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Correlated fluctuations carry signatures of gene
regulatory network dynamics

Vijayanarasimha H. Pakka, Adam Prügel-Bennett, Srinandan Dasmahapatra∗

School of Electronics and Computer Science, University of Southampton, Southampton SO17
1BJ, United Kingdom

Abstract

The dynamics of transcriptional control involve small numbers of molecules and
result in significant fluctuations in protein and mRNA concentrations. The correla-
tions between these intrinsic fluctuations then offer, via the fluctuation dissipation
relation, the possibility of capturing the systems response to external perturba-
tions, and hence the nature of the regulatory activity itself. We show that for
simple regulatory networks of activators and repressors, the correlated fluctua-
tions between molecular species show distinct characteristics for changes in reg-
ulatory mechanism and for changes to the topology of causal influence. Here, we
do a stochastic analysis and derive time-dependent correlation functions between
molecular species of regulatory networks and present analytical and numerical re-
sults on peaks and delays in correlations between proteins within networks. Upon
using these values of peaks and delays as a 2-dimensional feature space, we find
that different regulatory mechanisms separate into distinct clusters. This indicates
that experimentally observable pairwise correlations can distinguish between gene
regulatory networks.
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1. Introduction

A gene regulatory network (GRN) summarizes the causal influences between
genes that regulate the expression of proteins in cells. While the set of genes
constitute the nodes of this network, the regulatory activity between genes is rep-
resented by its edges. The biochemical steps involved in this activity is inherently
stochastic in nature, and fluctuating numbers of mRNA and protein levels have
been observed in clonal populations. Many interesting biological phenomena have
been attributed to these fluctuations (Arkin et al., 1998; Raser and O’Shea, 2005;
Raj and van Oudenaarden, 2008), which include phenotypic variation within an
isogenic population of cells or their influence on switching between cell fates.
Such examples include the lysis/lysogeny switch in bacteriophage-λ (Arkin et al.,
1998) driven by fluctuations in Cro2 and CI2; competent-vegetative switching in
B. subtilis cells (Maamar et al., 2007); and in the regulatory circuit responsible
for colour vision in Drosophila, where cells commit to either yellow(70%) or
pale(30%) ommatidial subtypes (Wernet et al., 2006). Stochastic effects in tran-
scription factor proteins affect the regulation of the genes whose cis-regulatory
upstream sequence it binds to; this is exemplified in the variability in the time of
onset of early meiosis genes in diploid yeast cells subjected to nutritional depri-
vation linked to fluctuations in the level of Ime1 proteins(Nachman et al., 2007).
Cell-cell variability due to transcriptional noise has been shown to be advanta-
geous in adverse environmental conditions in (Blake et al., 2006). While such ex-
amples establish the salience of stochasticity in cell biology, how fluctuations are
organized and propagate within regulatory networks remains an important issue,
and whether different networks leave identifiable traces on the measured fluctua-
tions in protein numbers.
Simple models of gene regulation (Kepler and Elston, 2001) identify experi-

mental interactions that outline the contributions of the core processes in variabil-
ity of gene expression (Ozbudak et al., 2002). Quantifying molecular fluctuations
by such formulations allows one to study the effect of various network topologies,
regulatory mechanisms and parameters on the stationary statistics of variables in
GRNs (Tao et al., 2007; Tomioka et al., 2004; Pedraza and van Oudenaarden,
2005). Such observations make it possible for the quantification of noise to reveal
the regulatory links between genes (Austin et al., 2006; Cox et al., 2008). For
example, (Cox et al., 2008) consider single-gene models seeking to characterize
regulatory networks by their specific features of their stationary auto-correlations,
viz. the coefficient of variation and the time at which auto-correlations decay to
half their maximum value. However, a crucial element missing in such studies is
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the temporal aspect. Since the entire process of gene expression is dynamic in na-
ture, tracking the fluctuations in species numbers over time would yield significant
information. For example, due to the inherent time-delay in the transcription and
translation steps, a perturbation in the upstream process of gene activation say,
would result in a delayed response in the protein fluctuations. Such a response
could be evaluated by temporal correlations that are more likely to be character-
istic of the regulatory mechanisms, structure and parameter values of the system.
Such studies are possible by tracking of mRNA/protein numbers over time in in-
dividual cells, e.g., (Raj et al., 2008). With the aid of time-lapse fluorescence
measurements, recent reports suggest that the time dependent correlations of fluc-
tuations in protein levels indicate the presence of regulatory activity in simple
GRNs (Dunlop et al., 2008; Sigal et al., 2006). That is the object of our study.
A number of papers have studied the single-gene case in great detail (Pauls-

son, 2004; Lei, 2009; Shahrezaei and Swain, 2008) and have investigated the noise
properties of multi-gene networks (Tomioka et al., 2004; Pedraza and van Oude-
naarden, 2005). An important difference between these investigations and our
current work lies in our reliance on time-delayed correlation functions, not equal
time ones and Appendix C presents the simplest case of a single gene in some
detail. The motivation behind looking at time delayed correlations lies in linear
response theory (van Kampen, 2007).
Given the stochasticity of the very processes that constitute regulatory re-

sponses to stimuli, it is likely that correlations between fluctuations will illuminate
the dynamics of regulatory interactions. Indeed the intuition behind Onsager’s re-
gression hypothesis (Onsager, 1931) is that the regression to an equilibrium state
after a short-lived external perturbation or an intrinsic fluctuation are identical,
which has been developed further in several fluctuation-dissipation theorems even
away from equilibrium (Keizer, 1987; Speck and Seifert, 2006). Regulation of ex-
pression determines responses to signals which are organized by the cell to form
functional pathways. In this paper, we consider correlated fluctuations in elemen-
tary fragments of GRNs to illustrate what they can tell us about the nature of the
regulatory function enacted by the network.
To achieve that, we study the time-dependent correlation functions between

proteins (such as a transcription factor and a downstream target) in a network ex-
pressed in a sum-of-exponentials form. We expect distinct behavioural patterns
in the correlated fluctuations for variations in the regulatory networks. Vari-
ations are introduced in elementary fragments of regulatory networks by em-
ploying three strategies: (i) adopting different regulatory mechanisms; activa-
tion/repression with or without co-operative mechanisms for the same topology
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of dependence between genes, (ii) introduction of additional genes into the net-
work, and (iii) adopting different sets of values for the reaction rate constants.
They amount to varying the regulatory mechanisms, the network structure and the
parameter values respectively, and hence form the basis for deriving qualitative
relationships between these attributes and features extracted from the fluctuation
properties of the network, which we summarize in Figure 3 below. Therefore, by
tracking the species numbers in single cells over time, one could predict the type
of regulatory activity present in a GRN, as demonstrated here for the case of small
networks.
After setting up the machinery of stochastic processes that we need to compute

correlation functions in Section 2, we present specific details of the models and
the values that we choose for the rate constants in Section 3. Section 4 establishes
the dependences of correlations on parameter values in different networks to set
the stage for the comparison presented in Section 5.

2. Dynamic Correlation Functions

The relation between the macroscopic dynamics and the fluctuation proper-
ties of the system is formalized by the Fluctuation-Dissipation Theorem (FDT).
In statistical physics, the FDT states that the linear response of an equilibrium
(or steady state) (Keizer, 1987) system to external perturbations is obtained from
the correlation functions of the fluctuations in the unperturbed system. In other
words, it proposes that there is an explicit relationship between the internal fluc-
tuating force that is random in nature, and the observed macroscopic response
of the system to an external force that governs the dynamics of the averages. In
the present context of biochemical reacting systems, this relation emerges natu-
rally out of a system-size expansion of the Chemical Master equation (CME) (van
Kampen, 2007), where the CME is simplified to the Linear Noise Approximation
(LNA). This LNA is equivalent to the Fokker-Planck (F-P) for these processes
(Gillespie, 2000), whose solution are the distributions of the fluctuations around
the average concentrations of the molecules, or the Langevin equation, which gen-
erates system trajectories. Here, we derive the dynamic correlations between these
molecular fluctuations, via the Langevin reduction of the CME, and on the way
observe the emergence of a relationship between the dynamics of the averages and
the fluctuating part of the distributions.
Supposing that X(t) is a vector of the number of molecular species in the

system and that the evolution of this vector is a jump-type Markov process, then
the time-evolution of the joint probability distribution of all species of a spatially
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homogeneous chemical system is given by the CME

∂

∂t
P(X, t) =

M∑
j=1

[
P(X − ν j, t)aj(X − ν j) − P(X, t)a j(X)

]
, (1)

where the propensity function aj gives probability for one out of a possible M
reactions r j (1 ≤ j ≤ M) to occur in time [t, t + dt) in volume Ω, thus changing
the number of si molecules by an amount νi j called the stoichiometry. The initial
condition for the system to be P(X, t0) = δ(X − X0). Upon multiplying eq. (1)
by X and summing over all configurations X after making the substitution X =
X − ν j + ν j, we get the following expressions for the evolution of the mean values
〈X〉:

d〈Xi〉
dt
=

M∑
j=1

〈νi ja j(X)〉. (2)

Similarly, by multiplying eq. (1) by (X − 〈X〉)(XT − 〈XT 〉) and shifting variables
in the sum over configurations X, we get the following expression for the covari-
ances:

dCov(Xi, Xj)
dt

=

M∑
k=1

[
〈(Xi − 〈Xi〉)ν jkak(X)〉 + 〈(Xj − 〈Xj〉)νikak(X)〉 + 〈νikν jkak(X)〉

]
(3)

where Cov(Xi, Xj) = 〈(Xi − 〈Xi〉)(Xj − 〈Xj〉)〉.
These equations do not close on themselves if the dependence of the propen-

sities on particle numbers is non-linear. The rate equations for the averages of the
concentrations xi = Xi/Ω obey mass action kinetics of the biochemical system if
we ignore fluctuations

d〈xi〉
dt

=

M∑
j=1

νi jR j(〈x〉) (4)

where Rj(x) := 1
Ω
〈aj(XΩ)〉 are the deterministic rates of the M reactions, with mean

molecular numbers substituted by deterministic concentrations. It must be noted
that while the same functional forms are retained for the propensities aj and re-
action rates Rj, the probabilities in the stochastic description are replaced by rate
constants appropriately scaled by powers ofΩ to translate between molecule num-
bers and concentrations (Gillespie, 2000; van Kampen, 2007).
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Linearizing about the steady states 〈x〉s which satisfy d
dt〈x〉 = 0 in (4), we find

that the deviations δx(t) := x(t) − 〈x〉s are given by
(
d
dt

)
δx = Aδx, (5)

where A is the Jacobian matrix with elements:

Aik =
∂

∂〈xk〉

⎛⎜⎜⎜⎜⎜⎜⎝
M∑
j=1

νi jR j(〈x〉)

⎞⎟⎟⎟⎟⎟⎟⎠
〈x〉=〈x〉s

. (6)

At steady state, the means in the kinetic rates Rj are time-independent, and so are
the elements of A and

BBT = ν diag (R(〈xs〉)) νT ,

yielding the closed form equation for the covariancesC(t) := 〈 δx(t) δx(t)T 〉 (from
eq. 3):

∂

∂t
C = AC + CAT + BBT .

The deviations from steady state are thus governed by a multi-variate Ornstein-
Uhlenbeck process (van Kampen, 2007)

d δx(t) = A δx(t) dt + B dW(t),

where dW(t) is the Wiener measure. Introducing the Green’s function Y(t) which
satisfies the homogeneous equation (from eq. (5)) d

dtY(t) = AY(t) with initial
condition Y(0) = 1, we obtain δx(t + τ) as a sum of a homogeneous solution and
an inhomogeneous term

δx(t + τ) = Y(τ) δx(t) +
∫ t+τ

t
Y(t − t′)B dW(t′) dt′, τ ≥ 0,

from which we obtain the two-time correlations C(t, t + τ):

C(t, t + τ) := 〈 δx(t + τ) δx(t)T 〉 = Y(τ)C(t, t) =: Y(τ)C(t). (7)

The variable t takes values in the regime where steady state has been reached and
hence the stationary covariance C(t) is t-independent. In the rest of the document,
all correlation functions computed and referred to are in the steady state regime,
and two-point correlations C(t, t + τ) are independent of t, and depend only on
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the time interval τ. Using the independence and bi-orthogonality properties of the
eigenvectors of the non-symmetric matrixA, it is possible (van Kampen, 2007; Elf
and Ehrenberg, 2003) to write the time-covariance function between two molecu-
lar species xi and x j as:

〈 δxi(t + τ) δx j(t) 〉 =
∑
k

Yik(τ)Ck j =
∑
k

∑
l

eλlτUTlkVilCk j. (8)

Here, the elements of V and UT , the matrices comprising of the right and left
eigenvectors of A respectively and the eigenvalues λi are explicitly written out.
For effective comparison of results from different GRNs, we use time-delayed

correlations by normalizing the above covariances. Use of stationary auto-covariances
for normalization helps in retaining the dynamic character along the τ-axis, though
the magnitudes are rescaled between 0 and 1.

Corr [δxi(t + τ), δx j(t)] =
〈 δxi(t + τ) δx j(t) 〉√

〈 (δxi(t + τ))2 〉 〈 (δx j(t))2 〉
(9)

The form of the covariance function brings out the existing relation between the
covariances and the averaged responses of the system. The system Jacobian A

and diffusion matrix BBT are derived through the stoichiometry ν and reaction
rates R that are in turn obtained from the deterministic rate equations. Therefore
these rate equations that are responsible for the time-evolution of averages also
influence the internal fluctuations of the system. These have been separated into
contributions characteristic of individual genes in the network (intrinsic noise)
and those from various upstream or system-wide elements such as polymerase
fluctuations (extrinsic noise) in the literature (Raser and O’Shea, 2005).
From the dynamic correlations we shall extract features for possible identifica-

tion of the type of regulation present between pairs of genes for likely signatures
of network structure from the time-series data from a GRN. To demonstrate the
above, we consider regulatory mechanisms such as activation and repression via
monomers/dimers and network mechanisms such as cascades, dual activators and
feedforward loops. A simple and effective way to model these networks is by
choosing a set of elementary reactions that capture the significant steps of the reg-
ulatory process. If X and Y denote the regulator and regulated elements, the con-
stituent molecular species of such a model would then be the regulated gene Gy,
mRNAs Mx,My and the proteins Px, Py. By employing fewer molecular species
we intend to reduce the complexity of the model, while retaining the salient fea-
tures of the complete model.
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2.1. Features of time-dependent protein correlations
Positive regulation between any two genes of a network not only induces pos-

itive covariances between their respective proteins but also gives a characteristic
shape to them. This can be seen in the covariance function in the case of an
elementary activator X → Y as shown in Figure 1(b), and detailed derivations
of which are given in Appendix A. The normalized Corr[Px(t), Py(t + τ)] func-
tion has exactly the same shape as the covariance. The defining features of these
functions are (i) the stationary covariance Cov(τ = 0), (ii) the maximum or peak
covariance Cov∗ = Cov(τ = τ∗) or, the maximum value of the time-dependent
correlation Corr∗ and (iii) τ∗, which is the time taken for the covariance to reach
this peak, as indicated in Figure 1(b). (Note that in the following, we assume a
single maximum for the covariance as a function of time; it is true for the exam-
ples presented in this paper.) It shall be seen in the coming sections that these
features are sensitive to the various attributes of the system such as the regulatory
mechanism, network structure and the rate constants, and therefore act as tools for
the identification of these attributes. For example, in Appendix C we show how
the feature τ∗ is sensitive in the rate constants by deriving its expression in the
case of a single gene.
In the case of X → Y , Corr[Px(t), Py(t+ τ∗)] = 0.8 and τ∗ = 49 minutes. Phys-

ically, this means that at equilibrium, the deviations δPy from the average protein
concentration 〈Py〉 are influenced mostly by δPx occuring 49 minutes earlier to
it. This time delay is the result of the causal link between the two genes. On the
other hand, the stationary correlation (at τ = 0), which is of non-zero value (0.6)
would not indicate of any such causality. This is supported by the fact that the
Corr[Py(t), Px(t + τ)] function has the same non-zero value at time τ = 0, while
for τ > 0, is a monotonically decreasing function. Therefore, stationary correla-
tion alone cannot in effect predict the direction of the causal link between genes.
Ideally it would not make much sense for the stationary correlation to have a non-
zero value, since that would mean that δPx would have an instantaneous effect on
δPy. However the reason behind the non-zero value of the stationary correlations
is the slow decaying auto-correlation function of Px, due mainly to proteolysis.
Therefore, if δPy at say time (t) is influenced by δPx at say time (t − t1), the sta-
tionary correlation between the two proteins at time (t) could still be non-zero if
the auto-correlation function of δPx is non-zero for a time-period (> t1).
Mathematically, the shape of the dynamic covariance curve is due to its func-

tional form
∑N
l=1 hleλlτ, where the h’s are some functions in the eigenvectors of the

Jacobian. In the case of a single activator (Appendix A), the eigenvalues are the
four decay rates, hence the covariance function is the sum of exponentials in time

8



raised to the negative power of these decay rates. However, since the co-efficients
of these exponentials are different functions of the eigenvectors, their values are
different, leading to the characteristic shape of their resulting sum. These expo-
nentials normalized between ±1 and 0 are shown in Figure 1(a).

Figure 1: (a) The normalized exponentials in time raised to the negative power of the decay rates,
in the case of the elementary activator system. The normalization is performed by dividing the
exponentials with their respective co-efficients which are 4.18 × 108 for k−Py , 1.0 × 10

7 for k−Mx ,
−6.34×105 for k−My , and −4.23×10

8 for k−Px . (b) The sum of the four exponentials along with their
co-efficients results in the dynamic covariances.

2.2. Comparison with Results from Stochastic Simulations
The objective here is to compare the dynamic correlations obtained through

the analytical formulation with those obtained by Monte Carlo simulations (Gille-
spie, 1976). We do this in the case of the elementary activator system X → Y ,
where correlations are drawn between the proteins Px and Py at steady-state con-
ditions. At low copy numbers of molecules the question of the applicability of
analytical results come to fore, which we address here by assuming the following
mean concentration levels of: 〈Mx〉 = 1.0 nM, 〈My〉 = 2.0 nM, 〈Px〉 = 20.0 nM
and 〈Py〉 = 100.0 nM. The values for the rate constants are chosen accord-
ingly: k+Mx = 0.0407 nM min−1, k+Px = 0.367 min

−1, k+My = 0.308 min
−1, k+Py =

0.88 min−1, kon = 1.0 nM−1min−1, ko f f = 20.0 min−1, k−Mx = 0.0407 min
−1, k−My =

0.0770 min−1, k−Px = 0.0184 min
−1, k−Py = 0.0176 min

−1. The ensemble size of
the system is equivalent to the number of runs of the simulation program. In
Figure 2 we notice that as the ensemble size increases, the correlations obtained
from simulations match closely with that of the analytical one. The evaluation of
correlations from simulated runs, rests on the equivalence between the ensemble-
averaging and time-averaging of the stochastic variables.
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Figure 2: Dynamic correlations between the proteins of the X → Y regulatory network, obtained
through analytics and simulations.

3. Clustering of regulatory networks by correlation features

We investigate the effect that various rate constants have on the features Corr∗
and τ∗ of the dynamic correlation functions between the regulated Py and regula-
tor Px proteins. While stationary correlations, especially in the case of elementary
networks, have been the object of study in recent years, we probe the variation
in the temporal aspect of the correlations and show their effectiveness as network
signatures. In section 5 we show the effect of rate constants on stationary correla-
tion in the case of X → Y system. In section 4 we demonstrate the effect of rate
constants on dynamic correlations in the case of different regulatory mechansims.
The results of this section and section 4 provide sufficient evidence to show that
the features of dynamic correlation functions could be effectively used as signa-
tures in identifying regulatory mechanisms of regulatory networks.
Features of the dynamic correlations such as the maximum value of the 2-

point correlation, Corr∗, and the time τ∗ taken to reach it are plotted in the case
of different networks. Clustering of these features for variations in rate constants
enables one to identify the regulatory mechanism and structure of the network.
As a summary of the results obtained, the effectiveness of dynamic correlations in
characterizing small gene regulatory networks is seen in the Figure 3. The follow-
ing section goes into each cluster of points for a network in more detail. Here we
point out that, for example, the top two panels indicate that the movement along
the time-delay feature τ∗ is influenced not by the decay rate of the transcription
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factor but that of its target. In the case of co-operative activation X → Y ← Z
variations were observed in the peak correlation Corr∗ whilst leaving unaltered
the time delay τ∗, for changes in the rate constants. The clusters corresponding to
the cascading activator networks (cascade of activators and cascade of repressors)
have a larger value of τ∗, and differ from each other in the magnitude of peak
correlations Corr∗. By combining the above networks one could compute correla-
tions that capture signatures of more complex regulatory mechanisms such as the
coherent and incoherent feedforward networks that have been much studied in the
literature (Alon, 2007). Once again these complex networks are clearly identifi-
able with the aid of the correlation features. Finally, the effect of dimerization is
clearly noticed with increased Corr∗ values. Due to changes in the shape of these
correlation plots, the use of integral over time τ could also act as an additional
feature for clustering purposes. However, this is a topic for further investigation.
We have demonstrated that at steady-state conditions dynamic correlations of

protein fluctuations could be used to gain insight into the microscopic mecha-
nisms of gene regulation. This means that a lot could be learnt by tracking the
evolution of mRNA or protein numbers in single cells over time. The most re-
vealing information that can be expected out of such time-series data is the type
of regulatory activity present between pairs of genes. As an example, given the
information about the lifetimes of proteins and mRNAs of X and Y , the two-time
correlations could infer the presence or absence of an intermediary gene. We also
demonstrated the effect that various reaction rate constants have on the dynamic
correlations between the proteins Px and Py, in the case of different regulatory sys-
tems. By adopting a learning methodology, the framework of sensitivity analysis
could be used for estimating the parameters of a regulatory system given the dy-
namic correlations between its species. Experimentally this would be equivalent
to altering the reaction rates, as done in (Ozbudak et al., 2002) where transcription
and translation rates were varied synthetically, and tracking the time-evolution of
species in the altered system to yield data for such novel learning approaches.

4. Effect of parameters on dynamic correlations in the case of simple regula-
tory networks

Fragments of a GRN that represent different regulatory mechanisms such as
repression, regulation via dimers, cascading activation, co-operative activation,
and so on, not only display different dynamic characteristics in the determinitic
domain but also show unique characteristics in their molecular fluctuations. These
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Figure 3: The inset in (a) depicts the networks used in this paper: (X → Y) the single activa-
tor; (2X → Y) a single activator network, but with X coding for a protein which performs the
activation after forming a homodimer; (X → Z → Y) which describes a cascade of interactions,
X upregulating Z which upregulates Y; (X−
 Z−
 Y) cascading repressors; (X → Y ← Z) the
combinatorial action of genes X and Z on Y; (coherent FFL) which combines X → Y ← Z and
X → Z; (incoherent FFL) which combines X → Y �−Z and X → Z (a) (t1/2)Px is varied in steps of
[40, 50, basevalue, 90, 120] minutes, where the basevalue corresponds to a half-life of 65 minutes.
(b) Similarly, (t1/2)Py is varied in steps of [40, 50, basevalue, 90, 120] minutes, where the basevalue
corresponds to a half-life of 70 minutes. (c) The transcription rate or the basal transcription rate
(in case of repression) k+My is varied as [0.6, 0.8, 1.0, 1.2, 1.4]× basevalue. (d) The rate of protein
translation k+Px is varied in steps as [0.6, 0.8, 1.0, 1.2, 1.4]× basevalue.

12



differences in their fluctuations are captured effectively via the dynamic correla-
tion functions. Some of the elementary networks and their response in correlated
fluctuations for a few rate constants are shown below. The detailed set of reac-
tions for the case of an elementary activator are given in Appendix A and for
other networks in Appendix B.

4.1. Elementary Activator

��

��

��

��

��

��

Figure 4: Schematic represention of the elementary activator system. The action of the activator
protein Px increases the amount of My transcript produced compared to the basal levels depicted
on the left.

For time-independent (equal time at steady-state) fluctuations, it has been
shown that some rate constants exert influence on both means and variances of
protein levels (Thattai and van Oudenaarden, 2001). Our intention here is to study
the effect on fluctuations while the mean concentration levels are held constant at
the values given in Table A.2. For example, supposing that the pair [k+Mx , k

−
Mx] are

at their base values, deviations in them does not affect 〈Mx〉 = k+Mx/k
−
Mx . How-

ever there is a profound effect on the correlations for equal variations in [k+Mx , k
−
Mx]

as seen in Figure 5(a). This is suggestive of possible ways in which biological
networks could alter their fluctuation properties without affecting the mean con-
centration levels of proteins and mRNAs.
From Figures 5 and 6 we observe that the feature τ∗ is sensitive not only to

the decay rates but also to the transcription and translation rates. However, the
following analysis makes it clear that τ∗ is predominatly sensitive only to the four
decay rates. The system has five eigenvalues, of which three are the decay rates
[−k−Mx ,−k

−
My ,−k

−
Py] whilst the remaining two are roots to the quadratic equation

x2 + bx + c = 0, where

b = ko f f + Pxkon +Gykon + k−Px
c = k−Px(ko f f + konPx)
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Figure 5: (a) The dynamical correlation at steady-state between Px and Py is sensitive to changes in the production
and decay rates of Mx. The base value for the half-life of Mx is 21 minutes. k−Mx and k

+
Mx are varied simultaneously so

that their ratio 〈Mx〉 = k+Mx /k
−
Mx remains constant. While Corr

∗ decreases significantly for increase in the two parameters,
τ∗ registers miminal change from 56 to 46 minutes. (b) The translation and protein decay rates k+Px and k

−
Px are varied

simultaneously so that 〈Px〉 = 〈Mx〉k+Px /k
−
Px remains constant. While there is not much difference in Corr

∗, τ∗ decreases
from 55 to 45 minutes for increase in these parameters. The half-life of Mx and the rate constant k−Mx are related as follows:
k−Mx = ln(2) ×

[
1/(t1/2)Mx + 1/tdouble

]
, where tdouble = 90 minutes. We use this definition (as in eq. (A.6)) in the other

figures as well.

At steady state, mean value ofGy =
ko f f

ko f f +konPx
. Therefore b =

(
Gy+ KDGy

)
kon+k−Px and

c = ko f f k−Px/Gy. Since KD := ko f f /kon is usually of the order of hundreds of nM
whereasGy is less than 1 nM, b ≈

ko f f
Gy
+k−Px . The roots of the quadratic equation are

now −k−Px and the much larger −ko f f /Gy. The contribution of the large eigenvalues
to the sum of exponentials form for the covariance function decays rapidly, which
was why the exponential corresponding to −ko f f /Gy, in the Figure 1(a) was not
shown.
Figures 6(a) and 6(b) show that only those decay rates that correspond to

species Y induce greater sensitivity in τ∗ as shown in . As the decay rates (half-
life) of Py and My decrease (increase), so does τ∗ increases. Rapid turnover of
proteins Py makes it more sensitive to respond to fluctuations in Px which short-
ens the response times τ∗. This explains why at decreased decay rates of k−My , k

−
Py ,

the peak in the correlation function is delayed (τ∗ shifts to the right in the figures).
With regard to changes in KD, the protein correlations remain unchanged, ex-

cept for KD < 200 nM when there is progressive reduction only in Corr∗ while τ∗
still remains at its base value of 49 minutes. The insensitivity of τ∗ to the bind-
ing/unbinding reactions is because they are much faster that the other elementary
reactions. Further, the correlations are totally insensitive to cases where kon and
ko f f take on different values such that their ratio KD = ko f f /kon remains invariant.
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Figure 6: (a) Transcription rate constant k+My , and k−My are varied simultaneously in steps, such that 〈My〉 remains
constant. While Corr∗ does change by an appreciable amount, there is a huge decrease in τ∗, from 87 to 43 minutes. (b)
Similar is the case for variations in k+Py and k

−
Py . There is again a large reduction in τ

∗, from 102 to 36 minutes accompanied
by noticable change in the shape of the plots, as was in the case of [k+Px , k

−
Px ]. The observed variation in τ

∗ is due to the
decay rate rather than the translation rate.

4.2. Elementary Repressor

��

��

��

��

��

��

Figure 7: Schematic represention of the elementary repressor system. The basal transcription
levels on the left is diminished by the action of the repressor.

In the elementary fragment X 
 Y the sensitivity of the dynamic correlations
between the repressor Px and the repressed protein Py to different values of protein
half-life is shown in Figure 8. Note the close similarity between these correlations
and those in Figure 6(b). Whilst a change in the regulatory mechanism has in-
fluenced the dynamic correlations such that they are now negative in value, the
sensitivities of the correlations w.r.t the parameters, are very similar to those of
the activator case. This similarity is due to the fact that the reaction structure of
the systems are essentially the same, with the only change being the way My is
transcribed.

4.3. Activation via Dimerization
In the case of activation via dimers 2X → Y , for short half-lives of Px (about

8 minutes), the effect of dimerization begins to wear off (Figure 10(a)), as Px
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Figure 8: Elementary repression X 
 Y. [k+Py , k
−
Py ] are varied simultaneously so that the mean

concentration level of Py = Myk+Py/k
−
Py remains constant. While there is an increase in Corr

∗, τ∗

decreases from 102 to 36 minutes for step-wise increase in these parameters.

�� ��

��

��

��

��

Figure 9: Schematic represention of the activator system where dimers are involved. As before,
the figure on the left indicates basal transcription.
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molecules are now being produced and degraded faster (due to increase in values
of [k+Px , k

−
Px]) and thus not able to contribute to dimerization. On the other hand,

in Figure 10(b) we do not see any such effect upon reduction in the half-life of Py
due to its non-participation in the dimerization process.

Figure 10: Activation via Dimers 2X → Y. (a) k−Px is varied in steps from its base value of
0.0184 min−1 that corresponds to a half-life of (t1/2)Px = 65 minutes. k+Px is simultaneously varied
such that 〈Px〉 remains unchanged. For increase in the values of [k+Px , k

−
Px], there is an observable

increase in Corr∗, whilst τ∗ decreases from 53 to 46 minutes. (b) Likewise, for step-wise increase
in the parameters [k+Py , k

−
Py], τ

∗ once again reduces from 81 to 20 minutes, whilst Corr∗ is nearly
constant.

Figure 11: Activation via dimers 2X → Y. The base value of the dimer dissociation constant
KDim is fixed at 200 nM, and is further assigned values of 40, 80, 600 and 1400 nM. An equivalent
variation in the value of k+My is done such that 〈My〉 remains unchanged. For increase in the values
of [k+My ,KDim], τ

∗ decreases marginally from 53 to 47 minutes.

The effect of different values of KDim on the protein correlations is shown in
Figure 11. The overall effect of dimerization is that there is a higher level of
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correlation between the proteins and more importantly, the shape of the dynamic
correlations is different than that in the monomer case. In fact, for a low value of
KDim = 40 nM, corresponding to Px2 = 3913 nM, the correlation function loses its
characteristic localized peak and its magnitude remains nearly constant at around
0.98 for a long duration of time. Under such conditions, any perturbation in Px
has an corresponding effect on Py over a long period of time, i.e., the effect of
correlation is sustained over time. Further, (a) only the dissociation constants KD
and KDim affect the correlations and not the corresponding individual forward and
reverse rates, (b) though Cov[Px2 (t), Py(t + τ)] and Cov[Px(t), Py(t + τ)] exhibit
distinct behaviours, their normalized dynamic correlations are exactly the same,
due to normalization by their respective stationary auto-covariances. Therefore
either Px or Px2 could be considered as the output variable.

4.4. Cascading Activation
In the case of the three-gene cascaded activation X → Z → Y , the mRNA

and protein decay rates of the intermediate gene Z have an effect on the τ∗ of
the correlation plots (Figure 12(b)). This is due to the fact that while four of the
eight eigenvalues of the system are [−k−Mx ,−k

−
Mz ,−k

−
My ,−k

−
Py], the other four are the

roots to two quadratic equations and are approximated as [−k−Px ,−k
−
Pz ,−

kr1
Gz
,−

kr2
Gy
].

Therefore the element Z further sensitizes the temporal characteristics of the cor-
relations between the input and output elements of the GRN. In this regard it is
interesting to note that, for the hypothetical case of mRNA and protein half-lives
of Z of around 1 minute each, τ∗new ≈ 49 as in the case of X → Y , suggesting
that for rapidly decaying mRNA/proteins, the intermediate gene-node ceases to
influence the dynamic character of the correlations. Another form of cascaded
activation X 
 Z 
 Y throws up similar behaviour except that now the magnitude
of correlations are higher.

5. Effect of parameters on stationary correlations in the case of X → Y

The stationary covariance between molecular species is a function of system
parameters that are the reaction rate constants. We show this in Appendix C in
the case of a simple model of transcription. (Ozbudak et al., 2002) experimentally
demonstrated the validity of the expression of protein variance of one such model
by altering the transcription and translation rates. Variations in parameter values
therefore provide us with some knowledge with regard to the system at hand. By
varying each of the ten rate constants individually, over a vast range, we note the
change in value of the stationary correlation Corr[Px(t), Py(t)].
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Figure 12: Cascaded Activation X → Z → Y. (a) For higher values of protein half-life (t1/2)Px ,
τ∗ increases as [63, 87, 97, 109, 118] minutes along with an increase in Corr∗. (b) Similarly, for
changes in k−Pz or rather the half-life of Pz, τ

∗ increases as [71, 84, 97, 118, 133]minutes along with
a decrease in both Corr∗ and the stationary correlation (at τ = 0).

From Figure 13(a), we see that the correlations are smaller for lower values of
the decay rates. As the proteins/mRNAs decay slowly, the number of molecules
present at any given time remain mostly constant and hence any fluctuations in
Px would not be prominently correlated with the fluctuations in Py. On the other
hand, for larger decay rates, due to the fewer number of molecules present, any
fluctuations in them are highly correlated. The increase in the stationary cor-
relation is greater in the range where the decay rates are smaller in value. For
continuously increasing k−Mx and k

−
Px , the stationary correlation decreases at a later

stage. This could possibly point towards the network structure which in this case
is X → Y .
Similar reasoning suffices for the variation in the correlation for changes in

the other parameters. Firstly, for lower values of kon and for higher values of
ko f f , stationary correlations are high. For higher values of KD = ko f f /kon, the
transcription factor binds less to the DNA-complex thereby reducing the rate of
production of My and inturn of Py. However, the stationary correlation depicts a
different picture, mainly due to the fact that the fluctuations in Px are now less
rapid and therefore correlate more with other species of the system. On the other
hand, for higher values of the transcription rate k+My , as expected, protein correla-
tions are high. On introducing the basal transcription rate kbasal as an additional
parameter to the system, we notice that it has influence only over the magnitude
of the correlations, whether stationary or dynamic, and not on the time-delay of
the peak τ∗ itself. Finally, in these feedforward networks translation rates have
no effect on the stationary correlations since they do not directly contribute to
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Figure 13: (a) Protein stationary correlation varies for changes in the decay rates whilst keeping
the other parameters fixed at their base values. The decay rates are varied from {0.05×base value}
to {30 × base value}, where base values are those of Table A.1. (b) The transcription, translation
and binding/unbinding rates too have a corresponding influence on the stationary correlation.

the transcription process and the proportionate increases in magnitudes of the co-
variances are normalized away. Analyzing the effects of these rate constants on
the fluctuation properties of the molecular species is important for two reasons.
One is that the molecular fluctuations as observed in the correlations provide sig-
nificant information regarding the rate constants of the reaction processes. The
other complementary reason is that, such analyses act as analytical tools that aid
in designing new synthetic regulatory networks whose fluctuation properties and
performance in general, could be controlled.

6. Conclusions

In this paper, we set out to describe the temporal dependence of the propaga-
tion of fluctuations in small gene regulatory networks. In setting up the models, we
have introduced the processes of promoter interactions, followed by transcription
and translation and investigated the contribution of these elements to the fluctua-
tion properties. There are further time dependent effects that we have disregarded,
such as the time for the first complete transcription, following potential pauses of
RNA polymerases, entry of the transcripts into the cytoplasm to be translated by
the ribosomes and re-entry of transcription factors into the nucleus, and potential
effects due to post-transcriptional (such as due to miRNA) or post-translational
(such as phosphorylation of the proteins for activity priming). Some of these pro-
cesses occur at smaller time scales, and just as we could eliminate effects of bind-
ing and unbinding of proteins to form dimers on the overall characteristics of the
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correlation profile, we expect some of them to have a small effect on the location
of the peak for instance. It is clear, however, that for many regulatory networks,
such as those underlying the circadian clock system (Leloup and Goldbeter, 2004),
phosphorylation of proteins are critically linked to the time of response. It should
be possible to incorporate such effects either via the introduction of further com-
ponents or by explicitly incorporating time delays in the Jacobian. That is beyond
the scope of this paper.
What we have shown in this paper is that for small motifs of transcriptional

regulatory networks, the correlations between time-delayed fluctuations between
pairs of proteins or mRNA at steady state can be projected onto a two-dimensional
feature space. This space is spanned by the maximum value of the correlation be-
tween fluctuations in numbers of a pair of species Corr∗, and the time interval
τ∗ where this peak correlation is attained. Variations in parameters in one mo-
tif that preserve mean values of its constituent species in steady state dynamics
traces out curves in this (τ∗-Corr∗) feature space. We have plotted segments of
these curves from different regulatory motifs and have observed that they exhibit
a degree of clustering, thus indicating that there may be motif-identifying signa-
tures in transcriptional noise. The extent to which the segments presented in the
clustered feature space can be extended to these hypothesized curves, and how
they are more globally separated, is linked to a sensitivity analysis of the features
extracted which is part of an ongoing study.
A key assumption which motivates the explorations in this paper is the possi-

bility of being able to tag and monitor in a continuous fashion, the quantities of
proteins or mRNA in a single cell over time. Fluorescent reporters have increased
our ability to observe individual cells, which is a major shift from the microarray
realm where bulk averages were the measured quantities. Flow cytometry mea-
surements of the relative fluorescence intensities of cell populations enable one to
compute histograms of protein fluorescence levels and infer phenotypic variabil-
ity in isogenic populations (Ozbudak et al., 2002; Elowitz et al., 2002; Raser and
O’Shea, 2004) studied under varying parameter values. However, such measure-
ments leave out the temporal aspects of the distributions obtained and potentially
miss crucial elements of the dynamics of gene regulation, which technologies such
as time-lapse fluorescence microscopy should be able to access. Variation in pro-
tein levels in human cells was observed by (Sigal et al., 2006), who tracked the
fluorescently tagged proteins and concluded that the fluctuations varied slowly in
time and that genes of the same pathway showed enhanced temporal correlations.
Therefore such time-lapse measurements in single cells resulting in time-series
of species could be of immense help in estimating the presence and nature of the
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regulatory activity between corresponding genes. Due to rapid technological ad-
vancements obtaining such fine measurements that are needed to track the causal
dynamics as revealed by dynamic correlations is fast becoming a reality. Tagged
transcripts as utilized in (Raj et al., 2008) or tagged proteins in (Yu et al., 2006)
and (Cai et al., 2006) are making single cell, single molecule observations possi-
ble, which makes the analytical techniques presented in this paper appropriate and
useful. The suggestive clustering of motifs in the feature space defined by time
dependent fluctuations provides scope for such optimism.
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Appendix A. Elementary Activator

The reaction set of an elementary activator X → Y is given in Table A.1.
The regulatory sequence upstream of gene Gy is bound by the transcription factor
Px, which is an activator in the present case, resulting in complex Cy which is in
effect the active or ON state of the gene. Transcription of My is initiated from
this complex. The deterministic dynamics of this system are governed by a set of

φ
k+Mx
−−→ Mx 8.14 × 10−3 nM min−1

Mx
k−Mx
−−→ φ 0.0407 min−1

Mx
k+Px
−−→ Mx + Px 36.3 min−1

Px
k−Px
−−→ φ 0.0184 min−1

Px +Gy
kon
−−−⇀↽−−−
ko f f

Cy 1 nM−1 min−1, 200 min−1

Cy

k+My
−−→ Cy + My 0.52 min−1

My
k−My
−−→ φ 0.077 min−1

My
k+Py
−−→ My + Py 143.2 min−1

Py
k−Py
−−→ φ 0.0176 min−1

Table A.1: Reaction set describing the process of activation between X and Y. Production of Mx is
assumed to be of Poissonian birth-death process. φ→ Mx therefore denotes spontaneous creation
of Mx from a constant source φ. nM stands for nano-molar concentration and min is minutes.

coupled ODEs that describe the time-evolution of the mean concentration levels of
the species. The total amount of Gy present in the cell at time t is Cy(t) + Gy(t) =
Gy(t0). Hence, Cy(t) = α − Gy(t) where α = Gy(t0) is the initial concentration.
Assuming the presence of a single copy of the gene in the yeast nucleus of volume
1 μm3, Gy ≈ 1 nM. Therefore, at steady state, 〈Cy〉 = α〈Px〉

KD+〈Px〉
and 〈Gy〉 = αKD

KD+〈Px〉
.

The redundancy in the original set of ODEs is eliminated by substituting for Cy.
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The rate equations are,

dGy
dt

= −konPxGy + ko f f (α −Gy) (A.1)

dMx

dt
= k+Mx − k

−
MxMx (A.2)

dMy
dt

= k+My(α −Gy) − k
−
MyMy (A.3)

dPx
dt

= k+MxMx − k−PxPx − konPxGy + ko f f (α −Gy) (A.4)

dPy
dt

= k+PyMy − k
−
PyPy (A.5)

From the above, 〈My〉 =
k+My
k−My

α〈Px〉
KD+〈Px〉

, which followsMichaelis-Menten (hyperbolic)
type kinetics. k+My is the transcription rate. Note that kbasal is excluded in the model
as it does not represent the regulatory link between the two genes. The quantities
required to solve for the dynamic covariances are the deterministic rates R and the
stoichiometry ν which are obtained from the above rate equations.

R =

(
konPxGy, ko f f (α −Gy), k+My(α −Gy), k

+
Mx , k

+
PxMx, k+PyMy,

k−MxMx, k−MyMy, k
−
PxPx, k

−
PyPy

)T

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0 0 0 0 0
0 0 0 +1 0 0 −1 0 0 0
0 0 +1 0 0 0 0 −1 0 0
−1 +1 0 0 +1 0 0 0 −1 0
0 0 0 0 0 +1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The relation between A, and the above quantities is given in equation (6), where
x is the vector of variables [Gy,Mx,My, Px, Py].

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ko f f + konPx) 0 0 −konGy 0
0 −k−Mx 0 0 0

−k+My 0 −k−My 0 0
−(ko f f + konPx) k+Px 0 −(k−Px + konGy) 0

0 0 k+Py 0 −k−Py

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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It now becomes essential to work within the range of the parameter values that is
biologically plausible. For this purpose we adopt the {CHA4→ CHA1} regulatory
link (Bornaes and et al., 1993). Information on TFs regulating genes in yeast
is available through projects such as YEASTRACT1 (Monteiro and et al., 2008).
Cha4p protein is a TF activating the regulation of CHA1. In our model, CHA4
is the regulator gene X and CHA1 is the regulated gene Y , whose mean steady
state protein and mRNA levels, and their respective decay rates are obtained from
the experimental datasets of (Arava et al., 2003; Ghaemmaghami and et al., 2003;
Wang et al., 2002; Belle et al., 2006) and are reproduced in Table A.2. The time
taken for the yeast cells to divide, denoted as tdouble is assumed to be 90 minutes.
The mRNA and protein decay rates are therefore:

k−(M,P) =
ln(2)

(t1/2)(M,P)
+
ln(2)
tdouble

(A.6)

The values of the other parameters, as given in Table A.1, are derived on solving
for the deterministic rate equations at steady-state conditions. For example, at
steady-state k+Mx = k

−
Mx〈Mx〉 = 0.0407 × 0.2 = 8.14 × 10−3 nM min−1. The OFF

and ON rates of the DNA are chosen such that their ratio KD = 200 nM.

Std Name Sys Name mRNA protein mRNA t1/2 protein t1/2
(nM) (nM) (min) (min)

CHA4 YLR098C 0.2 395.6 21 65
CHA1 YCL064C 4.5 36602 10 70

Table A.2: The values are of the CHA4→ CHA1 activator link in yeast. Nuclear volume is taken
to be around 1 μm3, resulting in nano-Molar concentrations for the mRNA and protein species.
The mRNA and protein half-lives t1/2 are in minutes.

Appendix B. Reaction schemes and rate equations of other regulatory mech-
anisms

Appendix B.1. Elementary Repressor
The reaction scheme for this system is exactly the same as for the case of the

two-gene elementary activation X → Y , except that the trancription of Gy is now
through a basal transcription rate of k+My . Gene Gy is switched to inactive state Cy

1http://www.yeastract.com
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by the action of repressor Px. My is transcribed when the promoter region is free
of this repressor.

φ
k+Mx
−−→ Mx

Px +Gy
kon
−−−⇀↽−−−
ko f f

Cy

My
k+Py
−−→ My + Py

Mx
k+Px
−−→ Mx + Px

Gy
k+My
−−→ Gy + My

Mx,My
k−Mx ,k

−
My

−−−−−→ φ

Px, Py
k−Px ,k

−
Py

−−−−−→ φ

The deterministic rate equations describing the evolution of average concentration
levels of species are:

dGy
dt

= −konPxGy + ko f f (α −Gy)

dMx

dt
= k+Mx − k

−
MxMx

dMy
dt

= k+MyGy − k
−
MyMy

dPx
dt

= k+MxMx − k−PxPx − konPxGy + ko f f (α −Gy)

dPy
dt

= k+PyMy − k
−
PyPy

The Jacobian matrix, the stoichiometric matrix and the vector of deterministic
rates turn out to be same as in the case of an elementary activator system, with
the main exception being the change in the sign of the transcription rates in the
Jacobian matrix. This is denoted by an underbrace. This sign change in the off-
diagonal element of A is what causes the correlations to go negative, due to the
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corresponding change in the signs of the eigenvectors.

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ko f f + konPx) 0 0 −konGy 0
0 −k−Mx 0 0 0
k+My︸︷︷︸ 0 −k−My 0 0

−(ko f f + konPx) k+Px 0 −(k−Px + konGy) 0
0 0 k+Py 0 −k−Py

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0 0 0 0 0
0 0 0 +1 0 0 −1 0 0 0
0 0 +1 0 0 0 0 −1 0 0
−1 +1 0 0 +1 0 0 0 −1 0
0 0 0 0 0 +1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

(
konPxGy, ko f f (α −Gy), k+MyGy︸︷︷︸, k+Mx , k+PxMx, k+PyMy,

k−MxMx, k−MyMy, k
−
PxPx, k

−
PyPy

)T
Appendix B.2. Activation via Dimers
The reaction scheme is the same as that of elementary activation with the ad-

ditional reactions of dimerization 2Px
ka
−⇀↽−
kb
Px2 . Dimers Px2 act as activators in the

new system Px2 +Gy
kon
−−−⇀↽−−−
ko f f

Cy. The deterministic rate equations are:

dGy
dt

= ko f f (α −Gy) − konGyPx2
dMx

dt
= k+Mx − k

−
MxMx

dMy
dt

= k+My(α −Gy) − k
−
MxMx

dPx
dt

= k+PxMx − k−PxPx + 2kbPx2 − 2kaP
2
x

dPx2
dt

= ko f f (α −Gy) − konGyPx2 − kbPx2 + kaP
2
x

dPy
dt

= k+PyMy − k
−
PyPy
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A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−ko f f − konPx2 ) 0 0 0 −konGy 0
0 −k−Mx 0 0 0 0

−k+My 0 −k−My 0 0 0
0 k+Px 0 (−4kaPx − k−Px) 2kb 0

(−ko f f − konPx2 ) 0 0 2kaPx (−kb − konGy) 0
0 0 k+Py 0 0 −k−Py

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 +1 0 0 −1 0 0 0
0 0 +1 0 0 0 0 0 0 −1 0 0
0 0 0 +2 −2 0 +1 0 0 0 −1 0
−1 +1 0 −1 +1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 +1 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R =

(
konGyPx2 , ko f f (α −Gy), k

+
My(α −Gy), kbPx2 , kaP

2
x, k+Mx , k

+
PxMx, k+PyMy,

k−MxMx, k−MyMy, k
−
PxPx, k

−
PyPy

)T
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Appendix B.3. Cascading Activation
The set of reactions describing the cascaded activation system, that employs

dual activators, is as follows:

φ
k+Mx
−−→ Mx

Mx
k+Px
−−→ Mx + Px

Px +Gz
kon1
−−−⇀↽−−−
ko f f1

Cz

Cz
k+Mz
−−→ Cz + Mz

Pz +Gy
kon2
−−−⇀↽−−−
ko f f2

Cy

Cy

k+My
−−→ Cy + My

Mz
k+Pz
−−→ Mz + Pz

My
k+Py
−−→ My + Py

Mx,Mz,My
k−Mx ,k

−
Mz ,k

−
My

−−−−−−−−→ φ

Px, Pz, Py
k−Px ,k

−
Pz ,k

−
Py

−−−−−−−→ φ

In the following set of rate equations, the redundant variables Cz and Cy are elim-
inated and consequently the terms α and β denote the initial concentrationsGz(t0)
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and Gy(t0) respectively:

dGz
dt

= −kon1GzPx + ko f f1 (α −Gz)

dGy
dt

= −kon2GyPz + ko f f2 (β −Gy)

dMx

dt
= k+Mx − k

−
MxMx

dMz
dt

= k+Mz(α −Gz) − k
−
MzMz

dMy
dt

= k+My(β −Gy) − k
−
MyMy

dPx
dt

= k+PxMx − k−PxPx − kon1GzPx + ko f f1 (α −Gz)

dPz
dt

= k+PzMz − k
−
PzPz − kon2GyPz + ko f f2 (β −Gy)

dPy
dt

= k+PyMy − k
−
PyPy

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ko f f1 + kon1Px) 0 0 0 0 −kon1Gz 0 0
0 −(ko f f2 + kon2Pz) 0 0 0 0 −kon2Gy 0
0 0 −k−Mx 0 0 0 0 0

−k+Mz 0 0 −k−Mz 0 0 0 0
0 −k+My 0 0 −k−My 0 0 0

−(ko f f1 + kon1Px) 0 k+Px 0 0 −(k−Px + kon1Gz) 0 0
0 −(ko f f2 + kon2Pz) 0 k+Pz 0 0 −(k−Pz + kon2Gy) 0
0 0 0 0 k+Py 0 0 −k−Py

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 +1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 +1 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 +1 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 +1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 +1 −1 0 0 0 0
−1 +1 0 0 0 0 0 0 0 0 0 0 +1 −1 0 0
0 0 −1 +1 0 0 0 0 0 0 0 0 0 0 +1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

R = [kon1GzPx, ko f f1 (α −Gz), k
+
My (α −Gz), kon2GyPz, ko f f2 (β −Gy), k

+
My (β −Gy), k

+
Mx ,

k+Px Mx, k
+
Pz Mz , k

+
Py My, k

−
MxMx , k

−
Mz Mz, k

−
MyMy, k

−
Px Px, k

−
Pz Pz, k

−
Py Py]

T
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Appendix B.4. Co-operative Activation
The following is the set of reactions describing the regulatory system, where

two activators Px and Pz act on the regulatory region upstream of Gy, either indi-
vidually or through combined action:

φ
k+Mx ,k

+
Mz

−−−−−→ Mx,Mz

Mx
k+Px
−−→ Mx + Px

Mz
k+Pz
−−→ Mz + Pz

Px +Gy
kon1
−−−⇀↽−−−
ko f f1

Cy1

Pz +Gy
kon2
−−−⇀↽−−−
ko f f2

Cy2

Pz + Cy1
kon3
−−−⇀↽−−−
ko f f3

Cy3

Cyi

k+Myi
−−−→ Cyi + My (i = 1, 2, 3)

My
k+Py
−−→ My + Py

Mx,Mz,My
k−Mx ,k

−
Mz ,k

−
My

−−−−−−−−→ φ

Px, Pz, Py
k−Px ,k

−
Pz ,k

−
Py

−−−−−−−→ φ

31



Once again in the rate equations,Gy is chosen as the redundant variable, while the
TF-DNA complexes Cyi are retained in the model.

dCy1
dt

= kon1Px(α − Cy1 − Cy2 − Cy3) − ko f f1Cy1 + ko f f3Cy3 − kon3Cy1Pz
dCy2
dt

= kon2Pz(α − Cy1 − Cy2 − Cy3) − ko f f2Cy2
dCy3
dt

= kon3Cy1Pz − ko f f3Cy3
dMx

dt
= k+Mx − k

−
MxMx

dMz
dt

= k+Mz − k
−
MzMz

dMy
dt

= k+My1Cy1 + k
+
My2
Cy2 + k

+
My3
Cy3 − k

−
MyMy

dPx
dt

= ko f f1Cy1 − kon1Px(α − Cy1 − Cy2 − Cy3) + k
+
PxMx − k−PxPx

dPz
dt

= ko f f2Cy2 − kon2Pz(α − Cy1 − Cy2 − Cy3) + ko f f3Cy3 − kon3Cy1Pz + k
+
PzMz − k

−
PzPz

dPy
dt

= k+PyMy − k
−
PyPy

As in previous cases, it is quite straightforward to derive the Jacobian matrix A,
the vector of deterministic rates R and the stoichimetric matrix ν from the above
set of deterministic dynamical equations.

Appendix B.5. Feedforward Loops
Another class of well-defined regulatory networks are the feedforward loops

consisting of three genes where the downstream gene is regulated by two different
TFs, out of which one TF acts as the regulator of the other TF. Thus a loop is
formed. The type of regulation can either be that of activation or repression. If
for example, both the TFs act as activators of the downstream protein, such a
network is called as the coherent feedforward loop. On the other hand, if one
is a repressor while the other an activator, the incoherent FFL is formed. It has
been reported that the feedforward loop is a recurring network in organisms such
as both Escherichia coli and the yeast (Shen-Orr et al., 2002; Kalir et al., 2005;
Mangan et al., 2006).
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X ZYX YZ

Figure B.14: Coherent and Incoherent FeedForward Loops. Gene activation is denoted by an
arrowhead and repression by a dashhead.

Appendix C. Expression for τ∗ in the case of a single-gene.

The best way to give an intuition of the time-covariance function is by apply-
ing it to the simplest of cases, that of a single gene. Here, we derive the time-
covariance function between the mRNA and protein molecules in the case of a
single gene. The model includes a single gene which spontaneously switches to
the ON or active state G∗ at a rate kon and back to the OFF or inactive state G at
the rate ko f f . Therefore the stationary distribution of G∗ is of the Binomial type.
In the ON state the mRNA M is transcribed out of the gene at a rate of k+M and
is further translated to the protein P at a rate k+P. The reactions steps for such a
system are:

G
kon
−−−⇀↽−−−
ko f f

G∗

G∗
k+M
−−→ G∗ + M

M
k+P
−→ M + P

M
k−M
−−→ φ

P
k−P
−→ φ

Let 〈G∗〉 represent the average amount of active genes in concentration form and in
units of nano-Molar. Then the rate of production of 〈G∗〉 follows the deterministic
dynamics of the system given by,

d〈G∗〉

dt
= kon〈G〉 − ko f f 〈G∗〉

Due to the conservation of the gene molecules, 〈G(t)〉 = G(t0) − 〈G∗(t)〉, where
G(t0) is the initial amount of the DNAmolecule present in the medium. Using this
substitution in the rate equation forG∗ we have the following rate equations of the
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three variables describing their deterministic behaviour:

d〈G∗〉

dt
= kon(G(t0) − 〈G∗〉) − ko f f 〈G∗〉

d〈M〉
dt

= k+M〈G∗〉 − k−M〈M〉

d〈P〉
dt

= k+P〈M〉 − k
−
P〈P〉

Taking the vector of the system variables as X = [G∗,M, P], the corresponding
Jacobian matrix derived from the rate equations is:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(−kon − ko f f ) 0 0

k+M −k−M 0
0 k+P −k−P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Further, the vector of the deterministic rates and the stoichiometric matrix are also
derived from the same rate equations as:

R =
[
kon(G(t0) − 〈G∗〉), ko f f 〈G∗〉, k+M〈G

∗〉, k+P〈M〉, k
−
M〈M〉, k

−
P〈P〉

]T
ν =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
+1 −1 0 0 0 0
0 0 +1 0 −1 0
0 0 0 +1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The diffusion matrix given by ν diag(R(�)) νT is:

BBT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
(kon(α − 〈G∗〉) + ko f f 〈G∗〉) 0 0

0 (k+M〈G
∗〉 + k−M〈M〉) 0

0 0 (k+P〈m〉 + k
−
P〈P〉)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
The next step is to solve for the stationary covariance matrix:

C =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
Var[G∗(t),G∗(t)] Cov[G∗(t),M(t)] Cov[G∗(t), P(t)]
Cov[M(t),G∗(t)] Var[M(t),M(t)] Cov[M(t), P(t)]
Cov[P(t),G∗(t)] Cov[P(t),M(t)] Var[P(t), P(t)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Var and Cov represent the stationary auto-covariance and covariances. Each
element of the above matrix is evaluated by solving the Lyapunov equation sys-
tematically element-wise. For example, the first element of AC+CAT +BBT = 0
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is:
kon〈G∗〉 + 2(−kon − ko f f )C11 + ko f f (α −G∗) = 0

which on solving gives the auto-variance of G∗,

Var[G∗(t),G∗(t)] =
(kon − ko f f )〈G∗〉 +G(t0)ko f f

2(kon + ko f f )
= 〈G∗〉

[ ko f f
kon + ko f f

]

Continuing on similar lines, the covariances between all the variables are evalu-
ated. Whiled doing so, we make approximations that the decay rates are much
smaller when compared to the ON and OFF rates of the gene (kon + ko f f ) k−(M,P)
and that ko f f > kON . Both these approximations are valid for biologically plausible
values of rate constants (Bundschuh et al., 2003).

Cov[G∗(t),M(t)] = 〈M〉
k−Mko f f

(kon + ko f f + k−M)(kon + ko f f )
≈ 〈M〉

k−Mko f f
(kon + ko f f )2

≈ 〈M〉
k−M
ko f f

Var[M(t),M(t)] = 〈M〉 + 〈M〉
[ k+Mko f f
(kon + ko f f + k−M)(kon + ko f f )

]
≈ 〈M〉 + 〈M〉

[ k+M
ko f f

]
≈ 〈M〉

Cov[M(t), P(t)] = 〈M〉
k+P

k−M + k
−
P

[
1 +

k+Mko f f
(kon + ko f f )(kon + ko f f + k−M)

(
1 +

k−M
(kon + ko f f + k−P)

)]

≈ 〈M〉
k+P

k−M + k
−
P

[
1 +

k+Mko f f
(kon + ko f f )2

(
1 +

k−M
(kon + ko f f )

)]

≈ 〈M〉
k+P

k−M + k
−
P

[
1 +

k+M
ko f f

(
1 +

k−M
ko f f

)]
≈ 〈M〉

k+P
k−M + k

−
P

[
1 +

k+M
ko f f

]

≈ 〈M〉
k+P

k−M + k
−
P

Var[P(t), P(t)] = 〈P〉 +
k+P
k−P
Cov[M(t), P(t)]

≈ 〈P〉 + 〈P〉
k+P

k−M + k
−
P

It has been observed in various real biological systems that the noise in the mRNA
distributionwhich is nothing but its variance over mean squared has sometimes the
characteristics of a Poissonian process while in other cases is far from it. A Pois-
son process being reflected from the fact that the distribution resulting out of such

35



a process has its variance equal to its mean. Therefore in the case where the gene
is constantly in the ON state, the transcription process results in mRNAmolecules
that are Poissonian distributed, while in the above described gene ON/OFF model
the distribution of mRNAs and proteins are skewed and are non-Poissonian in
character. However, with the approximation of (kon+ ko f f )  k−(M,P) and ko f f > kon
the expressions for the stationary covariance terms are exactly as would be ob-
tained in the model where the gene is constantly in the ON state and the mRNAs
are being produced by random birth-death events leading to a Poissonian distribu-
tion. Previous works (Thattai and van Oudenaarden, 2001; Paulsson, 2004) have
involved investigating the stationary auto-covariance which is, as seen above, a
function of the system parameters. However, as our aim is to include the addi-
tional factor of time into the analyses, the dynamic covariance between the mRNA
and the protein variables are employed as representative of the system’s internal
fluctuations. In order to determine the time-covariance between the mRNA and
protein Cov[M(t), P(t + τ)] we need the eigenvectors of the system. The right
eigenvectors of the Jacobian are the column vectors of the following matrix:

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (kon+ko f f −k−M )(kon+ko f f −k

−
P)

k+Mk
+
P

0
−(k−M−k

−
P)

k+P

−(kon+ko f f −k−P)
k+P

0
1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and by the bi-orthogonal property of the right and left eigenvectors UTV = I, we
get the left eigenvectors as:

UT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k+Mk
+
P

(kon+ko f f −k−M )(k
−
M−k

−
P)

−k+P
(k−M−k

−
P)
0

k+Mk
+
P

(kon+ko f f −k−M )(kon+ko f f −k
−
P)

0 0
k+Mk

+
P

(kon+ko f f −k−P)(k
−
M−k

−
P)

k+P
(k−M−k

−
P)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The corresponding eigenvalues are:

λ = [−k−M , − (kon + ko f f ), − k
−
P]
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Therefore the time-covariance between the mRNA and protein species is:

Cov[M(t), P(t + τ)] = Cov[X2(t), X3(t + τ)]

=

3∑
l=1

eλlτV3l
( 3∑
k=1

UTlkCk2
)

= e−k−Pτ
[ k+Mk

+
P

(kon + ko f f − k−M)(k
−
M − k

−
P)
C12 +

k+P
(k−M − k

−
P)
C22

]

− e−k
−
Mτ

[ k+Mk
+
P

(kon + ko f f − k−M)(k
−
M − k

−
P)
C12 +

k+P
(k−M − k

−
P)
C22 + C32

]

+ e−(kon+ko f f )τ
[ k+Mk+P
(kon + ko f f − k−M)(kon + ko f f − k

−
P)
C12

]

Since (kon + ko f f ) is assumed to be much larger than the decay rates, we neglect
the fast decaying exponential e−(kon+ko f f )τ and its allied term leading to,

Cov[M(t), P(t + τ)] ≈ e−k−Pτ
[ k+Mk

+
P

(kon + ko f f − k−M)(k
−
M − k

−
P)
C12 +

k+P
(k−M − k

−
P)
C22

]

− e−k−Mτ
[ k+Mk

+
P

(kon + ko f f − k−M)(k
−
M − k

−
P)
C12 +

k+P
(k−M − k

−
P)
C22 + C32

]

On substituting for the C terms and doing approximations,

Cov[M(t), P(t + τ)] ≈ 〈M〉
k+P

(k−M − k
−
P)

[
e−k−Pτ

( 2k−M
k−M + k

−
P

)
− e−k−Mτ

]

This function is a sum or rather difference of two exponentials which in all possi-
bility could be a non-monotonic function. To find if this is truly the case, differ-
entiating the above covariance term partially w.r.t τ and equating to 0, yields the
τ = τ∗ at which the covariance reaches peak magnitude.

∂

∂t
Cov[M(t), P(t + τ)] = 0

e−k−Mτ∗ − e−k−Pτ∗
( 2k−p
k−M + k

−
P

)
= 0

τ∗ =
ln

[ k−M+k−P
2k−p

]
k−M − k

−
P
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Since this time delay τ is shown to be a function of the decay rates, therefore the
temporal character of the covariances can be controlled via these parameters. The
interesting aspect of this time-delay is that it is related to the time delay in the
response of the mean value of the regulated variable to a perturbation in the mean
value of the regulator. For a perturbation of ΔM in the mRNAs, the response in
the proteins is,

〈P(t)〉 = 〈P(tss)〉 +
k+P(ΔM)
k−M − k

−
P

[
e−k−Pt − e−k−Mt

]

This response in the protein level also has the characteristic peak after a time-delay
of (tresp), which is evaluated by equating the time-evolution of 〈P〉 to zero,

∂〈P(t)〉
∂t

= 0

k−Me
−k−Mtresp − k−Pe

−k−Ptresp = 0

tresp =
ln

[ k−M
k−P

]
k−M − k

−
P

This is smallest for the case where k−M = k
−
P and is evaluated using l’Hopital’s rule.

Letting k−M/k
−
P = x, the expression for tresp is now,

lim
x→1
tresp = lim

x→1

1
k−P

ln(x)
(x − 1)

= lim
x→1

1
k−P

1/x
1

=
1
k−P
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