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Helmholtz Zentrum München - German Research Center for Environmental Health,

Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
bCentre for Mathematical Sciences, Technische Universität München, Boltzmannstrasse
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Abstract

We generalize random Boolean networks by softening the hard binary dis-

cretization into multiple discrete states. These multistate networks are gene-

ric models of gene regulatory networks, where each gene is known to assume

a finite number of functionally different expression levels. We analytically

determine the critical connectivity that separates the biologically unfavor-

able frozen and chaotic regimes. This connectivity is inversely proportional

to a parameter which measures the heterogeneity of the update rules. In-

terestingly, the latter does not necessarily increase with the mean number of

discrete states per node. Still, allowing for multiple states decreases the crit-

ical connectivity as compared to random Boolean networks, and thus leads

to biologically unrealistic situations.

Therefore, we study two approaches to increase the critical connectivity.

First, we demonstrate that each network can be kept in its frozen regime by

sufficiently biasing the update rules. Second, we restrict the randomly chosen

update rules to a subclass of biologically more meaningful functions. These

functions are characterized based on a thermodynamic model of gene regu-
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lation. We analytically show that their usage indeed increases the critical

connectivity. From a general point of view, our thermodynamic considera-

tions link discrete and continuous models of gene regulatory networks.

Keywords: dynamic systems on graphs, multilevel logic, thermodynamics,

transcriptional gene regulation

2010 MSC: 80A30, 82C20, 82C27, 92C42

1. Introduction

Boolean networks are a class of discrete dynamical systems. The system’s

N variables take only discrete values 0 or 1 and develop in discrete time steps.

At each time point, the value of a variable is determined by a so-called update

rule that deterministically depends upon the values of some of the other

variables, the so-called inputs, at the previous time point. In 1969, Kauffman

proposed random Boolean networks — so called Kauffman networks (KN) —

as generic models for large-scale gene regulatory networks (Kauffman, 1969).

Computational experiments showed that these networks exhibit surprisingly

ordered structures and are able to give insights into biological phenomena

such as cell replication or lineage differentiation.

Interest in KNs was rekindled as their close relation to classical models

from statistical mechanics was realized. In a number of studies (Derrida

and Pomeau, 1986; Derrida and Stauffer, 1986; Flyvbjerg, 1988) the self-

organizing capacity of KNs was analyzed. It was shown that depending on

their connectivity, KNs exhibit ordered (frozen) as well as chaotic behav-

iors with a critical boundary separating both regimes. The ordered regime

is characterized by small stable attractors, whereas in the chaotic regime
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long-periodic orbits frequently occur. These properties render both regimes

unfavorable for the evolution of living organisms. Consequently, Kauffman

promoted the idea of ”living at the edge of chaos” (Kauffman, 1993). In-

terestingly, the critical connectivity of KNs is 2, which agrees well with the

average connectivities of well-studied gene regulatory networks, e.g. in E.

coli, S. cerevisiae and B. subtilis (Balleza et al., 2008).

Besides studies of large-scale random Boolean networks, many small-

and medium-scale Boolean models of different biological processes have been

manually curated and analyzed (Albert and Othmer, 2003; Li et al., 2004;

Saez-Rodriguez et al., 2007; Wittmann et al., 2009a). Here however, the

discretization of continuous biological quantities, such as mRNA or protein

concentrations, into binary ‘on’–‘off’ categories is often arbitrary as well as

insufficient. In fact, it has been demonstrated that genes may well have

more than two functionally different expression levels (Setty et al., 2003).

To alleviate this issue, in some modeling applications the Boolean categories

are extended to multiple discrete states, leading to multistate logical models

(Thomas, 1991; Sánchez and Thieffry, 2001; Fauré et al., 2009).

Studies of KNs with multiple states, so-called multistate Kauffman net-

works (MKN), are scarce (Solé et al., 2000) and restricted to the biologically

implausible case where all nodes have the same number of discrete states.

In this case it has been observed that the critical connectivity tends to 1,

as the number of states grows. Hence, it drops below the average connec-

tivities we typically find in gene regulatory networks, cf. again Balleza et al.

(2008), leading to biologically unrealistic scenarios. For (Boolean) KNs two

approaches are known that can lead to an increased critical connectivity.
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(i) First, it has been shown that for any connectivity a KN can be kept

in the frozen regime by biasing the update rules towards one of the

discrete states (Bastolla and Parisi, 1996).

(ii) Second, the issue of biologically meaningful update rules has attracted

considerable attention, for a brief review see section 6.3.

In this contribution, we generalize these approaches to MKNs and ask

how they affect their critical connectivity. We begin by investigating a very

general class of MKNs in section 2. In particular, contrary to previous stud-

ies, the number of discrete states is not fixed for all nodes but follows a

distribution. We show that the above mentioned transition between a frozen

and a chaotic regime takes place in MKNs of this class. The critical bound-

ary is analytically determined as a relation between the mean connectivity

and a parameter describing the heterogeneity of the update rules. Our re-

sults are an extension of the (binary) Boolean case. They show that allowing

nodes to assume multiple states lowers the critical connectivity as compared

to (Boolean) KNs, the limit being 1. Interestingly however, the critical con-

nectivity does not necessarily decrease with the mean number of states per

node. With respect to our motivating question, we find in section 3 that —

similar to (Boolean) KNs — each MKN can be kept in the frozen regime by

biasing the update rules towards one of the discrete states: Approach (i) can

be generalized to MKNs.

The main part of this manuscript is devoted to the generalization of ap-

proach (ii). In section 4 we propose a tentative characterization of biologically

plausible update functions for MKNs. This characterization is motivated by
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a common property of the update rules from some manually curated mul-

tistate logical models, which we call single-switch condition. It is further

corroborated by a thermodynamic model of transcriptional gene regulation.

Using this model we show that under certain assumptions regarding cooper-

ative effects the promotor activity as a function of the transcription factor

concentrations always satisfies the single-switch condition. From a general

point of view, our thermodynamic considerations link discrete and continuous

models of gene regulatory networks.

The effect of restricting update rules to the class of biologically more

meaningful single-switch functions is studied in section 5. Analytic results

demonstrate that the use of single-switch functions indeed increases the crit-

ical connectivity in MKNs as compared to fully random update rules. Hence,

our motivating question can be answered positively also with respect to ap-

proach (ii). The usage of single-switch functions causes further interesting

effects. We present an example, in which for an increasing number of states

the critical connectivity increases if single-switch functions are used, while it

decreases if the update rules are chosen randomly. Section 6 concludes our

manuscript by a non-technical summary of our results and their discussion,

in particular, in the light of previous work.

2. Phase transitions in multistate Kauffman networks

In this section we introduce a very general class of MKNs and investigate

it with respect to critical phenomena.
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2.1. A general class of multistate Kauffman networks

A discrete multistate network consists of N variables x1, x2, . . . , xN each

taking values in a discrete finite set Σi with cardinality Si, w.l.o.g. Σi =

{0, 1, . . . , Si − 1}, i = 1, 2, . . . , N . Time is discretized, t = 0, 1, . . ., and we

denote the variables’ time courses by xi(t). The i-th variable is influenced by

Ki inputs xi1, xi2, . . . , xiKi
and its value at time t + 1 is given by an update

function fi :
∏Ki

k=1 Σik → Σi,

xi(t + 1) = fi (xi1(t), xi2(t), . . . , xiKi
(t)) .

We call Ki the connectivity of xi. The state of a multistate network at time t

is denoted by X(t) = (x1(t), x2(t), . . . , xN(t)) ∈∏N
i=1 Σi. A Boolean network

is the special case of a multistate network where all Si = 2.

We now define MKNs generalizing the definition of KNs as given e.g. in

Aldana et al. (2003). A MKN is a multistate network where

(K1) the Ki are chosen randomly from a probability distribution Pin (K),

K = 1, 2, . . . , Kmax, Kmax ≤ N ,

(K2) the Ki inputs xi1, xi2, . . . , xiKi
of xi are chosen randomly with uniform

probability from among the system’s variables x1, x2, . . . , xN ,

(K3) the number of states Si of xi is chosen randomly from a probability

distribution Pnos (S), S = 2, 3, . . . , Smax,

(K4) the values of fi are independent and chosen randomly from a probability

distribution PSi
(s), s ∈ Σi.
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Note that in (K4) the distribution PSi
does not depend on the node xi but

only on the number of states Si of node xi. In particular, in the Boolean case

the update rules evaluate to 0 with a certain probability w and to 1 with

probability 1− w.

2.2. The critical boundary

From (K4) it follows that the probability pSi
for the function fi to yield

two different values for two different arguments depends only on PSi
and is

given by

pSi
=
∑
s∈Σi

PSi
(s) (1− PSi

(s)) . (1)

We remark that pSi
becomes maximal if PSi

is the discrete uniform distribu-

tion,

PSi
(s) =

1

Si

, s ∈ Σi , (2)

cf. Appendix A. In this case,

pSi
=

Si − 1

Si

,

which also goes to show that pSi
< 1 for any choice of PSi

.

Following e.g. Aldana (2003) we distinguish between the frozen and the

chaotic regime by looking at the overlap o(t) between two distinct time

courses X(t) = (x1(t), x2(t), . . . , xN(t)) and X ′(t) = (x′1(t), x
′
2(t), . . . , x

′
N(t))

of the variables x1, x2, . . . , xN . The overlap at time t is defined as the fraction

of variables that take the same value in X(t) and X ′(t), i.e.

o(t)
def
=

1

N

N∑
i=1

δxi(t),x′
i(t)

. (3)

We now express o(1) in terms of o(0). Fixing some i, there are two

(mutually exclusive) possibilities that at t = 1 we have xi(1) = x′i(1):
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1. All Ki inputs are equal at t = 0. This occurs with probability o(0)Ki .

2. Not all inputs are equal at t = 0 but fi still yields the same value. This

occurs with probability
(
1− o(0)Ki

)
(1− pSi

).

Hence, the probability for ”xi(1) = x′i(1)” is given by

o(0)Ki +
(
1− o(0)Ki

)
(1− pSi

)

and depends only on Ki and pSi
. It follows that

o(1) =
Kmax∑
K=1

Pin (K)
Smax∑
S=2

Pnos (S)
[
o(0)K +

(
1− o(0)K

)
(1− pS)

]
.

We now apply a trick devised by Derrida and Pomeau (1986) called an-

nealed approximation. Although the model is quenched, i.e. fixed for all time

points, we assume that after each time step a new model is generated ac-

cording to (K1)–(K4). It has been shown that in the thermodynamic limit

N →∞ the quenched and the annealed model show the same phase transi-

tion (Hilhorst and Nijmeijer, 1987). Therefore, for N � Kmax we can write

o(t + 1) = O (o(t))

def
=

Kmax∑
K=1

Pin (K)
Smax∑
S=2

Pnos (S)
[
o(t)K +

(
1− o(t)K

)
(1− pS)

]
(4)

at each time step.

In the limit t→∞ this dynamic equation becomes a fixed point equation

o = O(o) for the stationary value of the overlap. Note that o� = 1 is always a

fixed point. If o� is attractive, initial differences between time courses vanish

over time and the system is in an ordered regime, otherwise it is chaotic.

Hence, the ordered and chaotic regimes as well as the critical boundary can
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be characterized by a stability analysis of o�. As detailed in Appendix B

this yields

pK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 1 ordered regime

= 1 critical boundary

> 1 chaotic regime ,

(5)

where

p
def
=

Smax∑
S=2

Pnos (S) pS (6)

and

K
def
=

Kmax∑
K=1

Pin (K) K .

In other words, the critical connectivity is given by

K
crit

=
1

p
. (7)

We observe that the phase transition depends only on the first moments

K and p. Typically, K can be easily computed once the underlying network

structure is known. The computation of p is more involved.

2.3. The situation of fully random update rules without bias

As a preparation for section 3 let us now study the multistate counterpart

of the original KN as introduced by Kauffman (1969). This is to say we

consider the completely unbiased situation where the PSi
are the discrete

uniform distributions from (2). We already remarked that in this case

pSi
=

Si − 1

Si

. (8)

Substituting (8) in (6) yields

p =
Smax∑
S=2

Pnos (S)
S − 1

S
= 1− μ ,
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where

μ
def
=

Smax∑
S=2

Pnos (S)
1

S
.

Clearly, for any Pnos, μ is bounded, 0 < μ ≤ 1/2. For the critical connec-

tivity from (7)

K
crit

=
1

1− μ
, (9)

this implies 1 < K
crit ≤ 2. Moreover, K

crit
lowers down to 1 as μ becomes

small.

Hence, the critical connectivity in unbiased MKNs is smaller than in

unbiased (Boolean) KNs. This important result serves as the motivation for

our investigations in sections 3, 4 and 5. Before, let us visualize this result

in two examples.

2.4. Examples

Let us conclude this section by computing μ in two special cases of Pnos.

• First, a delta distribution

Pnos (S) = δS,S , S = 2, 3, . . . , Smax , (10)

for a fixed number of states S per node. In this case, μ = 1/S, and

from (9) we obtain the condition

K
crit

=
S

S − 1
, (11)

which was already found in Solé et al. (2000). Note that in the Boolean

case, S = 2, we recover the critical connectivity 2 of KNs. For an in-

creasing (fixed) number of states S the critical connectivity approaches

1.
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• Second, a discrete uniform distribution

Pnos (S) =
1

Smax − 1
, S = 2, 3, . . . , Smax .

In this case,

μ =
Smax∑
S=2

1

Smax − 1

1

S
=

HSmax − 1

Smax − 1
,

where HSmax is the Smax-th harmonic number, and from (9) we obtain

the criticality condition

K
crit

=
Smax − 1

Smax −HSmax

. (12)

It holds that K
crit → 1 as Smax →∞. A better idea of this convergence

is given by the well-known approximation

HSmax = ln (Smax) + γ +O(S−1
max) ,

where γ is the Euler-Mascheroni constant γ ≈ 0.5772.

The critical connectivities from (11) and (12) are plotted in Figure 1A.

We observe that in both examples a growing (fixed) number of states S or

a growing upper bound Smax, respectively, lower the critical connectivity

down to 1. In the following sections we generalize the approaches (i) and (ii)

from section 1 to MKNs and investigate if they lead to an increased critical

connectivity.

3. Multistate Kauffman networks with biased update rules

In the original KN, each Booelan update function was drawn randomly

from the ensemble of all Boolean functions according to the uniform distribu-

tion. In subsequent studies, however, it is mostly assumed that each function
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Figure 1: (A) The case of unbiased update rules. Critical connectivities K
crit `

S
´

from (11) (blue

’x’) and K
crit

(Smax) from (12) (green ’+’). (B) The case of biased update rules. Critical boundaries

wcrit(K, S) from section 3.2. For S = 2 the two branches wcrit
1/2

`
K, 2

´
from (D.1) are shown. For S = 3 the

critical boundary consists of three parts: wcrit
1/2

`
K, 3

´
from (D.2) and wcrit

`
K, 3

´
from (D.3). (C) Plots

of the overlap o(t) from (3) between two initially differing time courses for a frozen, critical and chaotic

network. Each network has N = 100 nodes, each node has S = 3 states and is connected to K = 4 inputs.

The update rules are constructed according to distribution (13). For the frozen/critical/chaotic network

we set w = 0.95 / w = wcrit(4, 3) ≈ 0.8604 from (D.3) / w = 1/3. The initial overlap was chosen to be

o(0) = 0.9. (D,E,F) The first 50 time steps of evaluations of the frozen, critical and chaotic networks

from (C); only the first 25 nodes are shown. The three states are color coded in black, grey and white.

Note that subfigures C,D,E,F all have the same X-axis, namely time running from 1 to 50 as indicated in

(F).
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evaluates to 0 with a certain probability 0 < w < 1 (and to 1 with probability

1 − w). Biologically speaking, it is assumed that a gene is expressed with

probability w. A natural generalization hereof to multistate systems is the

distribution

PSi
(s) =

⎧⎨
⎩

w s = 0
1− w

Si − 1
s > 0

(13)

for some 0 < w < 1.

In the Boolean case, it turned out that for each connectivity a system

can be kept in the frozen regime by choosing w sufficiently large or small

(Bastolla and Parisi, 1996). Is this still true for MKNs?

3.1. The critical boundary

To answer this question, let us assume that each PSi
is given by (13) for

some 0 < w < 1. Then (1) becomes

pw
Si

= 2w(1− w) + (1− w)2 Si − 2

Si − 1
,

and substituting this in (6) gives

pw =
Smax∑
S=2

Pnos (S)

[
2w(1− w) + (1− w)2 S − 2

S − 1

]

= 2w(1− w) + (1− w)2 (1− μ−1) , (14)

where

μ−1
def
=

Smax∑
S=2

Pnos (S)
1

S − 1
.

We observe that 0 < μ−1 ≤ 1, where the upper bound is exact iff Pnos (S) =

δS,2, i.e. in the Boolean case.

Substituting (14) in (5) gives rise to a quadratic equation in w. Solving

this equation for wcrit(K, μ−1) yields (cf. Appendix C):
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(a) For K < 1 + μ−1 the system is always frozen.

(b) For K = 1 + μ−1 the system is critical if and only if

w = wcrit(1 + μ−1, μ−1) =
μ−1

μ−1 + 1
,

otherwise it is frozen.

(c) In the Boolean case, i.e. μ−1 = 1, and for K > 1 + μ−1 = 2 the

critical boundary is described by

wcrit
1
2

(
K, 1

)
=

1

2

[
1∓
√

1− 2

K

]
∈ (0, 1) .

For

wcrit
1

(
K, 1

)
< w < wcrit

2

(
K, 1

)
the system is chaotic, otherwise it is frozen. This agrees with previous

results about Boolean KNs, see e.g. Bastolla and Parisi (1996).

(d) For μ−1 < 1 and 1/(1− μ−1) > K > 1 + μ−1 the critical boundary is

described by

wcrit
1
2

(
K, μ−1

)
=

1

μ−1 + 1

(
μ−1 ∓

√
1− μ−1 + 1

K

)
∈ (0, 1) .

For

wcrit
1

(
K, μ−1

)
< w < wcrit

2

(
K, μ−1

)
the system is chaotic, otherwise it is frozen. For K = 1/(1 − μ−1),

wcrit
1 = 0 is not a valid solution for w anymore, as we require w ∈ (0, 1).
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(e) For μ−1 < 1 and K ≥ 1/(1− μ−1) the critical boundary is described

by

wcrit
(
K, μ−1

)
=

1

μ−1 + 1

(
μ−1 +

√
1− μ−1 + 1

K

)
∈ (0, 1) ,

for larger values of w the system is frozen, otherwise it is chaotic. It can

easily be seen that wcrit(K,μ−1) is monotonous in both its arguments

and that wcrit → 1 as K →∞.

We chose to solve the criticality condition for w (and not K
crit

), as from this

presentation we easily see that for any values of K and μ−1 a system is kept

in its frozen regime by choosing a sufficiently large w. Thus, our motivating

question can be answered in the affirmative: Biasing update rules towards

one of the discrete states indeed increases the critical connectivity, from a

theoretical point of view, even beyond any bound.

3.2. Examples and visualization

For clarification and illustration purposes, let us again consider the exam-

ple where Pnos follows the delta distribution from (10) for a fixed number of

states S. This entails μ−1 = 1/(S − 1), and we can express the classification

from section 3.1 in terms of S, cf. Appendix D. This classification is visu-

alized in Figure 1B. We observe that wcrit(K, S) is monotonously increasing

in S and K, and that wcrit → 1 as K →∞.

To further visualize our results, we generated a frozen, critical and chaotic

MKN, for details see caption of Figure 1C. This figure shows the overlap o(t)

from (3) between two initially differing time courses. For each network one

of these time courses is plotted in Figures 1D–F. In the frozen network the
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overlap quickly reaches its maximal value 1 indicating that both time courses

have reached the steady state shown in Figure 1D. While the critical network

exhibits clear short-periodic oscillations after approximately 10 time steps,

cf. Figure 1E, no pattern or periodicity is discernible in the chaotic network in

Figure 1F. (We know, of course, that ultimately also the chaotic network will

fall into a limit cycle due to the finite size of the state space.) If we discard

the first 10 time steps, the overlap in the critical network oscillates around

0.88 and fluctuates around 0.34 in the chaotic network. The latter ratio

agrees well with the expected overlap of two randomly drawn configurations.

4. A class of biologically meaningful update rules

In the last sections, the update functions fi were chosen from the set

of all possible update rules according to (K4). However, as argued below,

especially for higher number of states most of these update rules are arguably

not plausible from a biological point of view. In this section, we characterize

a class of biologically more meaningful update rules for MKNs. We illustrate

the main characteristics of this class in section 4.1. Subsequently, in section

4.2, we present a more formal derivation using a thermodynamic model of

gene regulation. MKNs with biologically meaningful update rules are then

investigated in section 5, especially with respect to their critical connectivity.

4.1. Update rules with single-switch inputs

Figure 2A shows an example of a random multistate update rule. Is

such a function really plausible from a biological point of view? To answer

this question let us take a look at the manually curated update rules from

multistate logical models, e.g. of the yeast cell cycle (Fauré et al., 2009) or
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the Drosophila Gap-gene System (Sánchez and Thieffry, 2001). The ”least

common denominator” of these rules is, arguably, that there is only one

threshold for each input at which the function changes its output. In other

words, there is only a single switching point along each input dimension.

We will call functions satisfying this condition single-switch functions. More

formally, a single-switch function f with inputs x1 ∈ Σ1, x2 ∈ Σ2, . . . , xK ∈
ΣK has the property that for each 1 ≤ k ≤ K there exists a threshold θk ∈
Σk such that sgn (xk − θk) = sgn (x′k − θk) implies f (x1, . . . , xk, . . . , xK) =

f (x1, . . . , x
′
k, . . . , xK). An example of a single-switch function is shown in

Figure 2B.

One might wonder why we allow multiple states for the input variables

if in the end they behave essentially like Boolean (binary) variables. This

is certainly a valid argument if we consider only one update rule. Typically

however, a transcription factor influences more than one gene and the thresh-

olds for these regulations can differ. This is, in fact, precisely the reasoning

that led to the development of multistate logical models. We would like to

refer the reader to the review by Thomas (1991) where the author addresses

inter alia the question ”When and How Should One Use Variables with More

Than Two Values?”

We argue that imposing the single-switch condition is a reasonable re-

striction of update rules and that MKNs with single-switch update rules are

closer to biological reality than MKNs with fully random update rules, see

section 6.3 for further discussion. Therefore, we believe it worthwhile to

investigate MKNs with single-switch update rules and we will do so in sec-

tion 5. Before, let us further and more formally validate the single-switch
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Figure 2: A Random update rule depending on two inputs, x1 ∈ {1, 2, 3, 4} and x2 ∈ {1, 2, 3}. The

function values were drawn randomly from {1, 2, 3, 4, 5}. B Single-switch function depending on two

inputs, x1 ∈ {1, 2, 3, 4} and x2 ∈ {1, 2, 3}. The function possesses one switching point along the x1-

dimension (between 2 and 3) and one switching point along the x2-dimension (between 1 and 2). C Positive

Hill function and its approximation by a Heaviside step function. D,E,F Derivation of the single-switch

function shown in (B) from transcription rates r(0,0) = 0, r(1,0) = 0.25, r(0,1) = 0.75, r(1,1) = 1 as discussed

in section 4.4. From left to right: B
I
(rω) from (16), overall transcription rate r from (17) and B

PW
(rω) from

(19). G Schematic representation of transcriptional gene regulation. Clusters of identical binding sites

allow for the homotypicly cooperative binding of the transcription factors x1, x2, . . . , xK to the promotor

region of gene x. Heterotypic cooperativity is not taken into account. H Critical connectivities K
crit

for

random and single-switch update functions in terms of a fixed number of states S. Blue markers (’x’) show

the critical connectivity from (11) for fully random update rules; green markers (’+’) show the critical

connectivity from (22) for single-switch functions.
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criterion.

4.2. A thermodynamic model of gene regulation

In order to provide a solid theoretical foundation for our characterization

of meaningful update rules, we now describe a thermodynamic model of gene

regulation, leaning heavily on Sneppen and Zocchi (2005). Here, we present

only the most important results and formulas. More detailed computations

and derivations can be found in Appendix E.

Let us consider a prototypic gene x that is regulated by K regulators

x1, x2, . . . , xK . For each regulator xk, 1 ≤ k ≤ K, there are nk binding sites

in the promotor region of x, cf. Figure 2G. We assume maximal homotypic

cooperativity, which is to say, we assume that each transcription factor xk, 1 ≤
k ≤ K, can bind only as a polymer consisting of nk monomers. Moreover, we

neglect heterotypic cooperativity, i.e. cooperative effects between two different

transcription factors. For further discussion of these assumptions see section

6.4. We thus have 2K accessible promotor configurations, which we denote

by vectors ω ∈ {0, 1}K , the k-th component ω(k) indicating whether or not

the k-th regulator polymer is bound.

As detailed in Appendix E we can express the probability of a certain

promotor configuration ω as

πω =
∏

k|ω(k)=1

h+ ([xk] , nk, Ak) ·
∏

k|ω(k)=0

h− ([xk] , nk, Ak) , (15)

where

h+ ([xk] , nk, Ak) =
Ak [xk]

nk

1 + Ak [xk]
nk

and

h− ([xk] , nk, Ak) =
1

1 + Ak [xk]
nk
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are positive and negative Hill functions, respectively. Brackets indicate ligand

concentrations, and Ak is the association constant describing the bonding

affinity between the k-th regulator and its binding site.

We denote the transcription rate in each promotor configuration ω by rω

and let B
I

(rω) be the K-dimensional multilinear interpolation of the points

(ω, rω) ∈ R
K+1,

B
I

(rω) (y1, y2, . . . , yK) =
∑

ω

rω

∏
k|ω(k)=1

yk ·
∏

k|ω(k)=0

(1− yk) . (16)

Using (15) and recalling that h− ([xk] , nk, Ak) = 1−h+ ([xk] , nk, Ak), we can

express the overall transcription rate r as

r =
∑

ω

πωrω

= B
I

(rω) (h+ ([x1] , n1, A1) , h+ ([x2] , n2, A2) , . . . , h+ ([xK ] , nK , AK)) , (17)

i.e. as the composition of the multilinear interpolation with Hill functions.

Hence, we can nicely separate linearities and non-linearities. Non-linearities

appear only as single-component non-linearities and take the form of standard

Hill functions. The different inputs are multilinearly coupled.

In discrete models of gene regulation the overall transcription rate r of

gene x as a (continuous) function of the transcription factor concentrations

[xk], 1 ≤ k ≤ K, is mimicked by a discrete update rule. This process is

formalized in the next section. It will turn out that update rules obtained

from transcription rates r as in (17) by such a discretization are always

single-switch functions.
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4.3. The transition from continuous to discrete models of gene regulation

As a first step towards a discrete model we replace the sigmoidal Hill

functions h+ ([xk] , nk, Ak) in (17) by Heaviside step functions

hstep

(
[xk] , D

micro
k

)
=

⎧⎨
⎩ 0, [xk] < Dmicro

k

1, [xk] ≥ Dmicro
k ,

(18)

where Dmicro
k = nk

√
1/Ak is the so-called microscopic dissociation constant,

which indicates the concentration level for half-maximal activation, cf. Figure

2C. This results in piecewise linear functions

B
PW

(rω) = B
I

(rω)

(
hstep

(
[x1] , D

micro
1

)
, . . . , hstep

(
[xK ] , Dmicro

K

))
(19)

as introduced by Glass and Kauffman (1973).

We can now easily switch to discrete variables x ∈ Σ = {0, 1, . . . , S − 1}
and xk ∈ Σk = {0, 1, . . . , Sk − 1} by choosing transcription rates rω ∈ Σ and

defining our update function f of x via

f :
K∏

k=1

Σk −→ Σ

(x1, x2, . . . , xK) −→ B
PW

(rω) (x1, x2, . . . , xK) .

(20)

In the discrete case we can w.l.o.g. choose the thresholds Dmicro
k from Σk.

Further note that in definition (18) the threshold value itself is contained

in the preimage of 1. Hence, in the discrete case, the set of non-degenerate

thresholds is Σk \ {0}, as for these values there is a non-empty left- as well

as right-hand side.

The resulting f from (20) is clearly a single-switch function (with switch-

ing point Dmicro
k along the xk-dimension) as defined above in section 4.1.
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Thus, we could corroborate our characterization of meaningful update rules.

In the following, we will consider update rules satisfying the single-switch

condition. In particular, we ask if their usage leads to an increased criti-

cal connectivity in MKNs. Before, let us further illustrate our derivation of

single-switch functions using a simple example.

4.4. Example

Let us show how the single-switch function shown in Figure 2B could

have arisen from the thermodynamic model described above. Assume that

a gene x is regulated by two transcription factors x1 and x2, which can bind

to the promotor region of x as n1 = 3-mers and n2 = 4-mers, respectively,

(maximal homotypic cooperativity). The bonding affinity between x1 (x2)

and the promotor region determines the threshold Dmicro
1 (Dmicro

2 ) for the

regulation of x by x1 (x2). Here, we take Dmicro
1 = 1/3 and Dmicro

2 = 1/2 in

unit-normalized concentrations. We denote the possible promotor configura-

tions by (0, 0), (1, 0), (0, 1) and (1, 1), the first (second) component indicating

whether or not x1 (x2) is bound. We choose (unit normalized) transcription

rates r(0,0) = 0, r(1,0) = 0.25, r(0,1) = 0.75, r(1,1) = 1 for these different config-

urations.

Figure 2D shows the transcription rates rω, ω ∈ {0, 1}2, and their mul-

tilinear interpolation B
I

(rω) from (16). If we couple B
I

(rω) with Hill functions

(with thresholds Dmicro
1 , Dmicro

2 and exponents n1, n2) we obtain the over-

all transcription rate r from (17) shown in Figure 2E. Finally, replacing the

Hill functions by Heaviside step functions yields the piecewise linear function

B
PW

(rω) from (19) shown in Figure 2F.

Now, let us say that x1 regulates two other genes, one at a higher and one
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at a lower threshold than Dmicro
1 . In this case, we would allow 4 discrete states

for x1 separated by these three thresholds and Dmicro
1 would lie between the

second and the third discrete state. Similarly, let x2 regulate one other gene

at a higher threshold than Dmicro
2 . This would require three discrete states

for x2 and Dmicro
2 would lie between the first and the second. Finally, assume

that gene x is also a transcription factor and regulates four genes at different

thresholds. This leads to 5 discrete states for x. After this discretization, the

piecewise linear function from Figure 2F becomes the single-switch function

shown in Figure 2B.

5. Multistate Kauffman networks with single-switch functions

In the following, we no longer draw the update rules randomly from the

set of all possible rules, but modify (K4) to

(K4’) Each fi is a single-switch function with non-degenerate thresholds ran-

domly chosen from Σik \ {0} and output values (transcription rates)

chosen according to the distribution PSi
.

Does this increase the critical connectivity as compared to (7)? To answer

this question let us analytically describe the critical boundary.

5.1. The critical boundary

Due to the restricted architecture of the update rules, we have to slightly

modify our reasoning from section 2.2. We begin by deriving an appropriate

iteration for o(t) from (3), which was defined as the overlap between two time

courses X(t) and X ′(t). To this end, let us consider the i-th node, 1 ≤ i ≤ N ,

and its k-th input, 1 ≤ k ≤ Ki. We denote the probability that for two

23



different values xik 
= x′ik of this input we have hstep (xik, θ) 
= hstep (x′ik, θ),

where θ ∈ Σik \ {0} is a randomly chosen threshold, by qSik
. For a way to

compute qSik
, see Appendix F. Let

q
def
=

Smax∑
S=2

Pnos (S) qS .

Clearly, q = 1 iff for all S with Pnos (S) 
= 0 the support of PS consists of

exactly two points, i.e. iff the network is essentially a Boolean network.

Analogously to section 2.2, we reason that, given o(t), there are two

(mutually exclusive) possibilities that at t + 1 we have xi(t + 1) = x′i(t + 1).

1. For each of the Ki inputs either of the following is true:

1.1. The input is contained in the overlap at t, i.e. xik(t) = x′ik(t). This

occurs with probability o(t).

1.2. The input is not contained in the overlap, xik(t) 
= x′ik(t), but

still hstep (xik(t), θ) = hstep (x′ik(t), θ). This occurs with probability

(1− o(t)) (1− qSik
).

The overall probability for possibility 1 is given by

[
Smax∑
S=2

Pnos (S) [o(t) + (1− o(t)) (1− qS)]

]Ki

=

[o(t) + (1− o(t)) (1− q)]Ki .

2. Possibility 1 is wrong, but fi still yields the same value. Using (1), this

occurs with probability
(
1− [o(t) + (1− o(t)) (1− q)]Ki

)
(1− pSi

).
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We can now define an iteration for the overlap o(t).

o(t + 1) = Oswitch(o(t))

def
=

Kmax∑
K=1

Pin (K)
Smax∑
S=2

Pnos (S)
[
[o(t) + (1− o(t)) (1− q)]K +

(
1− [o(t) + (1− o(t)) (1− q)]K

)
(1− pS)

]
.

Clearly, o� = 1 is a fixed point. A stability analysis of this fixed point very

similar to Appendix B yields the following phase transition:

pKq

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 1 ordered regime

= 1 critical boundary

> 1 chaotic regime .

Consequently, the critical connectivity is given by

K
crit

=
1

p q
. (21)

Comparing (21) to (7) we observe that the restriction of update rules to

single-switch functions introduces the factor 1/q into the criticality condition.

Since q < 1 in the non-Boolean case, this leads to an increased critical

connectivity for MKNs, which answers our initiatory question.

5.2. Example

Let us conclude by considering the special case in which Pnos is the delta

distribution from (10) for a fixed number of states S, and PS is the discrete

uniform distribution from (2). The (mean) probability q = qS then computes

to

q =
1

3

S + 1

S − 1
,
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cf. Appendix F.

Dividing the critical connectivity from (11) by q yields

K
crit

= 3
S

S + 1
. (22)

In Figure 2H the critical connectivity from (22) and — for comparison —

the critical connectivity from (11) are shown. For larger values of S the

use of single-switch functions leads to a threefold increase in the critical

connectivity as compared to fully random update rules. Interestingly, while

for fully random update rules the critical connectivity decreases as S →∞,

it increases if single-switch functions are used.

6. Summary and discussion

KNs as generic models of gene regulatory networks are well studied and

able to explain certain aspects of biological processes such as cell replication

or lineage differentiation. Still, in many respects these models are arguably

too crude a simplification. In this contribution, we proposed modifications

of the original KN in order to enhance its biological plausibility.

6.1. Summary

MKNs can be seen as a natural generalization of (Boolean) KNs and allow

us to soften the hard binary discretization. We investigated a very general

class of MKNs and demonstrated that they exhibit a phase transition from

frozen to chaotic behavior. In the frozen regime, networks are robust in the

sense that they tolerate perturbations. In the chaotic regime, even small

perturbations will lead to the divergence of trajectories and thus to qualita-

tively different behaviors. The critical boundary between both regimes was
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determined analytically. In its most general representation (7) the critical

connectivity is inversely proportional to the mean heterogeneity parameter

p from (6) of the update rules. This parameter becomes maximal if the up-

date rules are unbiased, i.e. assume each value in the state space with equal

probability. It is minimal (zero), if the update rules are constant functions.

A nice intuitive interpretation of the phase transition (5) is given in terms

of ”damage spreading”. Assume that at time t the state of a MKN is damaged

in one node, i.e. the state of this node is altered. On average this node affects

K other nodes at the next time step t + 1. The parameter p is the mean

probability that a change of input indeed leads to a change of output of

an update rule. The product Kp thus gives the mean number of damaged

(changed) nodes at time t + 1. In the case Kp > 1 damage will spread

through the network, in the case Kp < 1 the network is able to ”repair”

damage over time.

Our results show that MKNs have smaller critical connectivities than

the original (Boolean) KNs. Yet we also demonstrated that each system

can be kept in its frozen regime by putting a sufficiently heavy bias on one

of the states, cf. Figure 1B. In the Boolean case, the critical weights wcrit
1/2

are, of course, symmetric about 1/2. In MKNs there still is a range of

connectivities where we can freeze a network by choosing either sufficiently

large or sufficiently small weights. For higher connectivities, however, the

option of choosing small weights ceases to exist. Intuitively speaking, even

if we set the weight to zero, the heterogeneity among the remaining states

would still be too large. Mathematically, this is reflected in the solution wcrit
1

becoming negative. From a biological point of view, this may indicate that
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in real genetic networks the update functions have a base level of activation

and deviations thereof constitute well-defined exceptions.

In a next step, we restricted the randomly chosen update rules to a sub-

class of biologically more meaningful functions, so-called single-switch func-

tions. These were characterized based on a thermodynamic model of gene

regulation. The crucial property of single-switch functions is that their out-

put value changes only once along each input dimension. Hence, there is a

chance that a single-switch function does not ”realize” a change in one of its

inputs, simply because the input remains on the same side of its switching

point. In terms of ”damage spreading” this implies that damage is less likely

to spread. (We remark that this is precisely what is measured by the addi-

tional factor 1/q in (21).) Consequently, we expect MKNs with single-switch

update rules to be more robust. Indeed we found that the use of single-switch

functions increases the critical connectivity; in a specific example by a factor

of up to three. Similar to the study of nested canalyzing functions (Kauff-

man et al., 2004), our results show the importance of the update functions’

architecture for the dynamic behavior of KNs.

6.2. Previous work on multistate Kauffman networks

When employing multistate logical models one needs to make a funda-

mental decision about how update rules act on variables. Either the value of

an update rule determines the absolute value of a variable at the next time

step or it determines the change of the variable relative to the previous state,

i.e. whether the variable is assigned the next higher or the next lower state.

KNs with multiple states using the latter update policy are called random

walk networks. Analyses of these networks revealed a phase transition be-
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tween a chaotic and an ordered regime similar to the standard KN (Luque

and Ballesteros, 2004; Ballesteros and Luque, 2005). In the chaotic regime,

variables follow random-walk like trajectories, which gives the name to these

networks. In here, we did not consider random walk networks but KNs with

multiple states using the first update policy; we referred to them as MKNs.

Previous studies (Solé et al., 2000) of MKNs are restricted to the biolog-

ically unreasonable case in which all nodes have the same number of states.

In agreement with our more general results, it has been shown that in this

case an increasing number of states decreases the critical connectivity down

to 1. It is tempting to assume that this stays true (at least in a qualitative

sense) when replacing the (fixed) number of states by the mean of a non-

degenerate distribution. However, our results demonstrate that, in general,

this is wrong. From the critical connectivity in (9), for instance, we deduce

that here the crucial parameter is not the mean number of states, but the

mean of the reciprocal number of states μ.

Generally speaking, the mean of a strictly positive, non-constant random

variable R and the mean of 1/R are related by

E

(
1

R

)
>

1

E (R)
,

for a proof see e.g. Kendall et al. (1987). Furthermore, we can easily come

up with a distribution

P (R = 2) =
r − 1

r
and P

(
R = r2

)
= 1/r

for r ∈ N, such that E(R) → ∞ but E (1/R) → 1/2 as r → ∞. Setting

Pnos = P , the critical connectivity from (9) increases up to 2 as r → ∞,

although the mean number of states grows beyond any bound.
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6.3. Biologically meaningful update functions

The issue of biologically meaningful update rules for Boolean networks

has attracted considerable attention. In Harris et al. (2002) it has been

observed that in lower organisms most genes have one so-called canalyzing

(forcing) input, such that for one value of this input, the output value is fixed.

Only if this input is not canalyzing, do the other inputs become relevant. In

Kauffman et al. (2003) the concept of canalyzing functions was extended to

nested canalyzing functions. This was done mostly for technical reasons as

for nested canalyzing rules simple sampling schemes exist. In a subsequent

study, networks with nested canalyzing rules were shown to be always stable

(Kauffman et al., 2004).

A different class of biologically plausible Boolean rules was defined in

Raeymaekers (2002) based on the assumption that each transcription fac-

tor is either an overall activator or an overall inhibitor. If one furthermore

assumes that the activatory and inhibitory regulators of a gene interact in

an additive fashion, one can model genetic networks by so-called random

threshold networks (Rohlf and Bornholdt, 2002; Szejka et al., 2008). Here,

the update function of a node is a weighted sum over its inputs (with posi-

tive and negative weights depending on whether the input is an activator or

inhibitor), which is thresholded to yield a binary output.

Somewhat contrary to the previously mentioned studies, in Buchler et al.

(2003) mechanistic models of transcriptional control show that virtually any

regulatory logic function can be implemented by cis-regulatory constructs,

including e.g. XOR gates. Being neither canalyzing nor monotonous, these

logic functions were deemed biologically meaningless in the studies mentioned
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above. In short, there is no generally accepted definition of ”biologically

meaningful”.

Naturally, this matter becomes even more difficult, if nodes assume more

than two discrete states. For this reason, we did not attempt to define

the subset of biologically meaningful update rules. Rather, we delineated a

characteristic feature — the single-switch condition — which is shared by

(most) biologically meaningful update rules. We did so by analyzing manu-

ally curated multistate logical models as well as by studying a thermodynamic

model of gene regulation. We do not claim that all single-switch functions are

implemented in real gene regulatory networks. In other words, we deem our

characterization of meaningful update rules rather conservative in the sense

that the class of single-switch functions is likely too large, i.e. still contains

biologically implausible rules. (Naturally, we cannot fully exclude the possi-

bility that single update rules of real gene regulatory networks do not satisfy

the single-switch condition, either.) This, of course, raises the question of

how to define and impose further constraints.

6.4. A thermodynamic model of gene regulation

From a more general point of view, the presented thermodynamic model

provides the biophysical foundation for the relation between discrete and

continuous models of gene regulatory networks. Our modeling approach can

be nicely related to previous studies:

• In the mathematical framework for gene regulatory networks described

in Mestl et al. (1995) the probabilities πω from (15) are called indicator

functions; however, no derivation of these functions is presented.
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• In the Boolean case, we can think of the discretized transcription rates

rω ∈ {0, 1}, ω ∈ {0, 1}K , as a K-variate Boolean function and the

multilinear interpolation B
I

(rω) from (16) is equal to the Zhegalkin rep-

resentation of this Boolean function (Faisal et al., 2008).

• The functions B
PW

(rω) from (19) give rise to an intermediate between

discrete and continuous models: systems of piecewise linear differen-

tial equations as studied e.g. in Glass and Kauffman (1973); Edwards

(2000); de Jong et al. (2004).

• The established connection between continuous and discrete models of

gene regulatory networks has already been used for the standardized

continuous extension of Boolean models (Wittmann et al., 2009a,b).

The main reason for the complexity of transcriptional gene regulation are

cooperative effects between transcription factors. Cooperativity exists, if a

bound protein increases (positive cooperativity) or decreases (negative coop-

erativity) the affinity of the promotor for further proteins of the same kind

(homotypic cooperativity) or of a different kind (heterotypic cooperativity).

In the derivation of formula (17) we made two simplifying assumptions

regarding cooperative effects: We assumed strong homotypic cooperativity

and neglected heterotypic cooperativity. Strong homotypic cooperativity al-

lows us to assume a quasi-simultaneous binding of all ligands of the same

kind. Intuitively speaking, we argue that once a binding site is occupied

strong interactions between the ligands lead to a fast occupation of the re-

maining sites. Consequently, we can discard the configurations in which the

binding sites are only partially occupied. This, in turn, greatly enhances the
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amenability of the resulting formulas — an important issue in 1910, when

Hill conducted his famous studies (Hill, 1910).

Although nowadays computational intractability is no longer an issue,

the Hill equation is still widely used due to its simplicity and variability. In

fact, one can account for sequential ligand binding by allowing non-integer

exponents. For example, in the case of hemoglobin, in which four oxygen

molecules are known to bind with a high degree of positive cooperativity, the

measured Hill coefficient ranges from 1.7 to 3.2 rather than 4 (Hill, 1910). For

a comprehensive review of the limitations of the Hill equation and possible

more realistic extensions, see Weiss (1997). The multivariate case of these

extensions, however, is still an open issue.

With respect to our second assumption, that of negligible heterotypic

cooperativity, we remark that, for example, bioinformatics analyses of the

Drosophila genome indeed revealed significant short-range homotypic cluster-

ing of binding sites but no systematic heterotypic clustering between binding

sites of different factors (Segal et al., 2008). Still, heterotypic cooperativity

exists and we should be wary of this assumption. Luckily, we can argue that

taking into account heterotypic cooperativity does not change the switch-like

character of the overall transcription rate r. To see this, we fix all the reg-

ulator concentrations but one, w.l.o.g. [x1]. Then we can write the overall

transcription rate r in terms of [x1]

r =
c1 + c2 [x1]

n1

c3 + c4 [x1]
n1

,

with constants c1, c2, c3, c4. This still is a sigmoidal interpolation between the

transcription rate r = c1/c3 for [x1] = 0 and the transcription rate r ≈ c2/c4

for large [x1]. However, we can no longer express r in a form similar to
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(17), and also the determination of the switching thresholds becomes more

involved.

6.5. Outlook

In continuation of our work, several further unrealistic features of KNs

could be addressed. First, the synchronous updating according to an external

clock is an over-simplification of biological reality. To alleviate this problem,

instead of studying a MKN

xi(t + 1) = fi (xi1(t), xi2(t), . . . , xiKi
(t)) , i = 1, 2, . . . , N , (23)

with single-switch functions fi derived from piecewise linear functions B
PW

i ,

one could consider the corresponding system of piecewise linear differential

equations

d

dt
xi(t) = B

PW

i (xi1(t), xi2(t), . . . , xiKi
(t))− xi(t) , i = 1, 2, . . . , N . (24)

Note that we can think of (23) as a simple Euler approximation of (24).

The dynamical behavior of the continuous model has been shown to signifi-

cantly differ from that of the Boolean network (Glass and Kauffman, 1973;

Mestl et al., 1995; Edwards, 2000; de Jong et al., 2004; Mochizuki, 2005). In

particular, the detection and analysis of chaos in systems of piecewise linear

differential equations is still largely an open issue, although it was addressed

in several, mostly numerical, studies (Mestl et al., 1997; Glass and Hill, 1998;

Kappler et al., 2003).

Second, one could investigate the effect of different time-scales in the

above system of piecewise linear differential equations (24) by multiplying the

right-hand sides by time-scale parameters τi. Several studies have shown that

34



the integration of different time-scales increases the robustness of biological

systems (Gorban and Radulescu, 2007; Rojdestvenski et al., 1999). So far,

however, authors almost exclusively treated the special case of equal time-

scale parameters. The investigation of the general system will require the

development of new analytical and numerical approaches. Still, we believe

that the effort is worthwhile. Studying the effect of different time-scales

on the self-organizing property of random networks will be interesting from

both, a biological as well as a general systems-theoretic point of view.

Third, it remains to be investigated whether results about piecewise linear

differential equations remain valid, if we do not approximate the sigmoidal

functions in (17) by step functions. At least for sufficiently steep sigmoidals

we expect this to be the case. However, from a biological point of view, the

steepness is limited by the number of binding sites. This raises the question

to what extent the ”mathematical lower bound” and the ”biological upper

bound” can be reconciled.
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Appendix A.

We proof that the expression for pSi
from equation (1) has a unique global

maximum if PSi
is the discrete uniform distribution from (2). The existence

35



of a global maximum follows from the extreme value theorem. Now assume

that p1
def
= PSi

(s1) 
= p2
def
= PSi

(s2). Then, for p′ def
= (p1 + p2) /2 it holds that

2p′(1− p′) = p1 + p2 − (p1 + p2)
2

2

> p1 + p2 − (p1 + p2)
2

2
− (p1 − p2)

2

2

= p1(1− p1) + p2(1− p2) .

Hence, the distribution

P ′Si
(s) =

⎧⎨
⎩ PSi

(s) s /∈ {s1, s2}
p′ s ∈ {s1, s2}

yields a strictly larger value for pSi
.

Appendix B.

Observe that for o > 0 the function O(o) is convex and monotonously

increasing. To prove this, it suffices to show that oK +
(
1− oK

)
(1− pS) is

convex and monotonously increasing. This can easily be verified by comput-

ing the first and second derivatives, KoK−1−(1− pS) KoK−1 = KpSoK−1 ≥ 0

and K(K − 1)pSoK−2 ≥ 0, respectively. Moreover, note that pS < 1 implies

O(0) > 0. Hence, there are two possibilities: Either the fixed point o� is

(globally) attractive and no further fixed points exist, or o� is repellent and

O has exactly one additional (attractive) fixed point. These two possibilities

are visualized in Figure B.3. We observe that for the blue curve the fixed

point o� is attractive (even globally), while for the green curve it is repellent.

In the latter case we have an additional fixed point, which attracts [0, 1).
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Figure B.3: Schematic plots of O(o) from (4) for a frozen (blue) and a chaotic (green) KN.

The linear stability analysis of (4) about o� yields:

dO

do

∣∣∣∣
o�

=
Kmax∑
K=1

Pin (K)
Smax∑
S=2

Pnos (S) [K −K (1− pS)]

=
Kmax∑
K=1

Pin (K)
Smax∑
S=2

Pnos (S) KpS

=
Kmax∑
K=1

Pin (K) Kp

= pK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 1 ordered regime

= 1 critical boundary

> 1 chaotic regime .
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Appendix C.

We substitute (14) in (5):

K
[
2w(1− w) + (1− w)2 (1− μ−1)

]
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 1 ordered regime

= 1 critical boundary

> 1 chaotic regime .

This is equivalent to

−K (1 + μ−1) w2 + 2Kμ−1w + K (1− μ−1)− 1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0 ordered regime

= 0 critical boundary

> 0 chaotic regime .

(C.1)

The discriminant of this quadratic equation is given by

D = 4K
(
K − (1 + μ−1)

)
and

D

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0 if K < 1 + μ−1

= 0 if K = 1 + μ−1

> 0 if K > 1 + μ−1 .

From (C.1) it follows that for K < 1+μ−1 the system is always frozen. To see

this, note that −K (1 + μ−1) < 0. For K ≥ 1 + μ−1 the quadratic equation

from (C.1) has two (possibly coinciding) solutions

wcrit
1
2

(
K, μ−1

)
=

1

μ−1 + 1

(
μ−1 ∓

√
1− μ−1 + 1

K

)

First, observe that for μ−1 > 0, wcrit
2 < 1 is always a valid solution. Moreover,

we have

wcrit
1 > 0 ⇔

√
1− μ−1 + 1

K
< μ−1 ⇔ K <

1

1− μ−1

,
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where in the case μ−1 = 1, ”K < ∞” is true for any K. Observe that for

μ−1 < 1,
1

1− μ−1

> 1 + μ−1 ,

so there always is a range for K, in which (C.1) has two distinct solutions

in (0, 1). Once more considering that in (C.1) −K (1 + μ−1) < 0, we finally

obtain

−K (1 + μ−1) w2+2Kμ−1w+K (1− μ−1)−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

< 0 , w < wcrit
1 or w > wcrit

2

= 0 , w = wcrit
1 or w = wcrit

2

> 0 , wcrit
1 < w < wcrit

2 .

Appendix D.

Using μ−1 = 1/(S − 1) we can rewrite the classification from section 3.1

in terms of S. We also write wcrit(K, S) instead of wcrit(K,μ−1).

(a) For K < S/(S− 1) the system is always frozen.

(b) For K = S/(S− 1) the system is critical if and only if

w = wcrit

(
S

S − 1
, S

)
=

1

S
,

i.e. PS is the uniform distribution, otherwise it is frozen.

(c) For S = 2 and K > S/(S− 1) the critical boundary is described by

wcrit
1
2

(
K, 2

)
=

1

2

[
1∓
√

1− 2

K

]
∈ (0, 1) . (D.1)

For

wcrit
1

(
K, 2

)
< w < wcrit

2

(
K, 2

)
the system is chaotic, otherwise it is frozen.
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(d) For S > 2 and (S− 1)/(S− 2) > K > S/(S− 1) the critical bound-

ary is described by

wcrit
1
2

(
K, S

)
=

1

S

⎛
⎝1∓

√
1− S

K

[(
2− S

)
K + S − 1

]⎞⎠ ∈ (0, 1) .

(D.2)

For

wcrit
1

(
K, S

)
< w < wcrit

2

(
K, S

) ∈ (0, 1)

the system is chaotic, otherwise it is frozen. For K = (S − 1)/(S − 2),

wcrit
1 (K, S) = 0 is not a valid solution for w as we require w ∈ (0, 1).

Note that for w = 0, PS from (13) would essentially become a uniform

distribution on 1, 2, . . . , S − 1. We could replace S by S
′

= S − 1

and choose a uniform distribution for P
S
′ . This new system falls into

category (b) and we find that it is in fact critical.

(e) For S > 2 and K ≥ (S− 1)/(S− 2) the critical boundary is described

by

wcrit
(
K, S

)
=

1

S

⎡
⎣1 +

√
1− S

K

[
(2− S)K + S − 1

]⎤⎦ ∈ (0, 1) , (D.3)

cf. Solé et al. (2000), for larger values of w the system is frozen, other-

wise it is chaotic.

Appendix E.

Let us assume a situation as outlined at the beginning of section 4.2. We

begin our computations without any assumptions regarding cooperative ef-

fects. Hence, there are 2
PK

k=1 nk different accessible promotor configurations
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(microstates); we describe them by Boolean vectors ω of length
∑K

k=1 nk,

the b-th component ω(b) indicating if the respective binding site is occu-

pied. (The reader is kindly asked to ignore that this definition of ω conflicts

with the one given in the main text, we will resolve this discrepancy below.)

For each microstate ω we denote the number of binding sites occupied by

regulator xk by #ω(k).

Each configuration ω has a certain Gibbs free energy Gω and the proba-

bility of a certain microstate ω0 is given by

πω0 =
exp (−ΔGω0/RT )

∏K
k=1 [xk]

#ω0(k)∑
ω exp (−ΔGω/RT )

∏K
k=1 [xk]

#ω(k)
, (E.1)

where Δ signifies energy differences with respect to the state (0, 0, . . . , 0), R

is the gas constant, T the temperature, and brackets indicate concentrations

of free ligand. Since we may assume the number of ligands to be larger than

the number of promotors by several orders of magnitude, we can neglect the

difference between concentration of free ligand and total ligand concentration.

Formula (E.1) can also be written in terms of the association constants

Aω, which are related to the free energies via ΔGω = −RT ln Aω. Observe

that ΔG(0,0,...,0) = 0 implies A(0,0,...,0) = 1. We obtain

πω0 =
Aω0

∏K
k=1 [xk]

#ω0(k)∑
ω Aω

∏K
k=1 [xk]

#ω(k)
. (E.2)

Let us begin by considering the case K = 1. We denote the free energy

of binding a protein to the b-th binding site by ΔGeb
, where eb is the b-th

unit vector of length n1. The free energy ΔGω of a microstate ω can then be

written as

ΔGω =
∑

b|ω(b)=1

ΔGeb
+ ΔGhom

ω , (E.3)
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i.e. as the sum of the free energies ΔGeb
of the single protein-DNA bindings

and the free energy ΔGhom
ω of interactions between the proteins (homotypic

cooperativity). Clearly, ΔGhom
eb

= 0 for all unit vectors eb.

For simplification, one commonly assumes that either no protein or n1

proteins are bound to the promotor, i.e. one discards all microstates except

�0 = (0, 0, . . . , 0) and �1 = (1, 1, . . . , 1). A possible justification of this assump-

tion is a strong positive homotypic cooperativity. Indeed, according to (E.1)

and (E.3) we can neglect all πω except π�0 and π�1 if −ΔGhom
�1

is sufficiently

large. This issue is further discussed in section 6.4.

Equation (E.2) then becomes

π�0 =
1

1 + A�1 [x1]
n1

, π�1 =
A�1 [x1]

n1

1 + A�1 [x1]
n1

,

or, in terms of the dissociation constant D�1 = 1/A�1,

π�0 =
D�1

D�1 + [x1]
n1

, π�1 =
[x1]

n1

D�1 + [x1]
n1

.

These are the well-known negative and positive Hill functions (Hill, 1910),

which are often used to model transcriptional gene regulation. Typically, they

are stated in terms of the microscopic dissociation constant Dmicro
�1

= n1

√
D�1,

which indicates the concentration level for half-maximal activation. The ba-

sic idea behind discrete models of gene regulatory networks is to approximate

the sigmoidal Hill functions by Heaviside step functions, cf. Figure 2C.

Let us now consider the case of general K. For simplification, we again

assume that each transcription factor xk, 1 ≤ k ≤ K, can bind only as a

polymer consisting of nk monomers. This limits the number of accessible

microstates to 2K ; by abuse of notation we denote them again by vectors

ω ∈ {0, 1}K , the k-th component ω(k) indicating whether or not the k-th
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regulator polymer is bound. With this new definition of ω, which now agrees

with the one given in the main text, equation (E.2) reads

πω0 =
Aω0

∏
k|ω0(k)=1 [xk]

nk∑
ω Aω

∏
k|ω(k)=1 [xk]

nk
. (E.4)

In general, it holds that

ΔGω =
∑

k|ω(k)=1

ΔGek
+ ΔGhet

ω ,

where ΔGek
is the free energy of binding the k-th regulator polymer and

ΔGhet
ω is the free energy of interactions between the different regulators (het-

erotypic cooperativity). In the following, we neglect heterotypic cooperativity,

all ΔGhet
ω = 0, for a discussion see section 6.4. In terms of the association

constants this implies

Aω =
∏

k|ω(k)=1

Aek
. (E.5)

Hence, the denominator in (E.4) factorizes

∑
ω

Aω

∏
k|ω(k)=1

[xk]
nk =

∑
ω

∏
k|ω(k)=1

Aek
[xk]

nk =
K∏

k=1

(1 + Aek
[xk]

nk) . (E.6)

Using (E.5) and (E.6) we can rewrite (E.4) as

πω0 =

∏
k|ω0(k)=1 Aek

[xk]
nk∏K

k=1 (1 + Aek
[xk]

nk)

=
∏

k|ω0(k)=1

Aek
[xk]

nk

1 + Aek
[xk]

nk
·
∏

k|ω0(k)=0

1

1 + Aek
[xk]

nk

=
∏

k|ω0(k)=1

h+ ([xk] , nk, Aek
) ·

∏
k|ω0(k)=0

h− ([xk] , nk, Aek
) .

Replacing Aek
by Ak and dropping the subscript 0 we obtain (15).
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Appendix F.

Let us consider the i-th node, 1 ≤ i ≤ N , and its k-th input, 1 ≤ k ≤ Ki.

The probability qSik
that for two different values xik 
= x′ik of this input we

have hstep (xik, θ) 
= hstep (x′ik, θ), where θ ∈ Σik \ {0} is a randomly chosen

threshold, is given by

qSik
=

1

Sik − 1

Sik−1∑
θ=1

2
θ−1∑
s=0

[
PSik

(s)

∑Sik−1
s′=θ PSik

(s′)
1− PSik

(s)

]
. (F.1)

To see this, think of xik and x′ik as i.i.d. random variables distributed ac-

cording to PSik
. The bracketed expression is the product of the probability

for ”xik = s” and the conditional probability for ”x′ik ≥ θ” given ”x′ik 
= s”.

The sum over s thus gives the probability for ”xik < θ and x′ik ≥ θ” given

”xik 
= x′ik”. Twice this sum is the probability that xik and x′ik lie on different

sides of θ and thus give different values when plugged into hstep(•, θ). Com-

puting the weighted sum over all non-degenerate thresholds θ finally yields

the above formula (F.1).

In the situation of section 5.2 formula (F.1) simplifies to

qS = q =
1

S − 1

S−1∑
θ=1

2
θ

S

S − θ

S − 1
=

1

3

S + 1

S − 1
. (F.2)

It is interesting to compare this to the continuous situation, where the two

input values and the threshold are drawn from some continuous interval,

w.l.o.g. the unit interval [0, 1]. Intuitively one might suspect that the prob-

ability qcont for the two input values to lie on different sides of the threshold

is 1/2. However, qcont computes to

qcont =

∫ 1

0

2x(1− x) dx =
1

3

and agrees with the limit of q from (F.2) as S →∞.
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