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Modeling Coarticulation in EMG-based Continuous

Speech Recognition

Tanja Schultz and Michael Wand

Abstract

This paper discusses the use of surface electromyography for automatic speech

recognition. Electromyographic signals captured at the facial muscles record

the activity of the human articulatory apparatus and thus allow to trace

back a speech signal even if it is spoken silently. Since speech is captured

before it gets airborne, the resulting signal is not masked by ambient noise.

The resulting Silent Speech Interface has the potential to overcome major

limitations of conventional speech-driven interfaces: it is not prone to any

environmental noise, allows to silently transmit confidential information, and

does not disturb bystanders.

We describe our new approach of phonetic feature bundling for modeling

coarticulation in EMG-based speech recognition and report results on the

EMG-PIT corpus, a multiple speaker large vocabulary database of silent and

audible EMG speech recordings, which we recently collected. Our results on

speaker-dependent and speaker-independent setups show that modeling the

interdependence of phonetic features reduces the word error rate of the base-

line system by over 33% relative. Our final system achieves 10% word error

rate for the best-recognized speaker on a 101-word vocabulary task, bringing

EMG-based speech recognition within a useful range for the application of
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silent speech interfaces.

Key words: EMG-based Speech Recognition, Silent Speech Interfaces,

Phonetic Features

1. Introduction

In the past decade, the performance of automatic speech processing sys-

tems, including speech recognition, spoken language translation, and speech

synthesis, has improved dramatically. This has resulted in an increasingly

widespread use of speech and language technologies in a large variety of ap-

plications, such as commercial information retrieval systems, call center ser-

vices, voice-operated cell phones, car navigation systems, personal dictation

and translation assistance, as well as applications in military and security

domains. However, speech-driven interfaces based on conventional acoustic

speech signals still suffer from several limitations.

Firstly, acoustic speech signals are transmitted through air and are thus

prone to ambient noise. Despite tremendous efforts there are still no robust

speech processing systems in sight, which provide reasonably good results in

crowded restaurants, airports, or any noisy places. To overcome this problem

we propose to capture and process the speech signal before it gets airborne

and thus avoid to get affected by adverse noise conditions.

Secondly, conventional speech interfaces rely on audibly uttered speech,

which has two major drawbacks: it jeopardizes confidential communication

in public and it disturbs any bystanders. Services which require the ac-

cess, retrieval, and transmission of private or confidential information, such

as PINs, passwords, and security or safety information are particularly vul-
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nerable. The proposed Silent Speech Interface (SSI) allows to utter speech

silently and thus overcomes both limitations: confidential information can be

submitted securely and silent speech does not disturb or interfere with the

surroundings.

Finally, Silent Speech Interfaces might give hope to people with certain

speech disabilities as the technologies allow the building of virtual prostheses

for patients without vocal folds (Denby et al., 2009). Also, elderly and weak

people may benefit since silent articulation can be produced with less effort

than audible speech.

Our approach to capture speech before it gets airborne relies on surface

ElectroMyoGraphy (EMG). This is the process of recording electrical mus-

cle activity using surface electrodes. When a muscle fiber is activated by

the central nervous system, small electrical currents in form of ion flows are

generated. These electrical currents move through the body tissue, encoun-

tering a resistance which creates an electrical field. The resulting potential

differences can be measured between certain regions on the body surface,

i.e. at the skin. The amplified electrical signal obtained from measuring

these voltages over time can be fed directly into electronic devices for further

processing. Since speech is produced by the activity of the human articu-

latory muscles, the resulting myoelectric signal patterns allow to trace back

the corresponding speech. These signals are not corrupted or masked by en-

vironmental noise transmitted through air. Furthermore, since EMG relies

on muscle activity only, speech can even be recognized when it is produced

silently, i.e. mouthed without any vocal effort.

We envision several application areas for Silent Speech Interfaces: (1)
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robust, private, non-distracting speech recognition for human-machine inter-

faces, such as silently speaking text messages, (2) recognition plus speech

synthesis (at the remote side) for quietly accessing remote applications, such

as speech or text-based information systems, (3) transmitting articulation pa-

rameters followed by articulatory synthesis for silent human-human commu-

nication, (4) speech prostheses, and (5) recognition of silent speech followed

by text translation into another language followed by speech synthesis, which

appears like speaking in a foreign tongue. In 2006 we successfully demon-

strated a prototype of this last application at Interspeech (Jou et al., 2006).

A video file of our latest system showcasing some of the above mentioned

applications is available from our webpage1.

2. Toward Large Vocabulary EMG-based Speech Recognition

The use of EMG for speech recognition dates back to the mid 1980s,

when Sugie and Tsunoda in Japan, and Morse with colleagues in the United

States published almost simultaneously their first studies. Sugie and Tsun-

oda (1985) used three surface electrodes to discriminate Japanese vowels, and

demonstrated a pilot system which performed this task in realtime. Morse

and O’Brien (1986) examined speech information from neck and head mus-

cle activity to discriminate two spoken words, and in the following years,

extended their approach to the recognition of ten words spoken in isolation

(Morse et al., 1989, 1991). Although initial results were promising, with

accuracy rates of 70% on a ten word vocabulary, performance decreased dra-

1see http://csl.ira.uka.de/index.php?id=146
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matically for slightly larger vocabularies, achieving only 35% for 17 words,

and thus did not compare favorably with conventional speech recognition

standards.

More competitive performance was first reported by Chan et al. (2001),

who achieved an average word accuracy of 93% on a 10-word vocabulary of

the English digits. A good performance could be achieved even when words

were spoken non-audibly, i.e. when no acoustic signal was produced (Jor-

gensen et al., 2003), suggesting this technology could be used to communicate

silently. Recent work (Jou et al., 2006; Walliczek et al., 2006) successfully

demonstrated that phonemes can be used as modeling units for EMG-based

speech recognition by carefully designing the signal preprocessing front-end,

paving the way for large vocabulary speech recognition. For a more detailed

review on Silent Speech Interfaces based on EMG, please refer to (Denby

et al., 2009) in this journal issue.

While a lot of progress was made over the last years, there are still major

limitations which need to be overcome for the application of EMG to large

vocabulary speech recognition. In particular, we see three major challenges.

First, the impact of speaker dependencies, such as speaking style, speaking

rate, and pronunciation idiosyncrasies needs to be investigated. Second, the

EMG signal is affected by changes in electrode positioning, environmental

conditions (temperature and humidity), and tissue properties (Leveau and

Andersson, 1992). These factors clearly favor the development of speaker

dependent and often session dependent systems, i.e. systems in which train-

ing and testing is performed on data collected within the same recording

session. Consequently, results known from the literature focus on a very
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small number of subjects. Third, little is known yet about the qualitative

and quantitative articulation differences between silent and audible speech.

Our experimental results in (Maier-Hein et al., 2005) and more recently in

(Wand et al., 2009) suggest that EMG signals do significantly differ between

silent and audible speaking mode. We assume that this is mainly due to the

lack of biofeedback when speaking silently but further investigation will be

necessary to continuously improve our silent speech interface. Nevertheless,

we recently demonstrated the first speech recognition system that handles

seamless switches between both speaking modes.

In this article we focus on the issue of achieving reliable and robust models

for large vocabulary speech recognition systems based on EMG and show that

these models significantly improve the recognition performance, even when

impacting factors such as speaker and session variabilities are present.

2.1. The “EMG-Pittsburgh (EMG-PIT)” Multiple Speaker Database

Over the last two years we collected a large database of EMG signals from

78 speakers, where the speakers produced audible and silent, i.e. mouthed,

speech. This collection was done in a joint effort with colleagues from the

Department of Communication Science and Disorders at University of Pitts-

burgh (Dietrich, 2008).

The collection was carried out in two phases, a pilot study with 14 speak-

ers, and the final collection of 64 speakers. The 14 pilot study subjects

participated in two recording sessions, the other speakers participated in one

recording session. All participants were female adults between 18 and 35

years of age with normal vocal qualities. The subjects were recruited pri-

marily from the student population of Pittsburgh (University of Pittsburgh
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and Carnegie Mellon University).

Figure 1: Overview of electrode positioning and captured facial muscles (muscle chart

adapted from (Schünke et al., 2006)). See text for description.

To study similarities and differences of audible and silent speaking mode,

the database covers both speaking modes with parallel utterances. The

audible utterances were simultaneously recorded with a conventional air-

transmission microphone. For EMG recording we used a computer-controlled

8-channel EMG data acquisition system (Varioport, Becker-Meditec, Ger-

many). Technical specifications of the Varioport system include an ampli-

fication factor of 1170, 16 bits A/D conversion, a step size (resolution) of

0.033 microvolts per bit, and a frequency range of 0.9-295 Hz. All EMG sig-

nals were sampled at 600 Hz. Following our previous studies on the optimal

positioning and number of recording electrodes (Maier-Hein et al., 2005), we

adopted the electrode positioning which yielded maximal recognition results.

This also ensures backward compatibility of our experiments. The electrode
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setting is shown in figure 2.1. It uses five channels, numbered 1, 2, 3, 4,

and 6. Channel five serves for experiments with different electrode position-

ings, however we did not use it for the experiments described in this paper.

Channels 1, 2, and 6 use bipolar derivation, whereas channels 3, 4, and 5

were derived unipolarly, with two reference electrodes placed on the mastoid

portion of the temporal bone. The electrodes capture signals from the leva-

tor angulis oris (channels 2 and 3), the zygomaticus major (channels 2 and

3), the platysma (channel 4), the anterior belly of the digastric (channel 1)

and the tongue (channels 1 and 6). However, due to the fact that the EMG

is captured at the surface, some signals may consist of a superposition of

active muscle fibers in the proximity of the recording electrode. The acoustic

data were recorded at 16kHz, 16bit resolution and stored in PCM encoding.

All subjects were recorded with a close-up video Camcorder while producing

audible and silent speech.

In order to get good phone coverage, and to avoid transcription work, the

subjects read phonetically balanced sentences in a controlled setting rather

than recording conversational, unplanned speech. To cover large amounts of

linguistic context but at the same time allow for mode and variability com-

parisons, the speaker read one batch of 10 BASE utterances, which are the

same for each speaker, and one batch of 40 speaker specific SPEC utterances,

only read by one speaker. The vocabulary of the BASE sentences consisted

of 101 words. All sentences from both batches were selected to be phonet-

ically balanced. Each recording session consisted of two parts, one audible

and one silent speech part. In each part we recorded one BASE set and one

SPEC set. The total of 50 utterances were recorded in random order. For
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Utterances Duration [min]
Phase Speakers Sessions

Audible Silent Audible Silent

Pilot 14 28 1400 1400 108 110

Main 64 64 3200 3200 287 251

Total 78 92 4600 4600 395 361

Table 1: Statistics of the EMG-PIT Multiple Speakers Database

the pilot study subjects who recorded two sessions, the order of the audible

and silent parts was reversed after the first session to control effects from

utterance repetitions between the parts. Table 1 shows the statistics from

the resulting EMG-PIT corpus.

2.2. Baseline EMG-based Speech Recognition System

In (Wand and Schultz, 2009b) we reported first EMG recognition results

based on 26 recording sessions with 13 speakers of the audible part of the

EMG-PIT pilot study subset. For each speaker, the audible part of the SPEC

set was used for training, and the BASE set for testing. This EMG-based

recognizer is described below and serves as a baseline for the experiments

presented in this paper.

The baseline EMG-based recognition system uses 45 context indepen-

dent phoneme models and a silence model. Each phoneme is modeled using

a 3-state left-to-right Hidden Markov Model (beginning, middle, and end

of the phoneme), silence is modeled by a single state. This results in 136

models, each of which applies Gaussian Mixtures as emission probabilities.

This modeling scheme follows the traditional setup for context-independent
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acoustic-based speech recognition.

The amount of Gaussians is determined by a merge-and-split algorithm

(Ueda et al., 2000) on the training data, resulting in roughly 2 Gaussians

per model on average. In total the baseline system consists of 290 Gaus-

sians. This small number is due to the very limited amount of training data.

For the same reason our systems applies Gaussians with diagonal covariance

matrices.

For feature extraction, we found that time-domain features gave optimal

results. This feature extraction method is defined in the following way (Jou

et al., 2006): For any feature f , f̄ is its frame-based time-domain mean, Pf

is its frame-based power, and zf is its frame-based zero-crossing rate. S(f, n)

is the stacking of adjacent frames of feature f in the size of 2n+ 1 (−n to n)

frames.

For an EMG signal with normalized mean x[n], the nine-point double-

averaged signal w[k] is defined as

w[n] =
1

9

4∑
n=−4

v[n], where v[n] =
1

9

4∑
n=−4

x[n].

The rectified high-frequency signal is r[n] = |x[n] − w[n]|. Then the TD15

feature is defined as

TD15 = S(f2, 15),where f2 = [w̄, Pw, Pr, zr, r̄].

Note that (Jou et al., 2006) and (Wand and Schultz, 2009b) only used a

stacking width of 5 frames. On the EMG-PIT corpus, the stacking width of

15 frames gives significantly better results (Wand and Schultz, 2009a). In

these computations, we used a frame size of 27 ms and a frame shift of 10
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ms. These values are reported as giving optimal results in our earlier work,

therefore we adopted the same frame size and shift in the TD15 feature

extraction.

The TD15 feature is computed for each of the five electrode channels, then

the final feature vector per frame is built by stacking the frame-based features

of the five channels. After this procedure, Linear Discriminant Analysis is

applied to reduce the dimensionality of the final feature vector from 775 to

32 coefficients per frame.

In order to initialize the EMG phoneme models, we require time align-

ments for the audible EMG training utterances. We obtain these time align-

ments by using the acoustic data which has been simultaneously recorded.

These acoustic data are forced-aligned with a Broadcast News (BN) speech

recognizer trained with the Janus Recognition Toolkit (JRTk). This HMM-

based recognizer uses quintphones with 6000 distributions sharing 2000 code-

books. The baseline performance of this acoustic speech recognizer is 10.2%

Word Error Rate (WER) on the clean speech condition (F0) of the official

BN test set (Yu and Waibel, 2000).

After the initial EMG phoneme models have been obtained, four itera-

tions of Viterbi training are performed.

For decoding, we apply a trigram language model trained on Broadcast

News data. The testing process consists of a Viterbi decoding followed by

a lattice rescoring based on a matrix of word penalty and language model

weighting parameters in order to obtain optimal recognition results. We use

the batch of speaker-specific audible SPEC utterances as training set, and

the audible BASE utterances as testing set. Therefore, in total we have a
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test set of 28 sessions of 14 speakers, with 10 utterances per speaker with

a vocabulary of 101 words. On the test set, the trigram-perplexity of the

language model is 24.24. The average Word Error Rate obtained with this

baseline speaker-dependent EMG-based recognition system is 47.15%.

3. Speaker-dependent EMG-based Recognition System

In this section, we report results of speaker-dependent EMG-based speech

recognition on the audible sentences of the 14 speakers of the pilot study of

the EMG-PIT corpus as described in section 2.1. The basic recognizer setup

is the same as described in section 2.2.

3.1. Modeling Phonetic Features

In (Wand and Schultz, 2009b) we considered speaker-dependent and speaker-

independent phoneme-based EMG recognizers. This means that we regard

each frame of the EMG signal as the representation of the beginning, middle,

or end state of a phoneme. However, it has been shown in acoustic speech

recognition (Kirchhoff, 1999) that an acoustic speech recognizer can benefit

from additionally modeling phonetic features (PFs), which represent proper-

ties of a given phoneme, such as the place or the manner of articulation.

Note that in previous works, i.e. (Kirchhoff, 1999; Metze, 2005), Phonetic

Features are also called “Articulatory Features”. Since the phonetic feature

modeling approach does not reflect the movements of the articulators, but

rather represents phonetic properties of phonemes, we use the term “Phonetic

Features” (PFs) in our work.

It is empirically shown (Kirchhoff, 1999) that a speech recognizer which

combines phoneme models and PF models performs better under adverse

12
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conditions, like poor signal quality or background noise. While EMG-based

speech recognition does not suffer from ambient noise, we face the challenge

of other noise artifacts, such as the impact of temperature and humidity on

the electrodes, or superposition of muscle activity. Therefore, we investigate

in this study the effect of PFs on EMG-based speech recognition. Also, when

only a small data set is available, PF models get a more robust parameter es-

timation: Since a phonetic feature is generally shared by multiple phonemes,

we can use the combined training data of these phonemes in order to train a

phonetic feature model more reliably than a single phone model.

The remainder of this section deals with the effect of modeling phonetic

features for EMG-based speech recognition. We use PFs which have binary

values: For example, each of the articulation places Glottal, Palatal and

Labiodental is a PF that has a value either present or absent. These PFs are

directly derived from the phonemes and correspond to the IPA phonological

features (International Phonetic Association, 1999). The PFs do intention-

ally not form an orthogonal set because we want the PFs to benefit from

redundant information.

Figure 2 shows PF classification F-scores 2 for different phonetic features,

where the features are sorted according to the amount of data which is avail-

able to train the present models of these phonetic features. We did not

consider the training data amount for the absent models, since in the vast

majority of cases, the absent model receives much more training data than

2With Ctp = true positive count, Cfp = false positive count, Cfn = false negative

count, precision P = Ctp/(Ctp + Cfp), and recall R = Ctp/(Ctp + Cfn), the (balanced)

F-Score is defined as F-Score = 2PR/(P + R).
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Figure 2: Phonetic Feature Classification Accuracies (F-scores) and Training Data

Amounts (Frames). Note that only the training data amount for the present PF models

is charted.

the present model. It can be seen that the classification accuracy for EMG

measured in F-Score roughly corresponds to the amount of training data and

that only a small number of phonetic features receives sufficient training data

to yield good classification rates. To ensure reliable estimates for the PFs

in our experiments, we limited ourselves to the nine phonetic features in the

database which had more than 50000 frames of training data. This leads to

the list of the following PFs: {Voiced, Consonant, Vowel, Alveolar, Unround,

Fricative, Unvoiced, Front, Plosive}.

3.2. Phonetic Features as Additional Knowledge Source

The architecture we employ for the PF-based EMG decoding system is

a multi-stream architecture (Metze and Waibel, 2002; Jou et al., 2007), see

figure 3. This means that the models draw their emission probabilities not

from one single source (or stream), but from various sources. The addi-

tional sources correspond to phonetic features, like “Vowel” or “Fricative”.

The conventional EMG phoneme-based recognizer contributes as well. The
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emission probabilities are always modeled with Gaussian Mixtures.

Phonemes h e l ou w er l d

Phonetic Features

Alveolar x x x

Glottal x

Plosive x

Fricative x

···

Vowel x x x

Front (Vowel) x

«HELLO WORLD»
Pronunciation Dictionary Lookup

…
present absent present absent

…

Phoneme 1 Phoneme n… Phonetic Feature 1 Phonetic Feature k

Acoustic Model

Model Log Probability

WeightPhoneme WeightPF1 WeightPFk

Phoneme
Log Probabilities

PF1 Stream 
Log Probabilities

PFk Stream 
Log Probabilities

Figure 3: The Multi-Stream Phonetic Features Decoding Architecture. The upper part

shows how the PFs are obtained from the phonetic information, the lower part shows the

weighting of the various information sources.

In (Jou et al., 2007), the authors presented Word Error Rate results

on EMG-based speech recognition with phonetic features and showed that

using the PFs yields a relative WER improvement of up to 10% over the

conventional phoneme-only model. This system used the middle frames of
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phonemes to train the phonetic feature classifier, since these were assumed

to be more stable than beginning and end frames.

We extended the PF recognition system to model PFs for the beginning,

middle, and end states of phonemes. We therefore have in each stream six

PF models, modeling the beginning, the middle and the end of a present

or absent feature. In addition, each stream has one single model for silence.

Since we currently handle planned speech, we refrained from using additional

noise models.

For example, the end of “H” in the word “hello” would be modeled using

• the model “H-e” (end of phoneme “H”) in the phoneme stream,

• the model “Alveolar-absent” in the “Alveolar” stream,

• the model “Glottal-present” in the “Glottal” stream,

• the model “Plosive-absent” in the “Plosive” stream,

• the model “Fricative-present” in the “Fricative” stream,

• the model “Vowel-absent” in the “Vowel” stream,

• the model “Front-absent” in the “Front” stream,

• etc.

The final score (i.e. the negative log-likelihood − log p(x|model H-e) =:

Score(model H-e)) of an observation x for the model “H-e” is then computed
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by the formula

score(H-e) = WeightPhoneme · Score(phoneme H-e)

+ Weightalveolar · score(alveolar-absent-e)

+ Weightglottal · score(glottal-present-e)

+ Weightplosive · score(plosive-absent-e)

+ Weightfricative · score(fricative-present-e)

+ Weightvowel · score(vowel-absent-e)

+ Weightfront · score(front-absent-e)

+ further PF scores,

where the weight constants Weightstream may be chosen according to some

optimization criterion or be experimentally determined (see next paragraph).

Note that the streams are synchronized : Only one Hidden Markov Model is

constructed, and the streams transit from one state into the next state at

the same time frame.

We refer to this multi-stream architecture as Context-Independent (CI)

PF system and apply it to our corpus. The phoneme-based baseline system,

which is described in section 2.2 achieves a word error rate of 47.15% averaged

over the 14 speakers. With the context-independent PF system we obtain

45.50% WER. In these experiments, the optimal PF stream weighting was

experimentally determined on the test set to be 0.04 for each stream, which

leaves a weight of 0.64 for the phoneme stream. The results, including a

breakdown for speakers, are given in figure 5.

The decrease from 47.15% to 45.50% WER corresponds to an absolute

system improvement of 1.65% WER and a relative improvement of 3.5%
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WER. In the remainder of this article we will refer to relative improvements

in order to compare the impact of our different modeling schemes in relation

to the performance level, i.e. independent of the absolute word error rates.

Furthermore, we statistically testified the significance of our improvements by

applying the Student’s t-test for paired measures. In case of the comparison

between the phoneme-based baseline system with the context-independent

PF system, the significance level α is at 0.7% (0.007). In other words, the

chance that the improvement happened by coincidence is only seven in a

thousand.

3.3. Data-Driven Bundling of Phonetic Features

So far, we used phonetic feature classifiers as secondary sources of know-

ledge by augmenting the conventional phoneme-based model. While this

yields slight improvements over the phoneme-only classifier, our experimen-

tal data indicates that the PF classification is not powerful enough to make

the phoneme classification obsolete. In particular, increasing the weight of

the PF streams beyond 0.04 shows a decreasing performance, which clearly

indicates that the PF streams, even when taken together, are not as accurate

as the phoneme models.

It was suggested by (Frankel et al., 2004) that one major shortcoming of

the Context-Independent PF recognition system is that features are modeled

as statistically independent. The independence assumption is not correct

since physiologically every phonetic feature is generated by the interplay of

various articulators, i.e. the interdependent activity of several facial muscles.

Therefore, modeling the interdependence of phonetic features should help

in creating more accurate PF models and thus might improve the recognition
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performance. However, for EMG signals it is not clear from the start which

features depend on each other, so the choice of a good algorithm to find

dependencies between features is crucial. Also, we consider it to be important

to find those dependencies in a data-driven fashion, i.e. by an algorithmic

process, instead of relying on any kind of rules or educated guesses. We call

the process of pooling dependent features together feature bundling, since

eventually we will end up with a set of PF models which represent bundles

of PFs, like “voiced fricative” or “rounded front vowel”. Accordingly, we call

these models Bundled Phonetic Features (BDPF).

As the data-driven algorithm we opted for a standard decision-tree based

clustering approach (Bahl et al., 1991), as it is successfully used in traditional

acoustic-based speech recognition to cluster phoneme contexts for context-

dependent modeling. This algorithm works by creating a context decision tree

that assigns classes of context similarities by asking linguistic questions. In

our experiments, the predefined set of questions contained questions about

phonetic features of the current phoneme. Examples of these categorical

questions are: Is the current phone voiced? or Is the current phone a frica-

tive?. Note that the set of PFs which may occur in these questions consists

of about 90 different PFs, i.e. it is not limited to the PFs which actually

occur as streams in the multi-stream model.

The context decision tree is created separately for each PF stream, from

top to bottom. This means that the initial set of models, such as for the

stream “FRICATIVE” consists of six models: namely the beginning, middle

and end of a “FRICATIVE” as well as the beginning, middle, and end of

“NON-FRICATIVE”. Each context question splits one model into two new
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models. As splitting criterion we used the maximization of the loss of en-

tropy caused by the respective split, calculated over the Gaussian mixture

weights. Note that both the models representing the presence and absence of

a phonetic feature take part in the splitting process. The process ends when

a pre-determined termination condition is met. This condition must be cho-

sen based on the properties of the available data to create a good balance

between the accuracy and the trainability of the context-dependent models.

Our termination criterion is that a fixed number of 70 tree leaves for

each phonetic feature, corresponding to 70 independent models, is generated

for each PF stream. This number was experimentally found to yield optimal

recognition results. Note that due to the small number of training utterances,

we optimized the parameters for the PF bundling on the test set.

We call the decision tree algorithm described above PF Bundling Algo-

rithm. Figure 4 graphically shows an excerpt of an example tree which may

have been generated for the VOICED stream.

The full training process consists of three steps, as follows:

1. A common context-independent EMG recognizer, i.e. the baseline rec-

ognizer described in section 2.2, is trained on the given training data.

This recognizer uses both phoneme and PF models, but no PF bundling

yet.

2. The PF bundling algorithm is performed for each stream, so that a set

of bundled phonetic features (BDPFs) is generated for each stream.

3. Finally, the BDPF EMG recognizer is trained using the models defined

in the previous step.

The bundling process is performed on the nine most frequent PFs (see
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ROOT-e

0 = VOICED?

VOICED-e
NON-

VOICED-e

yes no

VOICED 
FRICATIVE-e

VOICED-
NON-

FRICATIVE-e

0 = FRICATIVE?

NON-VOICED 
GLOTTAL-e

NON-
VOICED-

NON-
GLOTTAL-e

0 = GLOTTAL?

0 = ...? -1 = ...? +1 = ...? 0 = ...?

Predefined Questions
for CIPF Modeling

yes no yes no

Figure 4: Example of a BDPF tree for the VOICED stream. Note that these models only

apply to end states of phonemes (begin and middle states have their own BDPF trees,

similar to this one). The upper nodes with yellow background are predefined and are also

present when context-independent unbundled PFs are used; when BDPF models are used,

the BDPF tree is generated from this basis.

Figure 2), i.e. {Voiced, Consonant, Vowel, Alveolar, Unround, Fricative,

Unvoiced, Front, Plosive}. We decided to give the PF streams identical

weights and found that under this condition, the optimal weighting of the

PF streams was 0.11 for each of the nine features, while the phoneme stream

was factored in by a weight of only 0.01. In other words, recognition accuracy

was achieved almost exclusively by the PF classifiers. Further optimization
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of the stream weights will be investigated in the future, applying automated

methods for stream weight training as presented for example in Beyerlein

(2000) and Metze (2005).
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Figure 5: Phonetic Feature Bundling: Breakdown of Word Error Rates for Speaker-

Dependent System

The performance of the resulting system can be seen in figure 5, which

gives a breakdown of the word error rates for the baseline system, the Context-

Independent PF system and the Bundled PF system. The indices on the

horizontal axis have the form Speaker ID - Session ID. The sessions are

ordered according to the baseline performance. It can be seen that while
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context-independent PFs only give a small improvement over the baseline

of 47.15% WER to 45.50%, PF clustering drastically reduces the WER to

35.78%, which is a relative improvement of 24.1% compared to the baseline

system. Again, the improvement is statistically highly significant.

3.4. Bundling of Context-Dependent Phonetic Features

The PF bundling algorithm can be adjusted in various ways. In par-

ticular, we can create context-dependent PFs. This means that the models

for a given PF not only depend on the presence or absence of other PFs

for the current phoneme, but also on the PF’s context, i.e. its neighboring

phonemes.

This modification is easily done by extending the set of predefined lin-

guistic questions which is used for building the context decision tree with

questions for the left and right phoneme contexts (i.e. Is the left context

phone a vowel? or Is the right context phone a fricative? ). We refer to this

system as “Context-Dependent (CD) Bundled PF system.”

From traditional acoustic speech recognition it is known that modeling

context-dependent phonemes reduces word error rates by about 30%. We in-

vestigated the use of triphones for EMG in (Wand and Schultz, 2009b), which

gave a relative improvement of 11.5% for a speaker-independent EMG recog-

nizer trained on about 77 minutes of EMG data. The limited success was cer-

tainly partly due to the lack of training data, since context-dependent mod-

eling requires a large amount of data for reliable model estimates. However,

modeling context-dependent PFs instead of context-dependent phonemes

provides a partial solution to this problem, since due to the overall smaller

amount of PF units and thus a better data sharing, we have more training
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data available for PF-based models than for phoneme models.
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Figure 6: Different Phonetic Feature Bundling Methods: Breakdown of Word Error Rates

for the Speaker-Dependent System

To investigate the performance of this strategy we ran two experiments:

First, we created a Context-Dependent Bundled PF System as described

above. Second, we computed PF models which depended on their left and

right contexts, but not on the current value of the other PFs, i.e. were

not bundled in the sense of our definition. We consistently call this sys-

tem Context-Dependent PF System. The context-independent Bundled PF

System described in section 3.3 serves as the baseline.
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Figure 6 depicts the results of these experiments and shows that by us-

ing context-dependent bundled PFs, we can reduce the word error rate by

another 12% relative, giving the best average WER of 31.49% so far, again

a statistically highly significant improvement. However, if we use context-

dependent unbundled PFs, the WER drastically increases to about 42%.

The first result is not very surprising, since using context-dependent bun-

dled PFs essentially means giving the decision-tree clustering algorithm more

flexibility. As long as the available data is relatively homogeneous and overfit-

ting of the trained PF bundling is avoided, this approach should always give

better results. However, the drop in accuracy when only context-dependency

is used, clearly proves that PF bundling plays an important role in capturing

the variability of PF representations.

With the context-dependent BDPF system in place, it remains to be in-

vestigated why the BDPF-based systems perform so much better than the

classical phoneme-based system. In order to do so, we ran a further series

of experiments, where we started from the phoneme-based system and then

incrementally added the context-dependent BDPF streams, ordered accord-

ing to the frequency of the underlying PFs. Since we found in the previous

experiments that in the optimal BDPF system, the phoneme stream prac-

tically receives a weight of zero, in this new experiment we distributed the

stream weights equally among the available PF streams. This means that

after adding one BDPF stream, this stream received a weight of 1, with two

BDPF streams, each received a weight of 0.5, and so on.

The results are charted in figure 7: Without PF streams, we have the

baseline performance of 47.15% WER, with one stream, we achieve a WER
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Figure 7: Word Error Rates for Different Numbers of Context-Dependent BDPF Streams.

The phoneme-based system is labeled “none”.

of 42.16%, and with two streams, the WER drops to 34.42%. With five

streams, the WER is 31.25%, which is essentially the same result as the

WER of 31.49% for nine streams.

It can thus be seen that adding just a few streams already yields a large

performance improvement. However we can also see that using only one

BDPF stream, which is an approach similar to the one described in (Yu and

Schultz, 2003), clearly is not enough: Indeed, the largest performance gain

is achieved by adding the second stream, and the further gains up to five

streams are still significant.

It should be emphasized that even though the first stream is based on

the VOICED/NON-VOICED pair, and the second stream is based on the
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CONSONANT/NON-CONSONANT pair, and so on, it would be incorrect

to say that e.g. the second stream gives the system the ability to distinguish

consonants and vowels, since this distinction will also appear in the first

stream due to the PF bundling. Rather it appears that the first stream can-

not yield the full distinctive power of a larger system since the bundling is not

sufficiently fine-grained: As described in section 3.3, there are 70 codebooks

in each PF stream, whereas the context-independent phoneme recognizer

contains 136 codebooks.

Growing a larger tree in the first stream might partly remedy this problem

if enough training data is present, however our initial experiments showed

that this is not the case for our corpus, and that 70 codebooks per stream

give optimal results on the EMG-PIT corpus.

Besides the structure of the phonetic models, the systems described above

differ in the number of parameters (i.e. Gaussian distributions) which have

to be trained. Therefore we compared the total number of Gaussian distribu-

tions in the different recognition systems. Note that in the PF-based systems,

we must get a much higher number of Gaussians than in the phoneme-based

system, since the number is determined automatically during the training

process based on the available training data, and in the PF-based systems,

each training data sample is indeed used ten times, once for the phoneme

stream and once for each of the nine PF streams. The numbers of Gaussians

are charted in table 2.

Comparing the phoneme-based system and the BDPF-based system, we

can see that if we use only one BDPF stream, both systems have got a

comparable number of Gaussians. However, as shown in figure 7, the one-
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Figure 8: Lattice-based Word Error Rates (Lattice density=100)

stream BDPF system is significantly better than the phoneme-based system,

with a performance difference of 10.6% relative.

These experiments suggest that the performance gain achieved by BDPFs

is indeed due to the BDPF modeling scheme, and also that with the given

constraints in training data size, the multi-stream structure, which has the

great advantage of re-using training data for each of the streams, is indeed

crucial for success.

As a final experiment in this section, we investigate the word lattice gen-

erated by our best recognition system, i.e. the context-dependent bundled
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System # of Gaussians

(total)

# of Gaussians

per Stream

Phoneme-based system 290 290

Context-independent PF system 1690 169

Context-dependent BDPF system 2489 248

Table 2: Number of Gaussians for different systems averaged over Speakers

PFs system. A word lattice is the common output format of speech recogni-

tion systems to provide a memory-efficient representation of a large number

of alternative hypotheses. By calculating the lattice-based word error rate of

our best system, we get an estimate of how much information is available in

our representation of the EMG signal. We investigate a lattice with a density

of 100 in our experiments. This means that for an utterance where the ref-

erence text contains n words, the lattice pruning retains 100 · n nodes. Each

node corresponds to a word of the search vocabulary at a specific position

within the utterance.

Figure 8 shows the lattice-based word error rates. We achieve a lat-

tice WER of 18.76% compared to the 31.49% first-best error rate of our

currently best system. Table 3 summarizes the results of our experiments

on the speaker-dependent setup. We started from a baseline of 47.15%

word error rate. This is the averaged performance of the speaker depen-

dent systems trained on each of the 14 subjects from the pilot subset of

the EMG-PIT database. The context-independent PF system gave a 3.5%

relative gain over the baseline. By using the context and by bundling the

PFs we achieved a drastic improvement of 7.7% and 14.8% respectively, and
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System PF Bundled Context WER rel. Gain

Baseline no - - 47.15 -

Context-independent PFs yes no no 45.50 3.5*

Context-dependent PFs yes no yes 41.99 7.7*

Bundled PFs yes yes no 35.78 14.8*

Context-dependent bundled PFs yes yes yes 31.49 12.0*

Lattice (density of 100) yes yes yes 18.76 -

Table 3: Summary of Single Speaker System Performances (averaged over Speakers)

the context-dependent bundled PFs further improved the system by another

12% relative. Our currently best speaker dependent EMG-based speech rec-

ognizer gives 31.49% word error rate, with about 10% for the best performing

speaker and 50% for the worst performing speaker. The relative performance

gains are all statistically significant as indicated by ’*’ in table 3, with the

significance level α ≤ 0.07% for all tests.

4. Multi-Speaker Recognition System

Having successfully introduced PF clustering, in this section we report the

results of PF clustering for a multi-speaker scenario. All systems described in

this section are trained with the combined training data from the 14 speakers

of the EMG-PIT pilot study and then tested for each speaker and each session

on the respective test set. The baseline system, as before, is the context-

independent phoneme-based recognizer described in section 2.2, which for

the multi-speaker scenario yields a WER of 62.15%, averaged over all 28

sessions of the 14 speakers.
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In (Wand and Schultz, 2009b), we applied context-dependent (CD) phoneme

modeling to the EMG-based speech recognition task for the first time. The

context-dependent phoneme recognizer was based on generalized triphones

sharing 600 codebooks, where the triphone clustering was performed with

the standard decision tree approach (Bahl et al., 1991) which we also use in

a modified form for BDPF clustering (see section 3.3). We applied this recog-

nizer, equipped with the TD15 preprocessing, to the multi-speaker scenario.

Consequently, the performance improved to 56.55% word error rate.

Given the context-dependent phoneme models, we were able to con-

duct two experiments to investigate in which aspects the context-dependent

phonemes and the context-dependent bundled PFs differ. In one experiment,

we used the optimal context-dependent BDPF recognizer described in sec-

tion 3.4 to train multi-speaker models. Recall that this recognizer consists

of a context-independent phoneme-based recognizer augmented by nine ad-

ditional acoustic knowledge streams of bundled, context-dependent PFs, as

shown in figure 3. In a second experiment, we used the same recognizer struc-

ture, but used a phoneme stream with context-dependent phoneme models

instead of the original context-independent phoneme stream. This context-

dependent phoneme stream was modeled according to the context-dependent

phoneme-based EMG speech recognizer from (Wand and Schultz, 2009b) (see

last paragraph).

The goal of these two experiments is to establish that context-dependent

BDPFs capture at least as much coarticulation information as traditional

context-dependent phonemes. This is a logical assumption: Comparing the

way the decision tree clustering algorithm (Bahl et al., 1991) is applied to
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Context Model Unit PFs WER rel. Gain

CI Phoneme Recognizer (= Baseline) 62.15 -

CD Phoneme Recognizer 56.55 9.01*

CI Phoneme Recognizer with CD Bundled PF Streams 45.24 20.19*

CD Phoneme Recognizer with CD Bundled PF Streams 44.95 0.64

Table 4: Summary of Speaker Independent System Performances (averaged over Speakers)

phoneme models and to phonetic features, we see that the context-dependent

BDPF clustering essentially adds significant flexibility to phoneme context

clustering, while retaining all the power of the original algorithm, a fact

which has also been described in (Yu and Schultz, 2003). The results of

these experiments do indeed support this claim. Note that on our corpus, it

is necessary to employ a multi-speaker scenario for these experiments, since

the amount of training data for any single speaker is too small to allow the

training of context-dependent phoneme models for single speakers.

In both multi-speaker experiments, we used the same set of nine PFs

which was used in the speaker-dependent experiments. However, due to the

larger amount of training data, the BDPF clustering trees were grown to an

experimentally determined optimal number of 220 leaf nodes, instead of 70

leaf nodes in the speaker-dependent case.

The detailed results of these experiments are charted in Figure 9. The

average results are given in Table 4.

It can be seen that both systems which use context-dependent BDPFs

perform significantly better than the context-dependent phoneme system.

This clearly shows that as in the speaker-dependent case, phonetic fea-
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Figure 9: Combination of BDPFs and Context-Dependent and Context-Independent

Phoneme Models in a Multi-Speaker Recognizer: Breakdown of Word Error Rates

ture bundling significantly increases the modeling power of the system. We

also see that the context-dependent phonemes + BDPF system performs

only slighty better than the system with context-independent phonemes +

BDPFs. The relative gain of 0.64% is not statistically significant. Moreover,

it turns out that the optimal weighting of the phoneme stream, compared to

the BDPF streams, is still quite low. This observation strongly suggests that

indeed all information which the context-dependent phoneme stream yields

is also present in the context-dependent BDPF streams.
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5. Conclusions

In this article we have described the EMG-PIT corpus, a multiple speaker

large vocabulary database collection of silent and audible EMG speech record-

ings. We implemented a new strategy of phonetic feature bundling for mod-

eling coarticulation in EMG-based speech recognition and reported results

on speaker-dependent and speaker-independent experimental setups. We

could show that the appropriate modeling of the interdependence of pho-

netic features reduces the word error rate of our baseline system by over 33%

relative in the speaker-dependent case, and by about 28% in the speaker-

independent system. With this approach we achieved an average word error

rate of 31.49% on a 101-word vocabulary task, bringing EMG-based speech

recognition within useful range for silent speech applications.
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