey density (negative interspecific density-dependent dispersal in the 19 

predator). In terms of model parameters, this implies xnn > 0, xnp > 0, xpp > 0 and xpn < 0. We 20 

conduct both a mathematical and a numerical analysis of the model. 21 

 22 

23 



 9 

MATHEMATICAL ANALYSIS 1 

 2 

Stability of the symmetric equilibrium 3 

 4 

We first focus on equilibriums of the model, and more specifically on the symmetric 5 

equilibrium, i.e., that for which densities are equal in patches 1 and 2 (N1=N2 and P1=P2). 6 

We analyse the stability of this equilibrium using the linearization method developed by 7 

Jansen (1994). The original method considers a predator-prey metacommunity model with 8 

constant dispersal. We extend the method to general forms of density-dependent dispersal 9 

and apply it to our model (Appendix A). 10 

 11 

The stability of the symmetrical equilibrium depends only on the local parameters r, 12 

b, c, m and K. The equilibrium is stable if and only if the prey carrying capacity K is below a 13 

threshold value: � �mbmbcK 	�� )(  (Appendix A). For higher values of the prey carrying 14 

capacity, it is always unstable and a stable limit cycle appears. These results for density-15 

dependent dispersal generalize those obtained for constant dispersal by Jansen (1995) and 16 

correspond to the well-known paradox of enrichment in the non-spatial MacArthur-17 

Rosenzweig model. Neither prey nor predator dispersal affects the stability of the symmetric 18 

equilibrium and this conclusion is unaffected by density dependence in dispersal. A 19 

metacommunity exhibits the same sudden destabilisation of its dynamics when K increases 20 

beyond its threshold whether dispersal is constant or density dependent. 21 

 22 

Regional densities at the symmetric equilibrium 23 

 24 



 10 

Next, we analyse the effect of density-dependent dispersal on the total (regional) 1 

population densities of the prey and the predator at the symmetric equilibrium. From 2 

equations (1), we see that emigration from patch i and immigration to patch i cancel each 3 

other out for each species, so that the regional densities of the prey and the predator are 4 

independent of dispersal. Thus, prey and predator densities at the symmetric equilibrium are 5 

unaffected as well by dispersal (Jansen 1995), whether dispersal is constant or density 6 

dependent. When the metacommunity has reached equilibrium, local population densities 7 

are the same as in isolated communities. Asymptotic population densities at the symmetric 8 

equilibrium depend only on local processes. In our two-patch predator-prey 9 

metacommunity, when K is below the instability threshold, the asymptotic regional densities 10 

are simply equal to the values they would have in an isolated patch. 11 

12 
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NUMERICAL ANALYSIS 1 

 2 

When � �mbmbcK 	�� )( , There is no stable equilibrium any longer, and the prey 3 

and the predator show persistent oscillations through time. We used numerical simulations 4 

to investigate the effect of density-dependent dispersal on prey and predator asymptotic 5 

dynamics at the scale of the metacommunity. 6 

 7 

Methods 8 

 9 

We studied the various types of dispersal separately, i.e., we studied constant 10 

dispersal in both species, intraspecific density-dependent dispersal in either the prey or the 11 

predator, and interspecific density-dependent dispersal in either the prey or the predator. For 12 

each of these five types of dispersal, we also studied two contrasting relative dispersal rates, 13 

one in which the maximal dispersal rate of the predator, dp, is lower than that of the prey, dn 14 

(dp = 0.01 dn) and one in which the converse is true (dp = 100 dn). Maximal dispersal rates 15 

varied between 10-4 and 102 when dn > dp, and between 10-6 and 100 when dp > dn. Within 16 

these ranges, we took 1000 sample values of each parameter (keeping the ratio dn/dp 17 

constant), uniformly distributed on a log scale. The parameters of local interactions were the 18 

following: r=10, K=25, b=11, c=1, m=10. For the density dependence in dispersal, we 19 

focused the numerical analysis on sigmoidal shapes (|xαβ|=4, α=n,p ; β=n,p) and on values 20 

for the half-saturation parameters Sαβ set close to the mean densities observed when 21 

populations are isolated: Snn=Spn=18 and Snp=Spp=2. 22 

The system of ordinary differential equations (1) was numerically simulated by 23 

means of C programs using the GNU Scientific Library. Numerical integrations used the 24 

embedded Runge-Kutta Prince-Dormand method. Based on preliminary inspection of 25 

numerous simulations, we estimated a time delay before population dynamics entered its 26 



 12 

asymptotic regime. This "asymptotic time" (tasympt) was much wider for low dispersal rates; 1 

it was then to 2 x 104 time units for high dispersal rates (Min (dn , dp) > 10-4) and 2 x 105 2 

time units for low dispersal rates (Min (dn , dp) < 10-4). Our results were obtained from 3 

population dynamics observed between tasympt and tasympt + 104, except for the first Lyapunov 4 

exponent (see below), which was calculated on dynamics between tasympt + 104 and tasympt + 5 

2.104. 6 

All the variables and statistics considered in this study are related to the asymptotic 7 

dynamical regime and are computed on the attractors reached by population dynamics. 8 

Therefore, we needed a method to detect and follow the system’s attractors as some control 9 

parameter (here, the maximal dispersal rates) is varied within a study interval. Except for 10 

catastrophic changes in the configuration of attractors, smooth variations in control 11 

parameters generate smooth "continuation branches", which correspond to the curves (or 12 

pieces of curves) shown on figures 2, 3, 4, 5, S3 and S4. Our model is complicated by the 13 

possibility of multiple coexisting attractors and chaotic regimes. Instead of using techniques 14 

based on numerical continuation of attractors (Kuznetsov 2004), which proved inefficient 15 

and intractable, we used a "sieve" technique of exploration, followed by the ex post facto 16 

reconstruction of "continuation branches". For each parameter value, the initial densities of 17 

the prey and the predator in the two patches were randomly sampled within ranges [0;20] 18 

for the prey and [0;10] for the predator as these ranges were commonly observed in the 19 

numerical simulations. This random sampling allowed us to explore the various basins of 20 

attraction of the possibly multiple attractors, and hence to detect the main attractors (i.e., 21 

those with a wide enough basin of attraction) by means of simulations runs from these initial 22 

population densities. The drawback of this method is that only one initial condition is 23 

simulated for each set of parameter values, so that in the case of multiple coexisting 24 

attractors, only one of them is reached. But, provided that parameter values are sampled 25 

densely enough in the study interval (we used a fine 1000-values sampling grid for the 26 
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maximal dispersal rates), the other attractors are very likely to be detected for neighboring 1 

values of the parameter. This eventually results in a slightly scattered general portrait of the 2 

various "continuation branches". The portrait "gaps" are then filled out by linking pairs of 3 

detected attractors, provided that parameter values are not too distant and the attractors are 4 

close enough in the state space. Attractor closeness was measured by means of the 5 

Hausdorff distance in 4� . 6 

Analyses of dynamics were performed under the Matlab environment (R2008a). We 7 

studied two aspects of metacommunity dynamics: (1) the nature of the attractor, and (2) the 8 

degree of spatial synchrony. First, we determined whether population fluctuations were 9 

periodic or chaotic by numerically estimating the first Lyapunov exponent. Computation of 10 

the Lyapunov exponent in fast oscillating models like ours gives easily rise to an important 11 

computational error accumulation. For the sake of numerical accuracy, the first Lyapunov 12 

exponent was estimated on a Poincaré section of the orbit, as the exponential increase of 13 

deviations from the iterations of the Poincaré map (Wolf et al. 1985). In each simulation, we 14 

computed the Poincaré section that intersects the trajectory orthogonally at the asymptotic 15 

time tasympt. We checked that the 104-time-unit interval we used to compute the Lyapunov 16 

exponent provided satisfactory converge of the estimate. A positive value of the first 17 

Lyapunov exponent reveals a chaotic attractor, while a negative value indicates a stable 18 

equilibrium on the Poincaré map, which corresponds to a stable limit cycle for the 19 

population dynamics in 4� . Second, to quantify the effects of dispersal behaviours on 20 

spatial synchrony in the asymptotic regime, we used the Pearson moment correlation 21 

coefficient between local densities in the two patches. As an alternative synchrony estimate, 22 

the correlation of the per capita population growth rates is recommended when population 23 

dynamics exhibits long-term transient trends, as often encountered in field or experimental 24 

measurements (Bjornstad et al. 1999). But as we studied the asymptotic regime here, 25 

Pearson correlation between local densities is appropriate. The higher spatial synchrony, the 26 
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closer to 1 the correlation coefficient. We investigated spatial synchrony for both the prey 1 

and the predator.  2 

Because many definitions of stability exist in the literature (see e.g. a review in 3 

Loreau et al. 2002), the stability of the metacommunity can be defined in several ways. Two 4 

stability properties are regional persistence and the temporal variability of regional 5 

densities. Because our model is purely deterministic and does not allow for extinctions, 6 

persistence cannot be estimated directly. Persistence is here assessed indirectly by means of 7 

the minimal regional densities reached in the asymptotic regime; the lower these minimal 8 

densities, the higher the vulnerability of species to stochastic extinction, and the lower the 9 

probability of persistence. Results are presented in the supplementary material 10 

(supplementary material, fig. S3 and S4). We also measured the temporal variability of 11 

regional densities by their coefficient of variation (CV). To disentangle the effects of the 12 

temporal mean of regional densities and of their standard deviation, however, we present 13 

both the temporal mean and the CV of regional densities. Stability increases when the CV 14 

decreases. 15 

In order to investigate the robustness of our results with regard to changes in 16 

dispersal parameters, we used a factorial design in which the independent variables were the 17 

shape of the density dependence of the dispersal rates (|xαβ|), their half-saturation parameters 18 

(Sαβ), and their maximal values for both the prey and the predator (dn and dp). We compared 19 

two different shapes, cyrtoid (|xαβ|=1) and sigmoid (|xαβ|=4). We varied the half-saturation 20 

parameters Sαβ by 20% above and below the mean densities when population are isolated 21 

(Snn=Spn=18 and Snp=Spp=2). We also varied the maximal dispersal rates of the prey (dn) and 22 

the predator (dp) between 10-6 and 102. Within this range, we took a sample of 100 values 23 

for each parameter dn and dp (and up to 200 values for the reference parameter combination 24 

|xαβ|=4, Snn=Spn=18 and Snp=Spp=2), uniformly distributed on a log scale (see supplementary 25 

material, fig. S1 and S2). 26 
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 1 

 2 

Metacommunity dynamics 3 

 4 

We first focus on two descriptors of metacommunity dynamics, the nature of the 5 

dynamics (chaotic or periodic), and the spatial synchrony between patches. The first 6 

Lyapunov exponent characterises the nature of dynamics of the whole community. The 7 

dynamics of the two species cannot be separated; they are either both periodic or both 8 

chaotic. Spatial synchrony was calculated for each species separately, but proved to be 9 

completely similar between the prey and the predator in all simulations. Therefore we 10 

present below results for spatial synchrony of the prey only. For the sake of simplicity, we 11 

present results for two contrasted relative dispersal rates but these results are robust to wide 12 

variations in relative dispersal rates (supplementary material, fig. S1 and S2). The different 13 

shapes (xαβ) and half-saturation values (Sαβ) of density dependence give qualitatively the 14 

same results for each type of dispersal, except for intraspecific density-dependent dispersal 15 

in the prey, which is sensitive to |xαβ| (supplementary material, fig. S2). Below, we present 16 

the results for |xαβ|=4 and mention when they are different for |xαβ|=1. 17 

At high dispersal rates, population dynamics are synchronous and periodic for all 18 

types of dispersal behaviours (fig. 2). The metacommunity model is then equivalent to a 19 

non-spatial predator-prey model. In contrast, at low and intermediate dispersal rates, 20 

synchrony depends both on the relative dispersal rate of the prey and the predator and on the 21 

type of dispersal. 22 

When dispersal is density-independent (constant) and higher in the prey than in the 23 

predator (fig. 2A), spatial synchrony decreases monotonically with dispersal decrease, 24 

through both desynchronisation of periodic dynamics and the emergence of chaotic 25 

dynamics at intermediate dispersal rate. This decrease is rather low and the minimum value 26 
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of synchrony is still high. In contrast, when predator dispersal is higher than prey dispersal 1 

(fig. 2D), the dynamics can remain perfectly synchronous for all dispersal rates or become 2 

very asynchronous, provided that the dispersal rates are not too high. Indeed, for low and 3 

intermediate dispersal rates, the metacommunity dynamics shows two coexisting periodic 4 

attractors, the first one characterized by a perfect spatial synchrony while the second one 5 

shows a strong asynchrony between patches. The synchrony of the later decreases with 6 

increasing dispersal rates until the attractor disappears, letting the synchronous attractor 7 

alone. This coexistence of synchronous and asynchronous attractors has been observed by 8 

Jansen (1995). No chaotic dynamics is observed for this relative dispersal rate. 9 

Density-dependent dispersal in the prey (fig. 2B, 2E) affects the dynamics only when 10 

prey dispersal is higher than predator dispersal (dn > dp) (fig. 2B). When predator dispersal 11 

is higher than prey dispersal (dp > dn) (fig. 2E), the dynamics is very similar to the case 12 

where dispersal is constant (fig. 2D). When dn > dp, intra- and interspecific density-13 

dependent dispersal in the prey have different effects on spatial synchrony (fig. 2B). 14 

Intraspecific density-dependent dispersal synchronises local dynamics when dynamics are 15 

periodic (at low and intermediate dispersal rates), whereas spatial synchrony is decreased 16 

when dynamics are chaotic. The presence of the synchronising effect of intraspecific 17 

density-dependent dispersal does not depend on the shape of density dependence in 18 

dispersal (|xαβ|=4: fig. 2B; |xαβ|=1: Appendix B, fig. 5A), but the presence of chaotic 19 

dynamics does. When |xαβ|=4 chaotic dynamics arise for a wider range of dispersal rates 20 

than when dispersal is constant (fig. 2A, 2B) whereas when |xαβ|=1 chaotic dynamics 21 

disappear (Appendix B, fig. 5A). On the contrary, when prey dispersal is subject to 22 

interspecific density dependence, population dynamics are strongly desynchronised whether 23 

the dynamics be periodic or chaotic (fig. 2B). 24 

Whatever the relative dispersal rates, intraspecific density-dependent dispersal in the 25 

predator does not affect spatial synchrony (fig. 2C, 2F). The effect of density-dependence in 26 
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predator dispersal shows up when it is interspecific and when predator dispersal is higher 1 

than prey dispersal (fig. 2F). Indeed, the bistable regime observed for constant dispersal 2 

disappears through the loss of the synchronous limit cycle. For low and intermediate 3 

dispersal rates, the remaining limit cycle shows strong asynchronous dynamics. The 4 

dynamics abruptly become synchronous at intermediate dispersal rate and the transition is 5 

accompanied with the emergence of a new chaotic window. Thus, for interspecific density-6 

dependent dispersal in the predator, spatial synchrony dependence upon dispersal rate 7 

simplifies into a global increasing relationship.  8 

  9 

Regional densities 10 

 11 

The temporal mean of regional densities of the prey and the predator are affected by 12 

dispersal rates in the same way for all types of dispersal behaviour and of relative dispersal. 13 

For the same range of dispersal rates, prey regional density decreases (fig. 3) while predator 14 

regional density increases (fig. 4) in a correlated way. This suggests that dispersal modifies 15 

the strength of the impact of predator populations on prey populations at the regional scale. 16 

First, changes in prey and predator regional densities occur for dispersal rate in chaotic 17 

windows and for dispersal rate close to chaotic window but at which dynamics are periodic 18 

(fig. 3A, 3B, 3C, 3F; fig. 4A, 4B, 4C, 4F). Second, these changes occur for asynchronous 19 

limit cycle which exists when predator dispersal is higher than prey's one (fig. 3D, 3E, 3F; 20 

fig. 4D, 4E, 4F). While the asynchronous limit cycle deeply differs from the synchronous 21 

one in terms of spatial synchrony, it shows identical mean regional densities at low dispersal 22 

rates. But when dispersal rates increase, prey regional density slowly decreases while 23 

predator regional density increases. These changes in mean regional densities are not 24 

accompanied with chaotic dynamics. 25 
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Moreover, these mean regional densities can be quantitatively affected by dispersal 1 

behaviours and relative dispersal: the mean regional density of the prey decreases and the 2 

mean regional density of the predator increases more strongly when dn > dp and there is 3 

intraspecific density-dependent dispersal for the prey (only when |xαβ|=4: fig. 3B; fig. 4B; 4 

|xαβ|=1: Appendix B, fig. 5B,C) or interspecific density-dependent dispersal for the prey (fig. 5 

3B; fig. 4B), or when dp > dn and there is interspecific density-dependent dispersal for the 6 

predator (fig. 3F; fig. 4F). These changes commonly go hand in hand with the emergence of 7 

new chaotic regimes (fig. 3F; fig. 4F). As a consequence, density-dependent dispersal and 8 

relative dispersal can increase the strength of the impact of predator populations on prey 9 

populations at the regional scale, and thus increase the control of the predator on the prey. 10 

 11 

 12 

Regional variability 13 

 14 

The regional variability of prey and predator populations, as measured by the CV of 15 

their regional densities, may be strongly affected by density-dependent dispersal through 16 

both spatial synchrony and predator control on the prey. We should expect low regional 17 

variability when local dynamics are asynchronous and high regional variability when local 18 

dynamics are synchronous. Predator control on the prey should also affect the regional 19 

variability through changes in mean regional densities: this control should decrease predator 20 

regional variability and should increase prey regional variability.  21 

When dispersal is constant, the regional variability of the prey and the predator is 22 

modified by their relative dispersal (fig. 3A, 3D; fig. 4A, 4D). When prey dispersal is higher 23 

than predator dispersal (dn > dp) (fig. 3A; fig. 4A), the regional variability of the prey and of 24 

the predator at low dispersal rates is slightly lower than their regional variability at high 25 

dispersal rate. This is caused by desynchronisation of dynamics at low dispersal rates for 26 
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both species (fig. 2A). But at intermediate dispersal rate, the regional variabilities of the 1 

prey and the predator vary in different way. Two mechanisms act in opposite direction for 2 

the prey and in the same direction for the predator. The increase in asynchrony tends to 3 

lower regional variability of both the prey and the predator, whereas predator control 4 

increases regional variability of the prey and decreases the predator's. As a result, the 5 

regional variability of the prey increases slightly while the predator's decreases strongly. 6 

When predator dispersal is higher than prey dispersal (dp > dn) (fig. 3D; fig. 4D), the 7 

regional variability of the prey and the predator can decrease when dispersal rates decrease. 8 

Indeed, at intermediate and low dispersal rates, two limit cycles coexist: the synchronous 9 

one has high regional variability and the asynchronous one shows low regional variability. 10 

Moreover, regional variability of the prey and the predator on this asynchronous limit cycle 11 

vary with increasing dispersal rates. The increase in asynchrony tends to lower regional 12 

variability of both the prey and the predator, whereas predator control increases regional 13 

variability of the prey and decrease the predator's. As a result, the regional variability of the 14 

prey increases slightly while the predator's decreases strongly. Thus, the effect of dispersal 15 

on a species regional variability depends on its trophic position. 16 

When dispersal rates are high, as in a well-mixed system, the regional variabilities of 17 

the prey and the predator are not affected by the type of dispersal behaviour and by the 18 

relative dispersal. But when dispersal rates decrease, density-dependent dispersal can affect 19 

regional variabilities of both species, depending on their relative dispersal rates (fig. 3B, 3C, 20 

3E, 3F; fig. 4B, 4C, 4E, 4F).  21 

Density-dependent dispersal in the prey can modify regional variability when prey 22 

dispersal is higher than predator dispersal (dn > dp) (fig. 3B; fig. 4B). Intraspecific density-23 

dependent dispersal in the prey can strongly modify regional variability of both species by 24 

comparison to constant dispersal. At intermediate dispersal rates, prey and predator regional 25 

variabilities vary in opposite way when |xαβ|=4, because of the increase of spatial synchrony 26 
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(fig. 2B) and of predator control on the prey (fig. 3B; fig. 4B). Prey regional variability 1 

increases or decreases compared to constant dispersal, depending on the relative effects of 2 

these two mechanisms that act in opposite direction. On the contrary, these two mechanisms 3 

both decrease predator regional variability. At low dispersal rates, intraspecific density-4 

dependent dispersal in the prey increases regional variability of both species because of 5 

spatial synchrony of periodic dynamics when |xαβ|=4 and when |xαβ|=1 (Appendix B, fig. 5B, 6 

C). The effects of interspecific density-dependent dispersal in the prey (fig. 3B; fig. 4B) on 7 

the relationship between dispersal rates and regional variability are qualitatively the same as 8 

under constant dispersal (fig. 3A; fig. 4A), but they are stronger. Indeed, prey and predator 9 

regional variabilities are strongly lower at low dispersal rates than at high dispersal rates 10 

because of strong spatial asynchrony at low dispersal rates. The transition between high and 11 

low dispersal rates occurs with increase of spatial asynchrony and of predator control on the 12 

prey. As a consequence, prey regional variability is increased whereas predator regional 13 

variability is decreased compared to constant dispersal. 14 

Only interspecific density-dependent dispersal in the predator modifies regional 15 

variability when predator dispersal is higher than prey dispersal (dp > dn) (fig. 3C, 3F; fig. 16 

4C, 4F). Intraspecific density-dependent dispersal in the predator does not affect prey and 17 

predator regional variability (fig. 3C, 3F; fig. 4C, 4F), which is consistent with the results on 18 

spatial dynamics and regional densities (fig. 2-4C, 2-4F). When predator dispersal depends 19 

on prey density, the synchronous limit cycle disappears at low and intermediate dispersal 20 

rates, leaving only the asynchronous limit cycle. As a consequence, prey and predator 21 

regional variabilities are strongly lower at low dispersal rates than at high dispersal rates, 22 

whatever the initial densities are. Moreover, between low and high dispersal rates, prey 23 

regional variability results of a balance between spatial synchrony and predator control on 24 

the prey, whereas these two mechanisms act in same way to decrease predator regional 25 

variability. 26 

27 
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DISCUSSION 1 

 2 

Our results when dispersal rates of the prey and the predator are constant, such as the 3 

potential coexistence of several attractors, are consistent with those obtained by Jansen 4 

(1995, 2001).  They further show that density-dependent dispersal in both the prey and the 5 

predator and their relative dispersal rates may affect the nature of dynamics (periodic vs 6 

chaotic) and the spatial synchrony and stability of species when the symmetric equilibrium 7 

of the metacommunity is unstable and populations fluctuate over time. 8 

 9 

Dispersal behaviours and spatial synchrony 10 

 11 

One important factor that affects metacommunity stability is the spatial synchrony of 12 

the population dynamics of the various species. Since a species is more vulnerable to 13 

extinction when all its population densities in a metacommunity are low at the same time, 14 

spatial synchrony decreases the probability of persistence of that species at the regional 15 

scale (Briggs and Hoopes 2004). Spatial synchrony in predator-prey metacommunities is a 16 

balance between synchronising and desynchronising processes. Processes that 17 

desynchronise dynamics include different forms of stochasticity (Taylor 1990), but also 18 

nonlinear trophic interactions (Bjornstad 2000; de Roos et al. 1991; Jansen 1999). Local 19 

dynamics may be synchronised by environmental forcing (the "Moran" effect), high 20 

dispersal rates (Bjornstad et al. 1999, Vasseur and Fox 2009) and nonlinear trophic 21 

interactions when dispersal rates are low, (Bjornstad 2000; de Roos et al. 1991; Jansen 22 

1999). 23 

Our results show that density-dependent dispersal behaviours can affect spatial 24 

synchrony in metacommunities at low and intermediate dispersal rates. In particular, 25 

interspecific density-dependent dispersal can strongly desynchronise dynamics. In a patchy 26 
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Rosenzweig-MacArthur model, Li et al. (2005) observed the same trend when prey 1 

migration was negatively correlated to the gradient of predator density or when predator 2 

migration followed the gradient of prey density. However, their study was focused on equal 3 

dispersal rates in the prey and the predator. Here, we show that this effect depends on the 4 

relative dispersal of the two species: interspecific density-dependent dispersal in the prey 5 

has a strong impact when prey dispersal is higher than predator dispersal, whereas 6 

interspecific density-dependent in the predator has a strong impact when predator dispersal 7 

is higher than prey dispersal. 8 

According Briggs and Hoopes (2004), spatial asynchrony in predator-prey 9 

metacommunities is increased when local population dynamics are uncoupled from 10 

immigration, i.e. when a local population receive more individuals when its density is low 11 

than when its density is high. Because prey and predator densities do not fluctuate 12 

synchronously within patches (predator abundance peaks after prey abundance), the 13 

dependence of a species’ dispersal on the density of another species (interspecific density-14 

dependent dispersal) could promote their uncoupling and increase spatial asynchrony.  15 

We fund a stabilising effect of interspecific density-dependent dispersal in a patchy 16 

Rosenzweig-MacArthur model with identical patches in agreement with Li et al.’s results 17 

(2005) obtained in a similar model. By contrast, in patchy models with consistent 18 

differences between patches in parameter values and local dynamics that obey either the 19 

Lotka-Volterra model (Murdoch et al. 1992) or a variant with a type-II functional response 20 

(Ives 1992), the aggregation of the predator in patches of high prey density can be either 21 

synchronising or desynchronising. The desynchronising effect could come either from the 22 

absence of density-dependence in the prey growth rate (e.g. logistic growth), which is 23 

stabilising, or from the differences between patches. 24 

Our results show also that the synchrony of spatial dynamics is affected by 25 

intraspecific density-dependent dispersal in the prey. This dispersal behaviour can fully 26 
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synchronise population dynamics at low dispersal rates, but can also desynchronise local 1 

dynamics at intermediate dispersal rates when the shape of density-dependence in dispersal 2 

is sigmoidal. Synchronising and desynchronising effects have been observed also in single-3 

species metapopulation models (Ylikarjula et al. 2000). In our metacommunity model, we 4 

observed this effect for the prey, but not for the predator. We show that the effects of 5 

intraspecific density-dependent dispersal in the prey depend on relative dispersal: these 6 

effects are strong when prey dispersal is higher than predator dispersal. Thus, density-7 

dependent dispersal and relative dispersal have interacting effects and play an important part 8 

in regulating spatial synchrony in metacommunities. 9 

The interaction between density-dependent dispersal and relative dispersal suggests 10 

that density-dependent dispersal behaviours can have different effects on stability in 11 

different types of predator-prey systems. Predators often disperse more than their prey 12 

(Rooney et al. 2008). In such systems, our results suggest that interspecific density-13 

dependent dispersal in the predator can modify stability whereas density-dependent 14 

dispersal in the prey does not. But prey sometimes disperse more than their predators 15 

(Rooney et al. 2008). In such situations, density-dependent dispersal in the prey can have a 16 

strong effect on the stability of the metacommunity: interspecific density-dependent 17 

dispersal can increase spatial synchrony, whereas intraspecific density-dependent dispersal 18 

can either decrease or increase it depending on dispersal rates.  19 

 20 

Dispersal behaviours and top-down control 21 

 22 

The extent to which populations are regulated by predation ("top-down" control) or 23 

by the availability of resources ("bottom-up" control) has been intensely debated in ecology 24 

(e.g. Hairston et al. 1960; Murdoch 1966; Oksanen et al. 1981). Most ecologists now agree 25 

that both types of control are present in most ecosystems (Shurin et al. 2002; Borer et al. 26 
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2005) and that their relative strength depends on local factors such as functional diversity 1 

(Hulot et al. 2000) and coevolution between prey and predators (Loeuille and Loreau 2004). 2 

Spatial processes can also modify the strength of these controls. A recent model predicts 3 

that nutrient inputs and immigration should generally increase the strength of trophic 4 

cascades in open ecosystems (Leroux and Loreau 2008). 5 

Moreover, predator-prey metacommunity models reveal that dispersal between local 6 

communities can also modify the strength of top-down control. Stochastic predator-prey 7 

metacommunity models have shown that the relative abundances of the prey and the 8 

predator vary with dispersal rate: the mean of prey abundance decreases and the mean of 9 

predator abundance increases at intermediate dispersal rates (e.g. Reeve 1988; Zeigler 10 

1977). We fund this result in our deterministic predator-prey model. It is based on a type-II 11 

functional response, which implies that the predator controls the prey at equilibrium. When 12 

prey and predator local densities fluctuate over time, we fund that the temporal mean of 13 

prey density decreases while the temporal mean of predator density increases at 14 

intermediate dispersal rates. These variations are observed both at the regional scale (fig. 3-15 

4) and at the local scale (results not shown). Thus, results of our deterministic model and of 16 

stochastic models suggest that intermediate dispersal rates increase the average strength of 17 

the control of the prey by the predator in predator-prey metacommunities. Moreover our 18 

results show that intra- and interspecific density-dependent dispersal in the prey.reinforces 19 

the increase in the strength of predator control on the prey at intermediate dispersal rates.  20 

The effect of dispersal on the strength of top-down control has some experimental 21 

support. In aquatic predator-prey metacommunities, the mean density of the predator 22 

(Didinium nasutum) was highest at intermediate dispersal rates whereas the mean density of 23 

the prey (Colpidium striatum) was decreased by dispersal (Holyoak and Lawler 1996b). In 24 

trophically more complex metacommunities, dispersal between mesocosms increased 25 

predator biomass, decreased herbivore biomass and increased primary producer biomass 26 



 25 

(Chase et al. 2010). This suggests that the trophic cascade was stronger in mesocosms 1 

connected by dispersal than in isolated mesocosms. Thus, theory and experiments concur to 2 

suggest that dispersal and other spatial flows across ecosystems (Leroux and Loreau 2008) 3 

generally tend to increase the strength of top-down control food-web metacommunities. 4 

 5 

Dispersal behaviours and the stability of metacommunities 6 

 7 

Our results show that the synchrony of the prey and the predator are strongly related 8 

in metacommunities. Indeed, spatial synchrony is affected in the same way in the prey and 9 

in the predator by density-dependent dispersal and relative dispersal. In particular, density-10 

dependent dispersal in a species can modify not only its own spatial synchrony, as in 11 

metapopulation models, but also the spatial synchrony of the other species. For instance, 12 

interspecific density-dependent dispersal in the prey can increase both its spatial asynchrony 13 

and that of the predator.  14 

Metacommunity stability depends not only on spatial asynchrony but also on the 15 

strength of prey control by the predator: as discussed above, density-dependent dispersal 16 

increases predator control on the prey at intermediate dispersal rates. This generates a 17 

decrease in regional variability of the predator, and an increase in that of the prey. Regional 18 

persistence shows the same trends: the regional persistence of the predator is increased 19 

while that of the prey is decreased, although the latter effect is smaller than for regional 20 

variability (See supplementary material, fig. S3 and S4). Thus, the stability of the prey and 21 

that of the predator display opposite responses to density-dependent dispersal because of the 22 

increase in the average strength of predator control on the prey. 23 

Although the regional stability (as measured by both persistence and variability) of 24 

the predator is maximal at intermediate dispersal rates, it is nevertheless lower than that of 25 

the prey. Thus, top-down control stabilises the less stable species (the predator) and 26 
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destabilises the more stable species (the prey). This suggests that the metacommunity as a 1 

whole may be stabilised at intermediate dispersal. This conclusion is consistent with the 2 

general finding of models including different forms of stochasticity that the persistence of 3 

predator-prey metacommunities is enhanced at intermediate dispersal rates (Crowley 1981; 4 

Reeve 1988; Zeigler 1977). The mechanism that is generally thought to generate the hump-5 

shaped relationship between the stability of predator-prey metacommunities and dispersal is 6 

the balance between the positive effect of low dispersal (allowing recolonization and rescue 7 

effects) and the negative effect of high dispersal (synchronisation). Here we suggest that 8 

another mechanism could stabilise predator-prey metacommunities at intermediate dispersal 9 

rates: the modification of the strength of top-down control, which increases the stability of 10 

the most unstable species (the predator). 11 

Our numerical results show a hump-shaped relationship between predator stability 12 

and dispersal for both constant and density-dependent dispersal. But they suggest that the 13 

hump can become more or less marked when dispersal is density dependent. For instance, 14 

the hump is stronger when the prey has intraspecific density-dependent dispersal because 15 

the latter destabilises the metacommunity at low dispersal rates (spatial synchronisation) and 16 

increases the stability at intermediate dispersal rates (strengthening of predator control on 17 

the prey). Although interspecific density-dependent dispersal in the prey stabilises the 18 

metacommunity at low dispersal (desynchronisation of local dynamics), the increase in the 19 

strength of predator control is sufficient to maintain the hump-shaped relationship between 20 

predator stability and dispersal.  21 

Thus, density-dependent dispersal can modify the stability of predator-prey 22 

metacommunities by modifying both the spatial synchrony of local populations and the 23 

strength of prey control by the predator. We hope that these results will stimulate further 24 

work on the effects of dispersal on top-down control and the stability of food-web 25 

metacommunities. 26 
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 1 

Ecosystem fragmentation and conservation management 2 

 3 

Ecosystem fragmentation leads to decreased species dispersal between patches. 4 

Therefore studying the relationship between dispersal and metacommunity stability is of 5 

particular importance to understand the response of metacommunities to fragmentation. We 6 

showed that this response may depend on the existence of density-dependent dispersal in 7 

species and on their relative dispersal. If fragmentation decreases dispersal of only one 8 

species in the metacommunity because of its specific sensitivity to changes in 9 

environmental quality between patches, relative dispersal will be modified. In the case of 10 

constant prey dispersal and interspecific density-dependent dispersal for the predator, for 11 

instance, our model predicts that decreased predator dispersal only may lead to 12 

destabilisation of the metacommunity. Thus our work emphasizes the importance of 13 

density-dependent dispersal and relative dispersal of species in understanding the response 14 

of ecosystems to fragmentation. 15 

This also suggests that enhancing the dispersal of one species through e.g. corridors 16 

may not be the best way to prevent its own extinction. For instance, if prey dispersal is 17 

constant and predator dispersal is lower and depends on prey density, the increase in prey 18 

dispersal by corridors will not increase its stability. In contrast, an increase in predator 19 

dispersal may stabilise both the prey and the predator if the ratio between the dispersal rates 20 

of the two species is reversed. Thus, our results emphasize the need to integrate 21 

conservation policies at the scale of communities and metacommunities, instead of 22 

considering them merely at the scale of populations and metapopulations. 23 

 24 

 25 
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CONCLUSION 1 

 2 

Our work shows that density-dependent dispersal, which generates interactions 3 

between local and regional dynamics, and relative dispersal of the prey and the predator are 4 

key to understand the dynamics and stability of metacommunities. Density-dependent 5 

dispersal behaviours and relative dispersal deserve more theoretical and experimental 6 

explorations to increase our ability to predict the effects of habitat fragmentation on the 7 

stability of ecosystems. 8 

 9 
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APPENDIX A: STABILITY ANALYSIS OF SYMMETRICAL EQUILIBRIUM 1 

Linearization of two-patch model with density-dependent dispersal 2 

 3 

We used the method proposed by Jansen (1994) and generalised it to density-4 

dependent dispersal. System of equations (1), and more generally a two-patch model of 5 

predator-prey dynamics, can be written in vectorial form into: 6 
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The symmetric equilibrium of (2), noted (X*, Y*) is those for which X(t)=Y(t) for all 13 

t. In order to facilitate the analysis of symmetric equilibrium, we introduce 14 
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patch and average densities in the metacommunity. 17 

System (2) can then be recast into: 18 



 30 

� �

� ��
�
�

��
�

�

�	�����	�	�	���

�

�	�����

�

)()()()(
2
1

)()(
2
1

GGFF
dt
d

FF
dt
d

 (3) 1 

We are interested in the equilibrium (Σ*, Δ*) of (3) and more particularly to the 2 

symmetric equilibria (Σ*, Δ*=0). Note that for Δ = 0, the dynamics of the mean densities, Σ, 3 

is exactly the same as the local dynamics of densities in the absence of migration. In 4 

particular, the equilibrium values of Σ are the equilibrium values of the local dynamics 5 

determined by F. In order to study the stability near a symmetric equilibrium, the system (3) 6 

is linearized around Σ = Σ*, Δ = 0: 7 
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Jacobian matrices of F and G. 10 

The stability of (Σ = Σ*, Δ = 0) is determined by the eigenvalues of matrices )( *�FJ  11 

and )(2)( ** �	� GF JJ . The equilibrium (Σ = Σ*, Δ = 0) of system (4), or the symmetrical 12 

equilibrium (X*, Y*) of system (2), is stable if both matrices )( *�FJ  and 13 

)(2)( ** �	� GF JJ do not have eigenvalues with positive real part. Since these matrices are 14 

of dimension 2, this is equivalent to: 15 
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Application to the two-patch Rosenzweig – MacArthur model 1 

 2 

In order to determine the effects of density-dependent dispersal on the stability of the 3 

symmetric equilibrium of (1), we analyse the signs of the trace and of the determinant of the 4 

matrices )( *�FJ  and )(2)( ** �	� GF JJ , where F and G correspond to our specific model.  5 

In our specific model, F and G write: 6 
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, where DN and DP are the per capita dispersal rate of the prey and the predator. We 8 

allow any form of density-dependant dispersal rates, provided that prey dispersal increases 9 

with prey density ( 0��� NDN ) and predator density ( 0��� PDN ) and that predator 10 

dispersal increases with predator density ( 0��� PDP ) and decreases with prey density 11 

( 0��� NDP ).Thus, the sign structure of the Jacobian matrix of F and G at Σ* are:  12 
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 13 

, where * is determined by the sign of )()( mbmbcK 	�	 . The determinant of 14 

)( *�FJ is positive and its trace is equal to the * term. The *term is negative, and thus Σ* is a 15 

stable equilibrium of (4.1) if and only if � �mbmbcK 	�� )( . At the transition, both 16 

eigenvalues real parts vanish, which indicates a (here supercritical) Hopf bifurcation. When 17 

K passes the threshold value � �( )c b m b m� 	 , the equilibrium becomes  unstable and 18 

dynamics converges to a stable limit cycle. 19 

Given * term is negative, the sign structure of GJ  implies that )(2)( ** �	� GF JJ  20 

has a stable sign structure: when )()( mbmbcK 	�� , the trace of )(2)( ** �	� GF JJ  is 21 
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negative and its determinant is positive. As a consequence, when )()( mbmbcK 	�� , the 1 

solution Δ* = 0 of (4.2) is a stable equilibrium.  2 

Thus, the stability condition for the non-spatial Rosenzweig – MacArthur model 3 

carries over to the symmetric equilibrium of the spatial model, whatever the dispersal 4 

behaviours. 5 

 6 

APPENDIX B: SENSITIVITY TO SHAPE OF DENSITY DEPENDENCE IN 7 

DISPERSAL 8 

(fig. 5) 9 

 10 
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LEGENDS OF FIGURES  1 

 2 

Figure 1. Per capita dispersal rate Dα of species α (α = n or α = p) in response to changes in 3 

the density of species β (β = n or β = p). Sαβ is the half-saturation parameters. Density-4 

independent (xαβ=0: solid line) dispersal; positive (black dashed line) and negative (grey 5 

dashed line) density-dependent dispersal; cyrtoid (|xαβ|=1: thin dashed lines) and sigmoid 6 

(|xαβ|=4: thick dashed lines) shape of density dependence in dispersal. 7 

 8 

Figure 2. Dynamics and spatial synchrony of the prey in predator-prey metacommunities as 9 

functions of its maximal dispersal rate (dn). Top diagrams illustrate the various cases 10 

studied: N and P represent prey and predator densities; dispersal of each species is 11 

represented by a wide white arrow; positive or negative effects of densities on dispersal are 12 

represented by thin solid arrows with a + or a - sign. Figures in the first column (A and D) 13 

present results when dispersal is constant in both species. In the second column (B and E), 14 

we present results for (intra- and interspecific) density-dependent dispersal in the prey. In 15 

the third column (C and F), we present results for (intra- and interspecific) density-16 

dependent dispersal in the predator. We present results for dn = 100 dp (dn > dp) and for dp = 17 

100 dn (dp > dn) in the first (A,B and C), and in the second (D, E and F) row, respectively. 18 

Markers on curves (except for A and D) indicate what type of density dependence the curve 19 

refers to: intraspecific (dots) or interspecific (triangles). The nature of dynamics obtained 20 

using the Lyapunov exponent is represented on curves: chaotic dynamics (with colour 21 

thickening) or periodic dynamics (without colour thickening). The specific colours used 22 

(gray, cyan and red) as well as the position of the thickening (above or under the curve) only 23 

help, in addition to curve markers, to distinguish between the different curves and do not 24 

have any further meaning. Notice on figures D, E, F (dp > dn) the two coexisting attractors 25 

(synchronous and asynchronous) for some dispersal rate values. Parameters values are the 26 

following. Constant dispersal: xαβ=0; positive density-dependent dispersal: xαβ=4 27 

(αβ=nn,np,pp); negative density-dependent dispersal: xpn=-4. Other parameters: Snn=18, 28 

Snp=2, Spp=2, Spn=18; local interactions: r=10, K=25, b=11, c=1, m=10. 29 

 30 

Figure 3.Temporal mean of regional density (upper sub-graph) and coefficient of variation 31 

(CV, lower sub-graph) of the prey in predator-prey metacommunities as functions of its 32 

maximal dispersal rate (dn). See legend of figure 2. 33 

 34 



 39 

Figure 4. Temporal mean of regional density (upper sub-graph) and coefficient of variation 1 

(CV, lower sub-graph) of the predator in predator-prey metacommunities as functions of the 2 

maximal dispersal rate of the prey (dn). See legend of figure 2. 3 

 4 

Figure 5. The effect of intraspecific density-dependent dispersal in the prey when xnn=1. The 5 

spatial synchrony (A), the temporal mean of regional densities (upper sub graph) and the 6 

coefficient of variation (CV, lower sub graph) of the prey (B) and of the predator (C) as 7 

functions of the maximal dispersal rate of the prey (dn). We present results for dn = 100 dp 8 

(dn > dp). The curve coding is the same as in figure 2. Notice that, compared to figures 2, 3 9 

and 4, intraspecific density-dependent dispersal does not induce chaotic dynamics any more 10 

and that two attractors can now coexist at intermediate dispersal rates. Parameters values are 11 

the same as in figure 2, except |xnn|=1. 12 
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