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Abstract. The possibility of speech processing in the absence of an intelligible acoustic signal 

has given rise to the idea of a ‘silent speech’ interface, to be used as an aid for the speech 

handicapped, or as part of a communications system operating in silence-required or high-

background-noise environments. The article first outlines the emergence of the silent speech 

interface from the fields of speech production, automatic speech processing, speech pathology 

research, and telecommunications privacy issues, and then follows with a presentation of 

demonstrator systems based on seven different types of technologies. A concluding section 

underlining some of the common challenges faced by silent speech interface researchers, and 

ideas for possible future directions, is also provided.       

 

Keywords: silent speech; speech pathologies; cellular telephones; speech recognition; speech 

synthesis 
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I. Introduction  

 

A silent speech interface (SSI) is a system enabling speech communication to take place when 

an audible acoustic signal is unavailable. By acquiring sensor data from elements of the 

human speech production process – from the articulators, their neural pathways, or the brain 

itself – an SSI produces a digital representation of speech which can be synthesized directly, 

interpreted as data,  or routed into a communications network. 

 

SSIs are still in the experimental stage, but a number of potential applications seem evident. 

Persons who have undergone a laryngectomy, or older citizens for whom speaking requires a 

substantial effort, would be able to mouth words rather than actually pronouncing them. 

Alternatively, those unable to move their articulators due to paralysis could produce speech or 

issue commands simply by concentrating on the words to be spoken. And because SSIs build 

upon the existing human speech production process, augmented with digital sensors and 

processing, they have the potential to be more natural-sounding, spontaneous, and intuitive to 

use than such currently available speech pathology solutions as the electrolarynx, tracheo-

oesophageal speech (TES), and cursor-based text-to-speech systems. 

 

While improving aids for the speech-handicapped has been an objective of biomedical 

engineering for many years, the recent increase of interest in SSI technology arises also from 

a second, quite different class of applications: providing privacy for cellular telephone 

conversations. It is widely agreed that cellphones can be an annoyance in meetings or quiet 

areas, and in many public places today their use is banned. Quite often the cellphone user, too, 

is uncomfortable having the content of his or her conversation become public. At the same 

time, the ability to field an urgent or important call at any location could in many instances be 
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a very useful service. An SSI, if non-invasive and small enough to be incorporated into a 

telephone handset, would resolve these issues by allowing users to communicate silently, 

without disturbing those around them. Given the numbers of cellphones in use today, the 

market for SSIs could potentially become very important if such a concept gained public 

acceptance. 

 

Somewhat paradoxically, Silent Speech Interfaces also hold promise for speech processing in 

noisy environments. This is due to two principal observations: 

1. Being based on non-acoustically acquired speech cues, SSIs are largely insensitive to 

ambient background noise; 

2. In a noisy environment, vocalization is no longer restricted. Although an audible (i.e., 

intelligible) speech signal is not produced, the associated glottal activity creates 

signals which can be exploited via appropriate sensors incorporated into an SSI.    

Speech communication in noisy environments is thus the third major application area of the 

Silent Speech Interface. 

 

To date, experimental SSI systems based on seven different types of technology have been 

described in the literature:   

1. Capture of the movement of fixed points on the articulators using Electromagnetic 

Articulography (EMA) sensors (Fagan et al. (2008); 

2. Real-time characterization of the vocal tract using ultrasound (US) and optical 

imaging of the tongue and lips (Denby and Stone (2004); Denby et al. (2006); Hueber 

et al. (2007a-c); Hueber et al. (2008a-b); Hueber et al. (2009, this issue)); 

3. Digital transformation of signals from a Non-Audible Murmur (NAM) microphone (a 

type of stethoscopic microphone) (Nakajima et al. (2003a-b); Nakajima (2005); 
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Nakajima et al. (2006); Heracleous et al. (2007); Otani et al. (2008); Hirahara et al. 

(2009, this issue); Tran et al. (2008a-b); Tran et al. (2009, this issue)); 

4. Analysis of glottal activity using electromagnetic (Titze et al. (2000); Ng et al. (2000); 

Tardelli Ed. (2004); Preuss et al. (2006); Quatieri et al. (2006)), or vibration (Bos and 

Tack (2005); Patil and Hansen (2009, this issue)) sensors; 

5. Surface electromyography (sEMG) of the articulator muscles or the larynx (Jorgensen 

et al. (2003); Maier-Hein et al. (2005); Jou et al. (2006); Hasegawa-Johnson (2008)); 

Jorgensen and Dusan (2009, this issue); Schultz and Wand (2009, this issue); 

6. Interpretation of signals from electro-encephalographic (EEG) sensors (Porbadnigk et 

al. (2009));  

7. Interpretation of signals from implants in the speech-motor cortex (Brumberg et al. 

(2009, this issue)). 

The primary goal of this article is to provide a detailed, but concise introduction to each of 

these approaches. These summaries appear in section III. Our article would not be complete, 

however, without also outlining the historical context in which the SSI concept has evolved, 

starting from its roots in speech production research and biomedical engineering. That is the 

focus of section II, below. In the concluding section of the article, we first compare the 

different SSI technologies head-to-head, pointing out for each one its range of application, 

key advantages, potential drawbacks, and current state of development, and finally attempt to 

draw some general conclusions from the work carried out by the different groups, proposing 

possible avenues for future development in this exciting new interdisciplinary field.      
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II. Historical Framework 

 

Humans are capable of producing and understanding whispered speech in quiet environments 

at remarkably low signal levels. Most people can also understand a few unspoken words by 

lip-reading, and many non-hearing individuals are quite proficient at this skill. The idea of 

interpreting silent speech electronically or with a computer has been around for a long time, 

and was popularized in the 1968 Stanley Kubrick science-fiction film “2001 - A Space 

Odyssey”, where a “HAL 9000” computer was able to lip-read the conversations of astronauts 

who were plotting its destruction. Automatic visual lip-reading was initially proposed as an 

enhancement to speech recognition in noisy environments (Petajan 1984), and patents for 

lipreading equipment supposedly able to understand simple spoken commands began to be 

registered in the mid 1980’s (Nakamura (1988)). What was perhaps the first “true” SSI 

system, although with very limited performance, originated in Japan. In 1985, scientists used 

signals from 3 electromyographic sensors mounted on the speaker’s face to recognize 5 

Japanese vowels with 71% accuracy, and output them to a loudspeaker in real-time (Sugie and 

Tsunoda (1985)). A few years later, an imaging-based system, in which lip and tongue 

features were extracted from video of the speaker’s face, returned 91% recognition on a 

similar problem (Hasegawa and Ohtani (1992)).  

 

While the possibility of robustness of silent speech devices to ambient noise was already 

appreciated in some of the earliest articles, the idea of also recovering glottal excitation cues 

from voiced speech in noisy environments was a somewhat later development. A major focal 

point was the DARPA Advanced Speech Encoding Program (ASE) of the early 2000’s, which 

funded research on low bit rate speech synthesis “with acceptable intelligibility, quality, and 

aural speaker recognizability in acoustically harsh environments”, thus spurring developments 
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in speech processing using a variety of mechanical and electromagnetic glottal activity 

sensors (Ng et al. (2000); Tardelli Ed. (2004); Preuss et al. (2006); Quatieri et al. (2006)).  

 

It was not until the advent of cellular telephones, however, that SSIs in their current 

incarnation began to be discussed. Major deployment of GSM cellular telephone networks 

began around 1994. By 2004, there were more cellphones worldwide than fixed line phones, 

and the intervening years provided more than ample time for the issue of cellphone privacy to 

manifest itself. In Japan in 2002, an NTT DoCoMo press release announced a prototype silent 

cellphone using EMG and optical capture of lip movement (Fitzpatrick (2002)). “The spur to 

developing such a phone,” the company said, “was ridding public places of noise,” adding 

that, “the technology is also expected to help people who have permanently lost their voice.” 

The first SSI research papers explicitly mentioning cellphone privacy as a goal also began to 

appear around this time (Nakajima et al. (2003a); Denby and Stone (2004)).    

 

The possibility of going further today than in some of the earlier SSI designs is due in large 

part to advances in instrumentation made by the speech production research community. 

Many of the sensing technologies proposed for use in SSIs have been developed over 

numerous years for extracting detailed, real time information about the human speech 

production process. There is thus today a wealth of resources available for applying 

ultrasound (Stone et al. (1983); Stone and Shawker (1986); Stone and Davis (1995); Wrench 

and Scobbie (2003); Stone (2005); Davidson (2005); Epstein (2005), Wrench and Scobbie 

(2007)), X-ray cineradiography (Arnal et al. (2000); Munhall et al. (1995)), fMRI (Gracco et 

al., (2005); NessAiver et al. (2006)), EMA (Perkell et al. (1992); Hoole and Nguyen (1999)), 

EMG (Tatham (1971); Sugie and Tsunoda (1985)), and EPG (Gibbon, F., (2005)) to speech-

related research problems. Speech scientists interested in going back to the brain itself to find 
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exploitable SSI signals are able to profit from research experience on EEG and other BCI 

techniques (Epstein (1983); Wolpaw et al. (2002); IEEE (2008); Sajda et al. Eds. (2008)) as 

well.  

 

The use of vocal tract imagery and other sensor information to help build speech synthesis 

systems, furthermore, is by no means a by-product of recent research on SSIs. It has been 

standard practice for many years in the fields of articulatory speech synthesis and multimodal 

speech processing, where, once again, the accent is on understanding speech production 

(Maeda (1990); Rubin and Vatikiotis-Bateson (1998); Schroeter et al. (2000); House and 

Granström (2002)). The goal of SSI research is less to further the understanding of the 

underlying speech production processes – though this is not ruled out should a breakthrough 

nonetheless occur – than  to apply some of what has already been learned to perform new, 

useful functions, in particular: 1) providing speech of “acceptable intelligibility, quality, and 

aural speaker recognizability”, as DARPA expressed it, to the speech handicapped; and 2) 

enabling speech processing in situations where an acoustic signal is either absent or is masked 

by background noise.  

 

Finally, investigators in phonetics and speech pathologies, along with medical researchers and 

practitioners responsible for much of what is known about these handicaps today, and experts 

in biomedical engineering, have also laid much of the groundwork necessary for the 

development of successful SSI applications (Blom and Singer (1979); Baken et al. (1984); 

Marchal and Hardcastle (1993); Drummond et al., (1996); Nguyen et al. (1996) ; Crevier-

Buchman (2002)).    
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III. Silent Speech Interface Technologies 

 

Each of the following subsections describes a different technology which has been used to 

build an experimental SSI system reported in the literature. The order of presentation has been 

chosen to start with the “physical” techniques which characterize the vocal tract by measuring 

its configuration directly or by sounding it acoustically, before passing to an “electrical” 

domain, where articulation may be inferred from actuator muscle signals, or predicted using 

command signals obtained directly from the brain. An ad hoc comparison of the different 

methods, giving their range of application, advantages, drawbacks, and state of development, 

appears in section IV. 

 

III.A Capture of the movement of fixed points on the articulators using 

Electromagnetic Articulography (EMA) sensors 

 

As the shaping of the vocal tract is a vital part of speech production, a direct and attractive 

approach to creating a silent speech interfacing would be to monitor the movement of a set of 

fixed points within the vocal tract. Numerous authors have considered methods of tracking 

this motion using implanted coils which are electrically connected to external equipment and 

are electromagnetically coupled to external excitation coils (Carstens (2008); Schönle et al. 

(1987); Hummel et al. (2006)). These standard EMA systems aim to track the precise 

Cartesian coordinates, in two or three dimensions, of the implanted coils.  

 

While it would be attractive to attempt to measure the Cartesian position of defined points in 

an SSI application, it is non-trivial to actually achieve in a convenient manner. However, 
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given that a nonlinear mapping already exists between the vocal tract shape and the resulting 

sounds, it appears worthwhile to consider a simpler monitoring system based not on Cartesian 

positions, but on some other, nonlinear, mapping. In Fagan et al. (2008), a system was 

investigated which consists of permanent magnets attached at a set of points in the vocal 

apparatus, coupled with magnetic sensors positioned around the user’s head. The use of 

permanent magnets has the advantage that there is no necessity for an electrical connection to 

the implants, and so there is greater flexibility in terms of placement and use. In the test 

system developed, magnets were glued to the user’s tongue, lips and teeth, and a set of six, 

dual axis magnetic sensors mounted on a pair of spectacles, as shown in Figure 1. 

 

 

Figure 1. Placement of magnets and magnetic sensors for an EMA based SSI. 

 

The aim of the experimental study was to establish whether it is possible to extract sufficient 

information from a set of sensors of this type to allow basic speech recognition. To this end, a 

simple recognition algorithm was adopted, based on an adaptation of the widely used 

magnets 

sensors 
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Dynamic Time Warping (DTW) algorithm, using Dynamic Programming (DP) (Holmes and 

Holmes (2001); Furui (2001)). In order to evaluate the behavior of the system, the subject was 

asked to repeat a set of 9 words and 13 phonemes (taken from the ARPAbet (Levinson 

(2005))) to provide training data. Ten repetitions of each word/phone were compared to the 

training set template. It was found that under laboratory conditions, with these very limited 

vocabularies, it was possible to achieve recognition rates of over 90%. It was noted that while 

the discrimination between, for instance, the labial phonemes (b-m-p-f) and between the velar 

phonemes (g-k) was less significant than for more distinct phonemes, the processing was still 

able to correctly identify the best fit. This was also found to be the case for voiced and 

unvoiced versions of the same phoneme (e.g. g-k and b-p). On the basis of these preliminary 

results it is believed that with further development of the sensing and processing systems it 

may be possible to achieve acceptable recognition for larger vocabularies in non-laboratory 

conditions. 

 

III.B Real-time characterization of the vocal tract using ultrasound (US) and 

optical imaging of the tongue and lips 

 

Another way to obtain direct information on the vocal tract configuration is via imaging 

techniques. Ultrasound imagery is a non-invasive and clinically safe procedure which makes 

possible the real-time visualization of one of the most important articulators of the speech 

production system – the tongue. Placed beneath the chin, an ultrasound transducer can provide 

a partial view of the tongue surface in the mid-sagittal plane. In the SSI developed in the 

Ouisper project (Ouisper (2006)), an ultrasound imaging system is coupled with a standard 

video camera placed in front of the speaker’s lips. Non-acoustic features, derived exclusively 
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from visual observations of these two articulators, are used to drive a speech synthesizer, 

called in this case a “silent vocoder”, as illustrated in figure 2.  

 

 

Figure 2: Ultrasound-based SSI (schematic). 

 

Since neither glottal excitation nor airflow in the vocal tract is required, an ultrasound-based 

SSI is suitable for use by patients who have undergone a laryngectomy. And since laptop-

based high performance ultrasound medical imaging systems are already available today, a 

wearable, real-time SSI, with an embedded ultrasound transducer and camera, appears to be 

quite realistic.  

 

A number of solutions have been proposed and described in the literature to build a “silent 

vocoder” able to recover an acoustic speech signal from visual information only. In the first 

such attempt to achieve this “visuo-acoustic” mapping task, tongue contours and lip profiles 

extracted from a 2 minute ultrasound dataset were mapped either onto GSM codec parameters 

(Denby and Stone (2004)) or line spectral frequencies (Denby et al. (2006)) using multilayer 

perceptrons. In Hueber et al. (2007a), extraction and parameterization of the tongue contour 

was replaced by a more global coding technique called the EigenTongues decomposition. By 

projecting each ultrasound image into a representative space of “standard vocal tract 

configurations”, this technique encodes the maximum amount of information in the images – 
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predominantly tongue position, but also other structures, such as the hyoid bone and short 

tendon, as well as muscle and fat below the tongue. All these approaches, however, predict 

only spectral features, and thus permit only LPC-based speech synthesis, without any 

prescription for finding an appropriate excitation signal. One solution to this problem would 

be to make use of pre-recorded acoustic speech segments, as is done in state-of-the-art corpus-

based speech synthesis systems. In that perspective, a new framework, combining a “visuo-

phonetic decoding stage” and a subsequent concatenative synthesis procedure, was introduced 

in Hueber et al. (2007b), Hueber et al. (2008a), and Hueber et al. (2009, this issue).  

 

The approach investigated is based on the construction of a large audio-visual unit dictionary 

which associates a visual realization with an acoustic one for each diphone. In the training 

stage, visual feature sequences are modeled for each phonetic class by a context-independent 

continuous Hidden Markov Model (HMM). In the test stage, the visuo-phonetic decoder 

“recognizes” a set of phonetic targets in the given sequence of visual features (Hueber et al. 

(2007c) and Hueber et al. (2009, this issue)). Evaluated on a one-hour continuous speech 

database, consisting of two speakers (one male, one female, native speakers of American 

English), this visuo-phonetic decoder is currently able to correctly predict about 60 % of 

phonetic target sequences, using video-only speech data. At synthesis time, given a phonetic 

prediction, a unit selection algorithm searches in the dictionary for the sequence of diphones 

that best matches the input test data, and a “reasonable” target prosodic pattern is also chosen. 

The speech waveform is then generated by concatenating the acoustic segments for all 

selected diphones, and prosodic transformations of the resulting speech signal are carried out 

using “Harmonic plus Noise Model” (HNM) synthesis techniques. An overview of the 

segmental approach to silent vocoding is given in figure 3.  
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Figure 3: Overview of the segmental approach for a silent vocoder driven by video-only 

speech data. 

 

With this configuration, synthesis quality depends strongly on the performance of the visual 

phone recognizer, and with about 60% of phones correctly identified, the system is not able to 

systematically provide an intelligible synthesis. Nevertheless, in those cases where the 

phonetic prediction is more nearly correct (above 90 %), initial intelligibility tests have shown 

that the system is able to synthesize an intelligible speech signal with acceptable prosody. 

Thus, improvement of the visuo-phonetic decoding stage remains a critical issue, and several 

solutions are envisioned. First, larger audiovisual speech databases are currently being 

recorded using a new acquisition system (Hueber et al. (2008b)), which is able to record both 
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video streams (US and camera), along with the acoustic signal, at more than 60 frames per 

second, as compared to 30 fps for the earlier baseline acquisition system. Because of the 

better temporal resolution, the observation, and therefore the modeling, of very short phones, 

such as /t/ or /d/, should now be more accurate. Also, in order to take into account the 

asynchrony between tongue and lip motions during speech, the use of multistream HMMs and 

the introduction of context-dependency are being tested. Finally, we remark that this approach 

to an ultrasound-based SSI has been evaluated on a difficult recognition task – the decoding 

of continuous speech without any vocabulary restrictions. Clearly, better performance could 

also be obtained either on a more limited vocabulary recognition task (less than 250 words, 

for instance), or on an isolated word “silent recognition” task, giving an ultrasound based SSI 

that could be used in more restricted, but nevertheless realistic situations.   

 

III.C Digital transformation of signals from a Non-Audible Murmur (NAM) 

microphone 

 

Non-audible murmur (NAM) is the term given to the low amplitude sounds generated by 

laryngeal airflow noise and its resonance in the vocal tract (Nakajima et al. (2003b); Otani et 

al. (2008)). NAM sound radiated from the mouth can barely be perceived by nearby listeners, 

but a signal is easily detected using a high-sensitivity contact microphone attached on the skin 

over the soft tissue in the orofacial region. The NAM microphone is designed for selective 

detection of tissue vibration during speech while being insensitive to environmental noise. It 

is thus expected to be a convenient input device for private telecommunications, noise-robust 

speech recognition, and communication enhancement for the vocally handicapped. 
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The idea of applying NAM for telecommunication purposes was first proposed by Nakajima 

(Nakajima et al. (2003a-b)), who discovered that NAM can be sensed by the ear alone using a 

stethoscope placed beneath the chin while whispering. A small stethoscope equipped with a 

microphone thus appeared to be a simple sensor for use in many situations where speaking 

aloud is not desirable. This early stethoscopic type of NAM microphone however displayed a 

problem of sound quality due to a sharply limited frequency range, up to only 2 kHz, which is 

certainly too narrow for speech transmission. Also, the structure of a stethoscope is very 

susceptible to noise due to friction against skin or clothing. Many improvements were made to 

resolve these problems via improved impedance matching between the microphone 

diaphragm and the skin. As shown in Fig. 4, the solution adopted was to encapsulate an entire 

microphone unit in a small enclosure filled with a soft silicone material, so that skin 

vibrations transmit to the microphone diaphragm via the layer of soft silicone without being 

affected by acoustic noise or external vibration. To reduce the size of the device, a miniature 

electret condenser microphone was used as the sensor unit, with its metal cover removed to 

expose the diaphragm and allow direct contact with the soft silicone (Nakajima (2005)). The 

best location for placing the NAM microphone was empirically determined to be on the skin 

below the mastoid process on a large neck muscle.  

 

Even with these improvements, problems remain concerning the transmission characteristics. 

The frequency response of the silicone type NAM microphone exhibits a peak at 500-800 Hz, 

and a bandwidth of about 3 kHz. Tissue vibration at consonant bursts is conspicuous in 

amplitude in the detected signals. Spectral distortion of speech is small, but nonetheless 

present, due to the principle of signal detection, which differs from the natural acoustic 

propagation of speech sounds. Despite these problems, however, NAM microphones with 
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various types of construction have been applied as alternative speech input devices in a 

number of  scenarios.  

 

The NAM microphone has been applied to developing new systems for silent-speech 

telephony and recognition. For the purposes of telecommunications where privacy is required 

or in a high-noise environment, the microphone with an amplifier can be combined with a 

cellular phone headset to enable talking and listening. Simple amplification of NAM speech 

already produces an acceptable signal, and speech quality transformation techniques have 

been applied in order to produce more natural sounding speech. These successes have 

motivated speech engineers toward using “NAM recognition” as one of the acceptable 

solutions for robust speech recognition in noisy environments (Nakajima et al. (2006); 

Heracleous et al. (2007); Tran et al. (2008a-b); Tran et al. (2009, this issue)). 

 

The NAM device is also useful for speakers with voice pathologies due to laryngeal disorders, 

who have difficulty producing voiced sounds that require vocal-fold vibration. Simple 

amplification of NAM speech is beneficial for the purposes of conversation, for lecturing, and 

for telephone calls. A more challenging task is the application of NAM as a talking aid for 

alaryngeal speakers. Removal of the larynx, with separation of the vocal tract from the upper 

airway, is clearly an unfavorable condition for the use of a NAM microphone because airflow 

from the lungs cannot produce the necessary vocal-tract resonance. In this case, an alternative 

sound source must be introduced externally to the vocal tract. Hirahara et al. (2009, this issue) 

employed a small vibration transducer attached on the neck surface to elicit vocal-tract 

resonance for this purpose, and also investigated speech transformation techniques to produce 

more natural sounding NAM-based speech synthesis. Adequately estimating voiced segments 
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for speech synthesis is of course a problem common to all vocal-tract sensing approaches to 

the  SSI problem. We will return to this point in section IV.A.  

 

 

Figure 4. NAM microphone and its placement. (a) Typical silicone-type NAM microphone 
using a miniature electret condenser microphone unit that is embedded in a capsule filled with 

a soft silicone material. (b) Setup of NAM microphone for silent mobile telephony. The 
microphone is placed on the side of the neck to capture tissue-conducted vibration of vocal-

tract resonance generated by airflow noise in the constricted laryngeal airway. 
 

 

III.D Analysis of glottal activity using electromagnetic or vibration sensors 

 

In the early 2000’s, the United States Defense Department launched the DARPA Advanced 

Speech Encoding Program (ASE), which provided funding to develop non-acoustic sensors 

for low bit rate speech encoding in challenging acoustic environments, such as the interiors of 

fighting vehicles and aircraft, urban military terrains, etc. A number of projects were funded 

in Phase I of the program, usually to evaluate the efficacy of specific sensors used in 

conjunction with a standard close-talk microphone, and a special data base entitled “DARPA 

Advanced Speech Encoding Pilot Speech Corpus” was developed in order to benchmark the 

different proposed solutions (Tardelli Ed. (2004)). A program with similar goals was 
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undertaken by Defense Research and Development Canada (Bos and Tack (2005)), and in 

Europe, the EU project SAFIR (Speech Automatic Friendly Interface Research, IST-2002-

507427) (Dekens et al. (2008)) contained work packages for developing a speech database 

with six types of hostile acoustic environments in order to evaluate non-acoustic sensors.     

 

The basic principle in these studies is to obtain glottal waveforms which can be used for de-

noising by correlation with the acoustic signal obtained from a standard close-talk 

microphone. The necessary waveforms may be obtained either via detectors which are 

directly sensitive to vibrations transmitted through tissue – throat microphones and the like – 

or from the interaction of glottal movement with an imposed electromagnetic field. In 

addition to the glottal closure information, spectrograms of the sensor signals in most cases 

exhibit vocal tract resonances as well, albeit in a modified form because of the way in which 

the information is captured. For vibration sensors, for example, the observed spectrum is 

modified by the acoustic transfer function of the path between the sound source and the 

capture device. The “non-acoustic” label is in fact a bit of a misnomer for such sensors; it 

refers to the fact that the captured acoustic signal, as was the case with NAM, propagates 

through tissue or bone, rather than through air. 

   

Speech enhancement using such vibration or electromagnetic sensors has been shown to work 

very well, with gains of up to 20 dB reported ((Titze et al. (2000); Dupont and Ris (2004); 

Quatieri et al. (2006)). In Ng et al. (2000), perfectly intelligible speech was obtained using a 

GEMS device (described below) from a signal with an initial signal to noise ratio of only 3 

dB, while excellent results on noise robust vocoding in three harsh military noise 

environments using GEMS and PMIC (description below) are reported in Preuss et al. (2006). 

Some of the devices studied in ASE and elsewhere are described in more detail in what 
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follows. The related area of speech enhancement in noise using audiovisual cues has been 

well covered elsewhere, and will not be addressed in this article.  

 

Vibration sensors: 

 

Throat Microphone. Throat microphones have been used by fighter pilots for decades. 

Based on the same technologies as standard microphones, these are usually double units 

attached to a neckband, with one bud worn on each side of the Adam’s apple. The buds are 

simply pressed against the skin, without any special coupling, in order to capture that part of 

the speech signal which is transmitted through the flesh of the throat. Throat microphones are 

designed to have low response in the outward direction, so as to remain insensitive to 

background noise.   

 

Bone microphone. Bone microphones are designed to pick up the speech signal which 

propagate through the bones of the skull, and as such are also resistant to contamination from 

ambient background noise. The best capture points are on the cheekbone, forehead or crown 

of the head. Bone microphones are sometimes incorporated directly into soldier’s helmets for 

battlefield applications (see, for example, (Bos and Tack (2005)). 

 

Physiological microphone, or PMIC. The PMIC (Bos and Tack (2005), Quatieri et al. 

(2006); Preuss et al. (2006); Patil and Hansen (2009, this issue)), is a more sophisticated form 

of the throat microphone. It is worn as a neckband, consisting of a piezoelectric sensor 

immersed in a gel bath inside a closed bladder, which is designed to have a stronger acoustic 

coupling to tissue than to air, thus assuring robustness to background noise. The PMIC, in 

addition to speech detection, is also intended to relay information on the wearer’s heart and 
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respiration rates, etc., whence its name, “physiological”. A recent research article using the 

PMIC for speaker assessment appears in Patil and Hansen (2009, this issue).    

 

In-ear microphone. In this device, noise-immunity is assure by inserting a small microphone 

into the ear canal (Bos and Tack (2005); (Dekens et al. (2008)), which is closed off by an 

earphone for incoming signals. The signal to noise ratio is very good, and even whispered 

speech can be detected. A disadvantage of the technique is that potentially important exterior 

sounds can no longer be detected by the instrumented ear.  

 

Electromagnetic sensors: 

 

EGG. The electroglottograph (Rothenberg (1992); Titze (2000); Quatieri (2006)), is a 

standard research tool designed to detect changes in electrical impedance across the throat 

during voiced speech. It consists of 2 gold-plated electrodes held in place on either side of the 

larynx by means of a collar, with an applied potential. When the vocal folds are closed, the 

electric impedance decreases, while when they are open, a larger value ensues. Glottal 

vibration in this way induces a signal of some 1 volt RMS on a 2-3 MHz carrier, which is 

quite readily detectable. A drawback of the technique is its sensitivity to the exact positioning 

of the electrodes.      

 

GEMS. The General Electromagnetic Motion System is based on a relatively recent miniature 

micropower (< 1 mW) radar technology (Burnett (1997); (Titze (2000)), which can effectuate 

very high resolution reflectrometry using brief EM pulses in the 2.4 GHz ISM band. The 

GEMS antenna may be attached to the throat at the laryngeal notch, or in other positions. 

Articulator motion, particularly that of the glottis, can be accurately detected from the 
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Doppler frequency shifting of the reflected electromagnetic energy that such movement 

engenders. Vibrations from 20 Hz to 8 kHz are detectable. As with the EGG, antenna 

positioning is a crucial factor for GEMS.   

 

TERC. The Tuned Electromagnetic Resonating Collar (Brown et al. (2004); Brown et al. 

(2005); TERC (2009)) measures changes in the intrinsic electrical capacitance of the glottis. 

The device exploits the fact that when the glottis opens, the permittivity of a cross section of 

the neck through the larynx decreases. The device consists of a neckband composed of copper 

electrodes on an acrylic substrate, tuned to a sharp resonance at a particular frequency of 

several tens of MHz. The high-Q of the resonant circuit causes small movements of the glottis 

to lead to large deviations (~30 dB) from resonance, hence producing a readily detectable 

glottal vibration signal.    

 

The goal of the ASE and other programs was to use non-acoustic sensors to enhance speech 

produced in acoustically challenging environments, for subsequent retransmission at low bit 

rates over limited-resource channels. As such, these projects share the SSI goal of enabling 

speech processing in noisy environments. Indeed, some of the sensors discussed exploit 

principles already evoked in our earlier discussion of the NAM microphone. These 

military/security applications, however, lack some of the “low acoustic profile” quality which 

is central to the SSI concept. Interestingly, when Phase 2 of ASE was launched in 2005 (only 

one bidder, BBN Corporation, was retained in Phase 2), a new, supplementary goal had 

appeared: to “explore and characterize the nature of sub-auditory (non-acoustic) speech and 

its potential utility as an alternative means of communication in acoustically harsh 

environments”. To the authors’ knowledge, results on sub-auditory processing in ASE have 

yet to be published.  
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III.E Surface electromyography (sEMG) based Speech Recognition 

 

Surface ElectroMyoGraphy (sEMG) is the process of recording electrical muscle activity 

captured by surface (i.e., non-implanted) electrodes. When a muscle fiber is activated by the 

central nervous system, small electrical currents in the form of ion flows are generated. These 

electrical currents move through the body tissue, whose resistance creates potential 

differences which can be measured between different regions on the body surface, for 

example on the skin. Amplified electrical signals obtained from measuring these voltages over 

time can be fed into electronic devices for further processing.  

 

As speech is produced by the activity of human articulatory muscles, the resulting myoelectric 

signal patterns measured at these muscles provides a means of recovering the speech 

corresponding to it. Since sEMG relies on muscle activity alone, speech can be recognized 

even if produced silently, i.e., without any vocal effort, and the signal furthermore cannot be 

corrupted or masked by ambient noise transmitted through air. As a result, sEMG-based 

speech recognition overcomes the major shortcomings of traditional speech recognition, 

namely preserving privacy of (silently) spoken conversations in public places, avoiding the 

disturbance of bystanders, and ensuring robust speech signal transmission in adverse 

environmental conditions. 

 

The use of EMG for speech recognition dates back to the mid 1980’s, when Sugie and 

Tsunoda in Japan, and Morse and colleagues in the United States published (almost 

simultaneously) their first studies. As mentioned in section II, Sugie and Tsunoda (1985) used 

three surface electrodes to discriminate Japanese vowels, and demonstrated a pilot system 



ACCEPTED MANUSCRIPT 

which performed this task in real-time. Morse and O’Brien (1986) examined speech 

information from neck and head muscle activity to discriminate two spoken words, and in the 

following years, extended their approach to the recognition of ten words spoken in isolation 

(Morse et al. (1989); Morse et al. (1991)). Although initial results were promising, with 

accuracy rates of 70% on a ten word vocabulary, performance decreased dramatically for 

slightly larger vocabularies, achieving only 35% for 17 words, and thus did not compare 

favorably with conventional speech recognition standards. More competitive performance 

was first reported by Chan et al. (2001), who achieved an average word accuracy of 93% on a 

vocabulary of the English digits. Chan was also the first to combine an EMG-based 

recognizer with a conventional system, achieving a significant improvement in the presence 

of ambient noise (Chan (2003)). In Jorgensen et al. (2003), the authors proved the 

applicability of myoelectric signals for non-audible speech recognition, reporting 92% word 

accuracy on a set of six control words.  

 

Recent research studies aim to overcome the major limitations of today’s sEMG-based speech 

recognition systems and applications, to, for example:  

• remove the restriction of words or commands spoken in isolation and evolve toward a 

less limited, more user-friendly continuous speaking style (Maier-Hein et al. (2005));  

• allow for acoustic units smaller than words or phrases, enabling large vocabulary 

recognition systems (Walliczek et al. (2006); Schultz and Wand (2009, this issue)); 

• implement alternative modeling schemes such as articulatory phonetic features to 

enhance phoneme models (Jou et al. (2006); Schultz and Wand (2009, this issue));  

• study the effects of electrode re-positioning (Maier-Hein et al. (2005)) and more robust 

signal preprocessing (Jorgensen and Binsted (2005); Jou et al. (2005));  
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• examine the impact of speaker dependencies on the myoelectric signal (Wand and 

Schultz (2009)); 

• investigate real-life applicability, by augmenting conventional speech recognition 

systems (Chan et al. (2001); Chan (2003)), and addressing size, attachment, and 

mobility of the capturing devices (Manabe et al. (2003), Manabe and Zhang (2004)). 

 

 

Figure 5: Demonstration of the Silent Speech Recognizer developed at Carnegie Mellon and 
University of Karlsruhe (Maier-Hein et al. (2005)). 

 

Most of the early studies furthermore reported results on a small number of words spoken in 

isolation (an example of an experimental setup appears in figure 5) (Chan et al. (2001); 

Jorgensen et al. (2003); Maier-Hein et al. (2005)), whereas recent work has shown, for 

example, that larger vocabularies of 100 words can be recognized with a word accuracy of 

around 70% in a single speaker setup (Jou et al. (2006). The training of reliable acoustic 

models for a larger vocabulary of course requires breaking words into sequences of sub-word 

units, such as syllables, phonemes, or even context dependent model units. Jorgensen and 

Binsted (2005) applied phonemes as units for vowel and consonant classification, and 

Walliczek et al. (2006) compared a variety of units on a 100-word vocabulary in continuously 

spoken speech. A successful application of articulatory features to augment phoneme based 

units was presented by Jou et al. (2007), and Schultz and Wand (2009, this issue) describe the 
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training of context dependent phonetic feature bundles, which further improved recognition 

performance on the same 100-word vocabulary, with up to 90% word accuracy in a speaker 

dependent setup. Finally, Wand and Schultz (2009) have presented initial experiments on 

speaker independent and speaker adaptive sEMG-based speech recognition, based on a large 

collection of EMG data recorded from 78 speakers reading sentences in both audible and 

silent speaking mode, in a collaboration between Carnegie Mellon and Pittsburgh University. 

 

The applicability of EMG-based speech recognition in acoustically harsh environments, such 

as first responder tasks where sirens, engines, and firefighters breathing apparatus may 

interfere with reliable communication, has been investigated at NASA. For example, 

Jorgensen and colleagues (Betts et al. (2006)) achieved 74% accuracy on a 15-word 

classification task, in a real-time system which was applied to subjects exposed to a 95 dB 

noise level. 

 

There has also been interesting work at Ambient Corporation in the United States, who report 

the development of a system whose inputs are surface EMG signals from one or more 

electrodes placed above the larynx. To operate the system, the user issues commands by 

speaking silently to himself, without opening the lips or uttering any sound. Increased 

activation in the laryngeal muscles is then detected by the system, and classified using a 

speaker-dependent HMM-based speech recognizer. A prototype deployed in late 2007 

demonstrated a vocabulary of four to six directional commands, and could be used to steer a 

motorized wheelchair Hasegawa-Johnson (2008)). 

 

Current EMG recording systems still lack practicability and user-friendliness. For example, 

the surface electrodes need to be firmly attached to the skin for the duration of the recording. 
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Manabe and colleagues have addressed these issues by developing ring-shaped electrodes 

wrapped around the thumb and two fingers (Manabe et al. (2003); Manabe and Zhang 

(2004)). To capture the EMG signals from facial muscles, the fingers are pressed against the 

face in a particular manner. It should be possible to perfect such a system for a mobile 

interface that can be used in both silent and noisy environments. 

 

Electromyography thus captures electrical stimuli from the articulator muscles or the larynx, 

which can subsequently be exploitated in speech processing applications. One may also 

imagine, however, capturing viable speech biosignals directly from the brain, using 

electroencephalography (EEG) or implanted cortical electrodes. These possibilities are 

discussed in the following two sections. Although considerably further off in terms 

commercial application, these Brain Computer Interface (BCI) approaches – very much in 

vogue today – are fascinating, and hold enormous promise for speech, as well as for other 

types of applications.       

 

III.F Interpretation of signals from electro-encephalographic (EEG) sensors 

 

In addition to its well-known clinical applications, electroencephalography has also recently 

proven to be useful for a multitude of new methods of communication. EEG-based BCIs have 

consequently become an increasingly active field of research. Good overviews can be found 

in Dornhege et al. Eds. (2007) and in Wolpaw et al. (2002), while Lotte et al. (2007) provides 

a review of classification algorithms. Examples of some current BCIs include the “Thought 

Translation Device” (Birbaumer (2000)) and the “Berlin Brain Computer Interface” 

(Blankertz et al. (2006)). The aim of a BCI is to translate the thoughts or intentions of a 

subject into a control signal suitable for operating devices such as computers, wheelchairs or 
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prostheses. Suppes et al. (1997) were the first to show that isolated words can be recognized 

based on EEG and MEG (magnetoencephalography) recordings. Using a BCI usually requires 

the users to explicitly manipulate their brain activity, which is then transformed into a control 

signal for the device (Nijholt et al. (2008)). This typically involves a learning process which 

may last several months, as described, for example, in (Neuper et al. (2003)).  

 

In order to circumvent this time consuming learning process, as well as develop a more 

intuitive communications interface based on silent speech, Wester and Schultz (2006) 

investigated a new approach which directly recognizes “unspoken speech” in brain activity 

measured by EEG signals (see figure 6). “Unspoken speech” here refers to the process in 

which a user imagines speaking a given word without actually producing any sound, indeed 

without performing any movement of the articulatory muscles at all. Such a method should be 

applicable in situations where silent speech input is preferable – telecommunications and the 

like – as well as for persons unable to speak because of physical disabilities, such as locked-in 

syndrome, and who consequently have very limited options for communicating with their 

environment. During the study, 16 channel EEG data were recorded using the International 

10-20 system; results indicated that the motor cortex, Broca’s and Wernicke’s areas were the 

most relevant EEG recording regions for the task. The system was able to recognize unspoken 

speech from EEG signals at a promising recognition rate – giving word error rates on average 

4 to 5 times higher than chance on vocabularies of up to ten words. In a followup study, 

Porbadnigk et al. (2009) discovered that temporally correlated brain activities tend to 

superimpose the signal of interest, and that cross-session training (within subjects) yields 

recognition rates only at chance level. These analyses also suggested several improvements 

for future investigations:  

- using a vocabulary of words with semantic meaning to improve recognition results;  
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- increasing the number of repetitions of each word (20 were used in the study) and 

normalizing phrase lengths, in order to improve the model training;  

- providing the subject with feedback on whether words were correctly recognized. 

Birbaumer (2000) showed that subjects can be trained to modify their brain waves 

when using an EEG-based BCI; subjects may thus be able to adapt their brain waves 

to enable words to be recognized more easily. 

 

 

Figure 6: EEG-based recognition system for unspoken speech (Wester and Schultz (2006)) 
 

In another study, DaSalla and colleagues (DaSalla et al. (2009)) proposed a control scheme 

for a silent speech BCI using neural activities associated with vowel speech imagery. They 

recorded EEG signals in three healthy subjects performing three tasks: unspoken speech of the 

English vowels /a/ and /u/; and a no-action state as a control. Subjects performed 50 trials for 

each task, with each trial containing two seconds of task-specific activity. To discriminate 

between tasks, the authors designed spatial filters using the common spatial patterns (CSP) 

method. Taking 20 randomly selected trials from each of two tasks, the EEG time series data 

were decomposed into spatial patterns which were both common between, and optimally 

discriminative for, the two tasks. Applying these spatial filters to new EEG data produced 

new times series optimized for classification. Since the CSP method is limited to two-class 

discriminations, spatial filters for all pair-wise combinations of the three tasks were designed. 
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Resultant spatial patterns showed mostly symmetrical activations centered at the motor cortex 

region, specifically the Cz and Fz positions in the International 10-20 system. After spatially 

filtering the EEG data, the authors trained a nonlinear support vector machine using the 

previously selected 20 trials per task, and classified the remaining 30 trials per task. This 

randomized training and testing procedure was repeated 20 times to achieve a 20-fold cross 

validation. Accuracies and standard deviations (in %) obtained for the three subjects were 

78±5, 68±7 and 68±12. The study thus shows that motor cortex activations associated with 

imaginary vowel speech can be classified, with accuracies significantly above chance, using 

CSP and a nonlinear classifier. The authors envision the proposed system providing a natural 

and intuitive control method for EEG-based silent speech interfaces. 

 

III.G Interpretation of signals from implants in the speech-motor cortex    

 

The SSIs discussed thus far have been based on relatively non-invasive sensing techniques 

such as US, EMG and EEG, and others. Attempts have also recently been made to utilize 

intracortical microelectrode technology and neural decoding techniques to build an SSI which 

can restore speech communication to paralyzed individuals (Kennedy (2006); Brumberg et al. 

(2007); Brumberg et al. (2008); Guenther et al. (2008); Bartels et al. (2008)), or to restore 

written communication through development of mouse cursor control BCIs for use with 

virtual keyboards (Kennedy et al. (2000)) and other augmentative and alternative 

communication (AAC) devices (Hochberg et al. (2008)). A number of factors must be 

considered for an intracortical microelectrode SSI, though two stand out as the most 

important: choice of electrode and decoding modality.  
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Electrode choice 

A successful intracortical SSI requires electrodes capable of chronic human implantation.  

These electrodes must be durable and provide consistent observations of neural signals.  Early 

on in neurophysiological research, intracortical electrodes were simply not designed for long 

term use in a behaving animal.  However, recent advances have yielded designs which have 

been used in human subjects and are capable of recording from dozens of isolated neurons 

over many years (Kennedy and Bakay (1998); Kennedy et al. (2000); Hochberg et al. (2006); 

Hochberg et al. (2008); Bartels et al. (2008)).  Two electrode designs in particular have been 

implanted in human subjects for the purpose of brain computer interfacing: the Utah 

microelectrode array (Maynard et al. (1997); Hochberg et al. (2006)), and the Neurotrophic 

Electrode (Kennedy (1989); Bartels et al. (2008)).   

 

The Utah array consists of a single silicon wafer with many (commonly ~96) recording 

electrodes and is implanted on the surface of the cerebral cortex. The recording electrodes 

penetrate the cortical surface and sample from neurons in close proximity to the recording 

tips. The Neurotrophic Electrode differs in fundamental design from the Utah array.  Rather 

than utilizing many recording tips, the Neurotrophic Electrode utilizes few, low impedance 

wires, encased in a glass cone filled with a neurotrophic growth factor.  The entire assembly is 

implanted into the cortex, as with the Utah array, but the growth factor then encourages 

nearby cells to send neurite projections (i.e. axons and dendrites) to the implanted cone.  The 

result is that the neurites are “captured” by the glass cone, ensuring that the recording wires 

are recording from a viable neural source. Today, both types electrodes have been used in 

human volunteers with severe paralysis, and have remained operational for many years.  
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Decoding modality 

The decoding modality is critically important for neural prosthesis development in general, 

but it is possible (as illustrated in the following) that many modalities can be possible for 

SSIs.  Modality in this context refers to the nature of the signal decoded or interpreted from 

observed neural activity. A common decoding modality in neural prosthesis design is arm and 

hand kinematics. For instance, an electrode can be implanted in the hand area of a monkey or 

human motor cortex, and a device can be constructed to interpret the neural activity as related 

to the subject’s movements or intended movements. In humans, this particular decoding 

modality has been used to provide mouse pointer control for BCIs in paralyzed individuals 

(Kennedy et al. (2000); Hochberg et al. (2006); Kim et al. (2007); Truccolo et al. (2008)).  For 

an SSI, a hand kinematic decoding modality may only be used for communication via BCI 

pointer control, for example by choosing letters on a virtual keyboard, selecting words on a 

graphical interface or utilizing graphical Augmentative and Alternative Communication 

(AAC) devices with mouse pointer interfaces in general. 

 

Though neural decoding of hand kinematics is grounded in decades of neurophysiological 

research (e.g., Georgopoulos et al. (1982)), the modality is not natural for speech production.  

Given this limitation, recent research has been aimed at decoding or predicting characteristics 

of speech directly from cortical areas mediating speech production (Kennedy (2006); 

Brumberg et al. (2007); Brumberg et al. (2008); Guenther et al. (2008)).  Specifically, these 

investigations studied the relationship between neural activity in the speech motor cortex and 

production of discrete speech sound segments (i.e., phonemes) and treated speech production 

as a complex motor task rather than an abstract language problem.   
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In this speech motor control approach, intracortical electrodes are implanted into the speech 

motor cortex rather than the hand area.  Early attempts focused primarily on the discrete 

prediction of individual phonemes based on the ensemble activity of a population of neural 

units (Miller et al. (2007); Wright et al. (2007)).  More recent work has placed the problem of 

speech motor decoding within a framework analogous to arm and hand kinematics decoding.  

Within this framework, the most straightforward decoding modality for a speech motor 

cortical implant is vocal tract, or speech articulatory (i.e., jaw, lips, tongue, etc.) kinematics.  

A nearly equivalent alternative modality to vocal tract kinematics for speech decoding is an 

acoustic representation of sounds produced during the act of speaking.  In particular, formant 

frequencies (the resonant frequencies of the vocal tract) are inherently linked to the 

movements of the speech articulators and provide an acoustic alternative to motor kinematics 

that has already been incorporated into speech neural prosthesis designs (Brumberg et al. 

(2007); Brumberg et al. (2008); Guenther et al. (2008)).  Both speech articulatory and acoustic 

modalities are appropriate for decoding intended speech from an intracortical microelectrode 

implanted in the speech motor cortex; therefore, they are well suited for invasive silent speech 

interfaces. 

 

IV. Conclusions and Perspectives 

 

Seven current candidate SSI technologies have now been introduced. Further details on the 

majority of the methods, as well as some of recent results, may be found in the accompanying 

articles of this special issue. In this final section of the present article, we attempt to draw 

some overall conclusions on the current SSI situation. We begin with an outline of common 

challenges faced by SSI researchers, as a consequence of the unique nature of the SSI 

problem, which sets it apart from traditional speech processing systems. A second subsection 
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then makes a qualitative comparison of the different methods by highlighting the relative 

benefits and drawbacks of each approach according to a set of simple criteria. Finally, we 

propose some possible directions for future exploration, which may hopefully lead to useful 

new products and services emerging from the nascent, interdisciplinary field of SSIs.      

 

IV.A Common challenges  

 

Sensor positioning and robustness – In all of the technologies presented, the sensors used 

must be carefully positioned to obtain the best response. In a system sensitive to the 

orientation of the tongue surface in an ultrasound image, for instance, any movement of the 

probe consists of a change of image reference frame, which has to be taken into account. 

EMA, EMG, and EEG are also sensitive to variations in sensor positioning, and researchers 

using NAM and EM/vibration technology have reported the need to find “sweet spots” in 

which to place their devices for best results. A corollary to these observations is that 

unavoidable changes in sensor position or orientation introduced at the beginning of each new 

acquisition can give session-dependent results once the subsequent signal processing 

algorithms are applied. Systematic ways of ensuring optimal, repeatable sensor positioning 

have not yet been adequately addressed in the experimental SSI systems presented to date. 

Further research will be necessary to find ways of ensuring that the SSI sensors used remain 

attuned to the relevant articulatory information in robust ways.   

 

Speaker independence – A related concern is speaker independence. While audio-based 

speech recognition has made excellent progress in speaker independence, the situation may be 

quite different when the features which feed the recognition system depend, for example, on 

the speaker’s anatomy, or the exact synaptic coding inherent in movements of his or her 
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articulatory muscles. Most of the systems we have presented have only just begun to assess 

speaker independence. The extent to which it will influence the advancement of SSI 

development is thus as yet not known.       

 

Lombard and silent speech effects – Speakers are known to articulate differently when 

deprived of auditory feedback of their own speech, for example in high-noise environments – 

the so-called Lombard effect. Lombard speech will thus be an issue for SSIs unless they are 

able to provide a high-quality, synchronous audio signal via an earphone, which is of course a 

very challenging task. Beyond the Lombard effect resides the additional question of whether 

speakers articulate differently when speaking silently, either in quiet or in noisy 

environments, and most indications are that silent and vocalised articulation are indeed not 

identical. In any case, the best practice would no doubt be to train SSI systems on silent 

speech, rather than audible speech, since this is the context in which they will ultimately 

operate. To do so is experimentally much more difficult, however, since the absence of an 

audio stream precludes using standard ASR tools for labelling and segmenting SSI sensor 

data, not to mention hindering the development of an output speech synthesizer for the SSI. 

Although some SSI researchers have already begun to address these issues, substantial further 

research, again, will be required in order to discover what the actual stumbling blocks will be 

here.  

 

Prosody and nasality – For SSI applications in which a realistic output synthesis is 

envisaged, the production of a viable prosody is a critical issue, since the glottal signal 

necessary for pitch estimation is either completely absent or substantially modified. When a 

recognition step precedes synthesis, lexical and syntactical cues could in principal be used to 

alleviate this problem to a certain extent, but the task is quite difficult. The problem is similar 
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to that encountered by electrolarynx users, who are forced to contend with a constant, 

monotonous F0 value. Some of these products today provide an external thumbwheel for 

variable pitch control, and perhaps a similar solution could prove appropriate for SSIs. In 

addition to prosody, depending on the SSI technology used, information on nasality may also 

be absent. The possibility of recovering prosody and nasality, using context or artificial 

compensatory mechanisms, will be an additional topic for future research.   

 

Dictionaries – Continuous speech ASR is a difficult task, particularly in real time interactive 

and portable systems. It seems likely that the first useful SSI applications will concentrate on 

the more easily realizable goal of limited vocabulary speech recognition. A common 

challenge for all of the potential technologies will then be the creation of dictionaries which 

are of limited size, but rich enough to be genuinely useful for the SSIs tasks and scenarios for 

which they are tailored, e.g., telephony, post-laryngectomy speech aids, verbal command 

recognition, and the like.  

 

IV.B Comparison of the Technologies  

 

It is difficult to compare SSI technologies directly in a meaningful way. Since many of the 

systems are still preliminary, it would not make sense, for example, to compare speech 

recognition scores or synthesis quality at this stage. With a few abstractions, however, it is 

possible to shed light on the range of applicability and the potential for future 

commercialization of the different methods. To carry out our analysis, we have chosen to 

“fast forward” to a situation in which all of technologies are “working”. To be classified as 

such, an SSI should be able to genuinely enable useful silent speech processing tasks – 

essentially recognition and synthesis – as well as present a relatively portable, human-oriented 
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form factor. Clearly, we have left out the possibility that one or another of the technologies 

ultimately fails to meet these criteria, for example if the chosen sensors simply do not provide 

enough information about the speech production process to enable useful subsequent 

processing; but that need not concern us here. For the purposes of our assessment, we have 

defined a set of 6 criteria, ranked on a scale of 1 (worst) to 5 (best), as defined below:  

• Works in silence – Can the device be operated silently?  

• Works in noise – Is the operation of the device affected by background noise?  

• Works for laryngectomy – Can the device be used by post-laryngectomy patients? It 

may be useful for other pathologies as well, but laryngectomy is used as a baseline.   

• Non-invasive – Can the device be used in a natural fashion, without uncomfortable or 

unsightly wires, electrodes, etc.? 

• Ready for market – Is the device close to being marketed commercially? This axis 

also takes into the account in a natural way the current technological advancement of 

the technique, responding, in essence, to the question, “How well is this technology 

working as of today?”.   

• Low cost – Can the final product be low cost? The answer will depend, among other 

factors, on whether any “exotic” technologies or procedures are required to make the 

device function.  

The comparisons we make will clearly be qualitative, and should not be considered as being 

in any sense exact. In the next paragraphs, we first rank each of the seven technologies with a 

grade from 1 to 5 in each of the 6 categories, giving brief explanations for the marks given. 

This ranking is summarized in figure 7 on six-axis “spiderweb” plots of the different 

technologies. For the purposes of the comparison, we have adopted shortened labels for the 

seven technologies, for convenience: EMA markers; US/imaging; NAM; EM/vibration; EMG 

electrodes, EEG electrodes; and BCI cortical.  
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EMA markers 

Works in silence: 5 – Silent articulation is possible.  

Works in noise: 5 – Background noise does not affect the operation.  

Works for laryngectomy: 5 – No glottal excitation is necessary.  

Non-invasive: 2 – Magnetic beads need to be fixed permanently on the tongue and other 

articulators. 

Ready for market: 2 – Published recognition results to date are promising but still 

preliminary.  

Low cost: 4 – The magnetic beads, detectors, and associated electronics can probably be 

manufactured very cheaply.  

 

US/imaging 

Works in silence: 5 – Silent articulation is possible.  

Works in noise: 5 – Background noise does not affect the operation.  

Works for laryngectomy: 5 – No glottal activity is required. 

Non-invasive: 4 – Miniaturisation of ultrasound and camera and gel-free coupling should 

eventually lead to a relatively portable and unobtrusive device.  

Ready for market: 3 – Recognition results suggest a useful, limited vocabulary device 

should not be far off, but instrumental developments are still necessary.  

Low cost: 3 – Although costs much below those of medical ultrasound devices should 

eventually be possible, ultrasound remains a non-trivial technology.   
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NAM 

Works in silence: 4 – The device is nearly, but not totally silent, and could be inappropriate 

for the most demanding non-eavesdropping scenarios. 

Works in noise: 4 – Researchers have reported problems with noise caused by clothing, hair, 

respiration, etc.  

Works for laryngectomy: 2 – The device requires an external vibrator in order to work for 

laryngectomees; results on this so far seem preliminary.  

Non-invasive: 4 – The device resembles 2 large buttons held behind the ears with a headband 

or collar.  

Ready for market: 5 – Commercial systems are already available in Japan. 

Low cost: 5 – The devices can be mass produced very cheaply.  

 

EM/vibration 

Works in silence: 1 – Glottal activity is required. 

Works in noise: 5 – The devices are designed to work well in noisy environments. 

Works for laryngectomy: 1 – Glottal activity is required.  

Non-invasive: 4 – The devices are relatively small and unobtrusive, often resembling a 

neckband. 

Ready for market: 4 – Some of these devices are already commercially available.  

Low cost: 3 – Some of the technologies, such as GEMS and pulse radar, are not completely 

trivial.  

 

EMG electrodes 

Works in silence: 5 – Silent articulation is possible.  

Works in noise: 5 – Background noise does not affect the operation.  



ACCEPTED MANUSCRIPT 

Works for laryngectomy: 5 – No glottal activity is required.  

Non-invasive: 4 – A facemask-like implementation should eventually be possible, thus 

eliminating unsightly glued electrodes.  

Ready for market: 3 – EMG sensors and their associated electronics are already widely 

available.  

Low cost: 4 – The sensors and the data processing system are relatively manageable.  

 

EEG electrodes 

Works in silence: 5 – Silent articulation is possible. 

Works in noise: 5 – Background noise does not affect the operation.  

Works for laryngectomy: 5 – No glottal activity is required.  

Non-invasive: 3 – Today’s systems require a skull cap and conductive gel under each 

electrode. Ultimately, an articulated, gel-free helmet such as those proposed for some video 

games may be possible.  

Ready for market: 1 – Tests to date are promising, but still very preliminary.  

Low cost: 4 – The electrodes and signal processing electronics are relatively standard; 

commercial EEG systems (although not for speech) exist today.   

 

BCI cortical 

Works in silence: 5 – Silent articulation is possible.  

Works in noise: 5 – Background noise does not affect the operation. 

Works for laryngectomy: 5 – No glottal activity is required.  

Non-invasive: 1 – Cortical electrodes must be implanted. 

Ready for market: 1 – The results to date are interesting but quite preliminary. 

Low cost: 1 – Brain surgery is required to implant the electrodes in the cortex.  
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Figure 7. “Spiderweb” plots of the 7 SSI technologies described in the article. Axes are 
described in the text.  
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IV.C Future Directions: 

 

Figure 7 shows that no SSI technology today proposes a device responding fully to the 

demands of all six axes of evaluation. Reaching this goal will likely require advances both in 

instrumentation and in signal processing. On the instrumentation side, three main lines of 

attack seem pertinent: 

- First, the efforts being carried out on the individual technologies are in many cases 

still in the early stages. These projects need to continue and expand in order to extract 

the maximum potential from each technique.  

- The systems being developed for SSIs today make use of technologies borrowed from 

other domains, such as general-purpose medical imaging or diagnostics. It would be 

interesting to develop dedicated instruments explicitly for use in the SSI field – for 

example, a customized ultrasound probe designed to highlight features which are the 

most pertinent for speech recognition and synthesis.  

- Finally, it will be interesting to combine technologies in a multi-sensor device and 

perform data fusion, in hopes that the complementarity of the acquired streams can 

overcome the shortcomings of some of the devices on their own.  

Signal processing and modelling advances in the SSI field are likely to come from one of two 

possible directions:   

- techniques facilitating speech recognition and synthesis from incomplete 

representations of speech production mechanisms; and, 

- a continued and enhanced symbiosis between the more “expert” type methods popular 

in articulatory inversion research, and the machine learning oriented approaches being 

employed in the majority of the current SSI investigations.   
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Finally, as this paper was going to press, Alcatel-Lucent Corporation issued a press release 

claiming an experimental eighth SSI technology based on low frequency ultrasound 

reflectrometry (Moeller (2008)). It will likely turn out, quite fittingly, that the last word on 

SSIs technologies – has not been spoken! 
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