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Supplement paper to “Online Expectation
Maximization based algorithms for inference in

Hidden Markov Models”

Sylvain Le Corff ∗† and Gersende Fort ‡

October 16, 2012

This is a supplementary material to the paper [7].
It contains technical discussions and/or results adapted from published pa-

pers. In Sections 2 and 3, we provide results - useful for the proofs of some
theorems in [7] - which are close to existing results in the literature.

It also contains, in Section 4, additional plots for the numerical analyses in
[7, Section 3].

To make this supplement paper as self-contained as possible, we decided to
rewrite in Section 1 the model and the main definitions introduced in [7].

1 Assumptions and Model
Our model is defined as follows. Let Θ be a compact subset of Rdθ . We are
given a family of transition kernels {Mθ}θ∈Θ, Mθ : X × X → [0, 1], a positive
σ-finite measure µ on (Y,Y), and a family of transition densities with respect
to µ, {gθ}θ∈Θ, gθ : X × Y → R+. It is assumed that, for any θ ∈ Θ and
any x ∈ X, Mθ(x, ·) has a density mθ(x, ·) with respect to a finite measure λ
on (X,X ). In the setting of this paper, we consider a single observation path
Y

def
= {Yt}t∈Z defined on the probability space (Ω,F ,P) and taking values in

YZ. The following assumptions are assumed to hold.

H1 (a) There exist continuous functions φ : Θ → R, ψ : Θ → Rd and
S : X× X× Y→ Rd s.t.

logmθ(x, x
′) + log gθ(x

′, y) = φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉 ,

where 〈·, ·〉 denotes the scalar product on Rd.
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(b) There exists an open subset S of Rd that contains the convex hull of
S(X× X× Y).

(c) There exists a continuous function θ̄ : S → Θ s.t. for any s ∈ S,

θ̄(s) = argmaxθ∈Θ {φ(θ) + 〈s, ψ(θ)〉} .

H2 There exist σ− and σ+ s.t. for any (x, x′) ∈ X2 and any θ ∈ Θ, 0 < σ− ≤
mθ(x, x

′) ≤ σ+. Set ρ
def
= 1− (σ−/σ+) .

We now introduce assumptions on the observation process. For any sequence
of r.v. Z def

= {Zt}t∈Z on (Ω,P,F), let

FZk
def
= σ ({Zu}u≤k) and GZk

def
= σ ({Zu}u≥k)

be σ-fields associated to Z. We also define the mixing coefficients by, see [4],

βY(n) = sup
u∈Z

sup
B∈GY

u+n

E
[
|P(B|FY

u )− P(B)|
]
,∀ n ≥ 0 . (1)

H3-(p) E
[
supx,x′∈X2 |S(x, x′,Y0)|p

]
< +∞.

H4 (a) Y is a β-mixing stationary sequence such that there exist C ∈ [0, 1)
and β ∈ (0, 1) satisfying, for any n ≥ 0, βY(n) ≤ Cβn, where βY is
defined in (1).

(b) E [| log b−(Y0)|+ | log b+(Y0)|] < +∞ where

b−(y)
def
= infθ∈Θ

∫
gθ(x, y)λ(dx) , (2)

b+(y)
def
= supθ∈Θ

∫
gθ(x, y)λ(dx) . (3)

H5 There exists c > 0 and a > 1 such that for all n ≥ 1, τn = bcnac.

Recall the following definition from [7]: for a distribution χ on (X,B(X)),
positive integers T, τ and θ ∈ Θ, set

S̄χ,Tτ (θ,Y)
def
=

1

τ

T+τ∑
t=T+1

Φχ,Tθ,t,T+τ (S,Y) , (4)

where S is the function given by H1(a) and

Φχ,rθ,s,t(S,y)

def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1, yi+1)}S(xs−1, xs, ys)λ(dxr+1:t)∫

χ(dxr){
∏t−1
i=r mθ(xi, xi+1)gθ(xi+1, yi+1)}λ(dxr+1:t)

. (5)

We also write Sn−1
def
= S̄

χn−1,Tn−1
τn (θn−1,Y) the intermediate quantity com-

puted by the BOEM algorithm in block n and S̃n−1 the associated Monte Carlo
approximation.
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H6 -(p) There exists b ≥ (a + 1)/2a (where a is defined in H5) such that, for
any n ≥ 0, ∥∥∥Sn − S̃n∥∥∥

p
= O(τ−bn+1) ,

where S̃n is the Monte Carlo approximation of Sn.

Define for any θ ∈ Θ,
S̄(θ)

def
= E [S(θ,Y)] . (6)

R(θ)
def
= θ̄

(
S̄(θ)

)
. (7)

G(s)
def
= S̄(θ̄(s)) , ∀s ∈ S , (8)

where θ̄ is given by H1(c).

H7 (a) S̄ and θ̄ are twice continuously differentiable on Θ and S.
(b) There exists 0 < γ < 1 s.t. the spectral radius of ∇s(S̄ ◦ θ̄)s=S̄(θ?) is

lower than γ.

Set

Tn
def
=

n∑
i=1

τi , T0
def
= 0 .

2 Detailed proofs of [7]

2.1 Proof of [7, Theorem 4.4]
Proof. By [7, Proposition A.1], it is sufficient to prove that∣∣∣W ◦ R(θn)−W ◦ θ̄(S̃n)

∣∣∣ −→
n→+∞

0 , P−a.s. . (9)

By Theorem 4.1, the function S̄ given by (6) is continuous on Θ and then S̄(Θ)
def
=

{s ∈ S;∃θ ∈ Θ, s = S̄(θ)} is compact and, for any δ > 0, we can define the
compact subset S̄(Θ, δ)

def
=
{
s ∈ Rd; d(s, S̄(Θ)) ≤ δ

}
of S, where d(s, S̄(Θ))

def
=

infs′∈S̄(Θ) |s− s′|. Let δ > 0 (small enough) and ε > 0. Since W◦ θ̄ is continuous
(see H1(c) and [7, Proposition 4.2]) and S̄(Θ, δ) is compact, W ◦ θ̄ is uniformly
continuous on S̄(Θ, δ) and there exists η > 0 s.t.,

∀x, y ∈ S̄(Θ, δ) , |x− y| ≤ η ⇒ |W ◦ θ̄(x)−W ◦ θ̄(y)| ≤ ε . (10)

Set α def
= δ ∧ η and ∆Sn

def
= |S̄(θn)− S̃n|. We write,

P
{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̃n)

∣∣∣ ≥ ε}
= P

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̃n)
∣∣∣ ≥ ε; ∆Sn > δ

}
+ P

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̃n)
∣∣∣ ≥ ε; ∆Sn ≤ δ

}
≤ P {∆Sn > δ}+ P {∆Sn > η} ≤ 2P {∆Sn > α} .
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By the Markov inequality and [7, Theorem 4.1], for all p ∈ (2, p̄), there exists a
constant C s.t.

P
{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̃n)

∣∣∣ ≥ ε} ≤ 2

αp
E
[
|S̄(θn)− S̃n|p

]
≤ Cτ−p/2n+1 .

(9) follows from H5 and the Borel-Cantelli lemma (since p > 2 and a > 1).

Proposition 2.1 shows that we can address equivalently the convergence of
the statistics {S̃n}n≥0 to some fixed point of G and the convergence of the
sequence {θn}n≥0 to some fixed point of R.

Proposition 2.1. Assume H1-2, H3-(p̄), H4(a), H5 and H6-(p̄) for some p̄ > 2.

(i) Let θ? ∈ L. Set s?
def
= S̄(θ?) = G(s?). Then, P−a.s.,

lim
n→+∞

∣∣∣S̃n − s?∣∣∣1limn θn=θ? = 0 .

(ii) Let s? ∈ S s.t. G(s?) = s?. Set θ?
def
= θ̄(s?) = R(θ?). Then P−a.s.,

lim
n→+∞

|θn − θ?|1limn S̃n=s?
= 0 .

Proof. Let S̄ be given by (6). By [7, Theorem 4.1] and H5,

lim
n

(
S̃n − S̄(θn)

)
= 0 P−a.s.

By [7, Theorem 4.1], S̄ is continuous. Hence,

lim
n

∣∣∣S̃n − S̄(θ?)
∣∣∣1limn θn=θ? = 0 P−a.s.

and the proof of (i) follows. Since θ̄ is continuous, (ii) follows.

2.2 Proof of [7, Proposition 6.2]
We start with rewriting some definitions and assumptions introduced in [7].
Define the sequences µn and ρn, n ≥ 0 by µ0 = 0, ρ0 = S̃0 − s? and

µn
def
= Γµn−1 + en , ρn

def
= S̃n − s? − µn , n ≥ 1 , (11)

where, Γ
def
= ∇G(s?),

en
def
= S̃n − S̄(θn) , n ≥ 1 , (12)

and S̄ is given by (6).
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Proof. Let p ∈ (2, p̄). By (11), for all n ≥ 1, µn =
∑n−1
k=0 Γken−k. By H7 and

the Minkowski inequality, for all n ≥ 1, ‖µn‖p ≤
∑n−1
k=0 γ

k ‖en−k‖p. By [7,
Theorem 4.1], there exists a constant C s.t. for any n ≥ 1,

‖µn‖p ≤ C
n−1∑
k=0

γk

√
1

τn+1−k
.

By [8, Result 178, p. 39] and H5, this yields
√
τnµn = OLp(1).

By H7, using a Taylor expansion with integral form of the remainder term,

G(S̃n−1)−G(s?)− Γ
(
S̃n−1 − s?

)
=

d∑
i,j=1

(
S̃n−1,i − s?,i

)(
S̃n−1,j − s?,j

)
Rn−1(i, j)

=

d∑
i,j=1

(µn−1,i + ρn−1,i)(µn−1,j + ρn−1,j)Rn−1(i, j) ,

where xn,i denotes the i-th component of xn ∈ Rd and

Rn(i, j)
def
=

∫ 1

0

(1− t) ∂2G

∂si∂sj

(
s? + t(S̃n − s?)

)
dt , n ∈ N, 1 ≤ i, j ≤ d .

Observe that under H7, lim supn |Rn|1limn θn=θ? < ∞ w.p.1. Define for n ≥ 1
and k ≤ n,

Hn
def
=

d∑
i=1

(2µn,i + ρn,i)Rn(i, ·) , rn
def
=

d∑
i,j=1

Rn(i, j)µn,iµn,j , (13)

ψ(n, k)
def
= (Γ +Hn) · · · (Γ +Hk) , (14)

with the convention ψ(n, n+ 1)
def
= Id. By (11),

ρn = ψ(n− 1, 0)ρ0 +

n−1∑
k=0

ψ(n− 1, k + 1)rk . (15)

Since
√
τnµn = OLp(1), H5 and p > 2 imply that µn −→

n→+∞
0, P−a.s. Then,

by (11), ρn1limn θn=θ? −→
n→+∞

0, P−a.s. and by (13) lim
n→+∞

|Hn|1limn θn=θ? = 0,

P−a.s. Let γ̃ ∈ (γ, 1), where γ is given by H7. Since lim
n→+∞

|Hn|1limn θn=θ? = 0,

there exists a P−a.s. finite random variable Z1 s.t., for all 0 ≤ k ≤ n− 1,

|ψ(n− 1, k)|1limn θn=θ? ≤ γ̃n−kZ11limn θn=θ? . (16)

Therefore, |ψ(n− 1, 0)ρ0|1limn θn=θ? ≤ γ̃nZ1 |ρ0| P−a.s., and, by H3-(p̄), (4),
(5), E [|ρ0|p̄] < +∞ which implies that ρ0 < +∞ P−a.s. Since γ̃ < 1, the first
term in the RHS of (15) is τ−1

n OLp(1)Oa.s(1).
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We now consider the second term in the RHS of (15). From equation (16),∣∣∣∣∣
n−1∑
k=0

ψ(n− 1, k + 1)rk

∣∣∣∣∣1limn θn=θ? ≤ Z1

n−1∑
k=0

γ̃n−k−1 |rk|1limn Sn=s? , P−a.s.

By (13) and H7, there exists a P−a.s. finite random variable Z2 s.t.

|rk|1limn θn=θ? ≤ Z2

d∑
i,j=1

µk,iµk,j , P−a.s.

In addition, since
√
τnµn = OLp(1), there exists a constant C s.t.∥∥∥∥∥∥

n−1∑
k=0

γ̃n−k−1
d∑

i,j=1

µk,iµk,j

∥∥∥∥∥∥
p/2

≤ C
n−1∑
k=0

γ̃n−k−1

τk
.

Applying again [8, Result 178, p. 39] yields that the second term in the RHS of
(15) is τ−1

n Oa.s(1)OLp/2(1).

3 General results on HMM
In this section, we derive results on the forgetting properties of HMM (Sec-
tion 3.1), on their applications to bivariate smoothing distributions (Section 3.2),
on the asymptotic behavior of the normalized log-likelihood (Section 3.3) and
on the normalized score (Section 3.4).

For any sequence y ∈ YZ and any function h : X2 × Y → R, denote by hs
the function on X2 → R given by

hs(x, x
′)

def
= h(x, x′, ys) . (17)

3.1 Forward and Backward forgetting
In this section, the dependence on θ is dropped from the notation for better
clarity. For any s ∈ Z and any A ∈ X , define

Ls(x,A)
def
=

∫
m(x, x′)g(x′, ys+1)1A(x′)λ(dx′) , (18)

and, for any s ≤ t denote by Ls:t the composition of the kernels defined by

Ls:s
def
= Ls , Ls:u+1(x,A)

def
=

∫
Ls:u(x, dx′)Lu+1(x′, A) .

By convention, Ls:s−1 is the identity kernel: Ls:s−1(x,A) = δx(A). For any
y ∈ YZ, any probability distribution χ on (X,X ) and for any integers such that
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r ≤ s < t, let us define two Markov kernels on (X,X ) by

Fs,t(x,A)
def
=

∫
Ls(x, dxs+1)1A(xs+1)Ls+1:t−1(xs+1,X)

Ls:t−1(x,X)
, (19)

Bχ,rs (x,A)
def
=

∫
φχ,rs|r:s(dxs)1A(xs)m(xs, x)∫

φχ,rs|r:s(dxs)m(xs, x)
, (20)

where

φχ,rs|r:s(A)
def
=

∫
χ(dxr)Lr:s−1(xr,dxs)1A(xs)∫

χ(dxr)Lr:s−1(xr,X)
.

Finally, the Dobrushin coefficient of a Markov kernel F : (X,X ) −→ [0, 1] is
defined by:

δ(F )
def
=

1

2
sup

(x,x′)∈X2

||F (x, ·)− F (x′, ·)||TV .

Lemma 3.1. Assume that there exist positive numbers σ−, σ+ such that σ− ≤
m(x, x′) ≤ σ+ for any x, x′ ∈ X. Then for any y ∈ YZ, δ(Fs,t) ≤ ρ and
δ(Bχ,rs ) ≤ ρ where ρ def

= σ−/σ+.

Proof. Let r, s, t be such that r ≤ s < t. Under the stated assumptions,∫
Ls(xs,dxs+1)1A(xs+1)Ls+1:t−1(xs+1,X)

≥ σ−
∫
g(xs+1, ys+1)1A(xs+1)Ls+1:t−1(xs+1,X)λ(dxs+1)

and

Ls:t−1(xs,X) ≤ σ+

∫
g(xs+1, ys+1)Ls+1:t−1(xs+1,X)λ(dxs+1) .

This yields to

Fs,t(xs, A) ≥ σ−
σ+

∫
g(xs+1, ys+1)Ls+1:t−1(xs+1,X)1A(xs+1)λ(dxs+1)∫

g(xs+1, ys+1)Ls+1:t−1(xs+1,X)λ(dxs+1)
.

Similarly, the assumption implies

Bχ,rs (xs+1, A) ≥ σ−
σ+

φχ,rs|r:s(A) ,

which gives the upper bound for the Dobrushin coefficients, see [3, Lemma
4.3.13].

Lemma 3.2. Assume that there exist positive numbers σ−, σ+ such that σ− ≤
m(x, x′) ≤ σ+ for any x, x′ ∈ X. Let y ∈ YZ.
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(i) for any bounded function h, any probability distributions χ and χ̃ and any
integers r ≤ s ≤ t∣∣∣∣∫ χ(dxr)Lr:s−1(xr,dxs)h(xs)Ls:t−1(xs,X)∫

χ(dxr)Lr:t−1(xr,X)

−
∫
χ̃(dxr)Lr:s−1(xr,dxs)h(xs)Ls:t−1(xs,X)∫

χ̃(dxr)Lr:t−1(xr,X)

∣∣∣∣ ≤ ρs−rosc(h) ,

(21)

(ii) for any bounded function h, for any non-negative functions f and f̃ and
any integers r ≤ s ≤ t∣∣∣∣∫ χ(dxs)h(xs)Ls:t−1(xs,dxt)f(xt)∫

χ(dxs)Ls:t−1(xs,dxt)f(xt)

−
∫
χ(dxs)h(xs)Ls:t−1(xs,dxt)f̃(xt)∫
χ(dxs)Ls:t−1(xs,dxt)f̃(xt)

∣∣∣∣∣ ≤ ρt−sosc(h) .

(22)

Proof of (i). See [3, Proposition 4.3.23].
Proof of (ii) When s = t, then (ii) is equal to∣∣∣∣∣

∫
χ(dxt)h(xt)f(xt)∫
χ(dxt)f(xt)

−
∫
χ(dxt)h(xt)f̃(xt)∫
χ(dxt)f̃(xt)

∣∣∣∣∣ .
This is of the form (η − η̃)h where η and η̃ are probability distributions on
(X,X ). Then,

|(η − η̃)h| ≤ 1

2
||η − η̃||TV osc (h) ≤ osc(h) .

Let s < t. By definition of the backward smoothing kernel, see (20),

Bχ,ss (xs+1, A) =

∫
χ(dxs)1A(xs)m(xs, xs+1)∫

χ(dxs)m(xs, xs+1)
.

Therefore,∫
χ(dxs)h(xs)Ls:t−1(xs,dxt)f(xt)

=

∫
χ(dxs)Ls(xs,dxs+1)Bχ,ss h(xs+1)Ls+1:t−1(xs+1,dxt)f(xt) .

By repeated application of the backward smoothing kernel we have∫
χ(dxs)h(xs)Ls:t−1(xs,dxt)f(xt)

=

∫
χ(dxs)Ls:t−1(xs,dxt)B

χ,s
t−1:sh(xt)f(xt) ,

8



where we denote by Bχ,st−1:s the composition of the kernels defined by induction
for s ≤ u

Bχ,ss:s
def
= Bχ,ss , Bχ,su:s(x,A)

def
=

∫
Bχ,su (x,dx′)Bχ,su−1:s(x

′, A) .

Finally, by definition of φχ,st|s:t∣∣∣∣∣
∫
χ(dxs)h(xs)Ls:t−1(xs,dxt)f(xt)∫
χ(dxs)Ls:t−1(xs,dxt)f(xt)

−
∫
χ(dxs)h(xs)Ls:t−1(xs,dxt)f̃(xt)∫
χ(dxs)Ls:t−1(xs,dxt)f̃(xt)

∣∣∣∣∣
=

∣∣∣∣∣∣φ
χ,s
t|s:t

[(
Bχ,st−1:sh

)
f
]

φχ,st|s:t [f ]
−
φχ,st|s:t

[(
Bχ,st−1:sh

)
f̃
]

φχ,st|s:t

[
f̃
]

∣∣∣∣∣∣ .
This is of the form (η − η̃) Bχ,st−1:sh where η and η̃ are probability distributions
on (X,X ). The proof of the second statement is completed upon noting that∣∣ηBχ,st−1:sh− η̃Bχ,st−1:sh

∣∣ ≤ 1

2
||η − η̃||TV osc

(
Bχ,st−1:sh

)
≤ 1

2
||µ− µ̃||TV δ

(
Bχ,st−1:s

)
osc(h) ≤ ρt−sosc(h) ,

where we used Lemma 3.1 in the last inequality.

3.2 Bivariate smoothing distribution
Proposition 3.3. Assume H2. Let χ, χ̃ be two distributions on (X,X ). For any
measurable function h : X2×Y→ Rd and any y ∈ YZ such that supx,x′ |h(x, x′, ys)| <
+∞ for any s ∈ Z

(i) For any r < s ≤ t and any `1, `2 ≥ 1,

sup
θ∈Θ

∣∣∣Φχ̃,rθ,s,t (h,y)− Φχ,r−`1θ,s,t+`2
(h,y)

∣∣∣ ≤ (ρs−1−r + ρt−s
)

osc(hs) . (23)

(ii) For any θ ∈ Θ, there exists a function y 7→ Φθ(h,y) s.t. for any distribu-
tion χ on (X,X ) and any r < s ≤ t

sup
θ∈Θ

∣∣∣Φχ,rθ,s,t (h,y)− Φθ (h, ϑsy)
∣∣∣ ≤ (ρs−1−r + ρt−s

)
osc(hs) . (24)

Remark 3.4. (a) If χ = χ̃, `1 = 0 and `2 ≥ 1, (23) becomes

sup
θ∈Θ

∣∣∣Φχ,rθ,s,t (h,y)− Φχ,rθ,s,t+`2 (h,y)
∣∣∣ ≤ ρt−sosc(hs) .
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(b) if `2 = 0 and `1 ≥ 1, (23) becomes

sup
θ∈Θ

∣∣∣Φχ̃,rθ,s,t (h,y)− Φχ,r−`1θ,s,t (h,y)
∣∣∣ ≤ ρs−1−rosc(hs) .

Proof. (i) Let r, s, t such that r < s ≤ t, `1, `2 ≥ 1, and θ ∈ Θ. Define the
distribution χθ,r−`1:r on (X,X ) by

χθ,r−`1:r(A)
def
=

∫
χ(dxr−`1)Lθ,r−`1:r−1(xr−`1 ,dxr)1A(xr)∫

χ(dxr−`1)Lθ,r−`1:r−1(xr−`1 ,X)
, ∀A ∈ X .

We write
∣∣∣Φχ̃,rθ,s,t (h,y)− Φχ,r−`1θ,s,t+`2

(h,y)
∣∣∣ ≤ T̃1 + T̃2 where, by using (5),

T̃1
def
=

∣∣∣∣∫ χ̃(dxr)Lθ,r:s−2(xr,dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1,dxs)Lθ,s:t−1(xs,X)∫
χ̃r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−`1:r(dxr)Lθ,r:s−2(xr,dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1,dxs)Lθ,s:t−1(xs,X)∫

χθ,r−`1:r(dxr)Lθ,r:t−1(xr,X)

∣∣∣∣ ,
and

T̃2
def
=

∣∣∣∣∫ χθ,r−`1:r(dxr)Lθ,r:s−2(xr,dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1,dxs)Lθ,s:t−1(xs,X)∫
χθ,r−`1:r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−`1:r(dxr)Lθ,r:s−2(xr,dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1,dxs)Lθ,s:t+`2−1(xs,X)∫

χθ,r−`1:r(dxr)Lθ,r:t+`2−1(xr,X)

∣∣∣∣ .
Set h̄s,t : x 7→

∫
Fθ,s−1,t(x, dxs)hs(x, xs) where Fθ,s−1,t is the forward smoothing

kernel (see (19)). Then,

T̃1 =

∣∣∣∣∫ χ̃(dxr)Lθ,r:s−2(xr,dxs−1)h̄s,t(xs−1)Lθ,s−1:t−1(xs−1,X)∫
χ̃r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−`1:r(dxr)Lθ,r:s−2(xr,dxs−1)h̄s,t(xs−1)Lθ,s−1:t−1(xs−1,X)∫

χθ,r−`1:r(dxr)Lθ,r:t−1(xr,X)

∣∣∣∣ .
By Lemma 3.2(i),

T̃1 ≤ ρs−1−rosc(h̄s,t) ≤ 2ρs−1−r sup
x∈X
|h̄s,t(x)| ≤ 2ρs−1−r sup

(x,x′)∈X2

|hs(x, x′)| .

Set h̃s : x 7→
∫

B
χθ,r−`1:s−1,s−1

θ,s−1 (x, dxs−1)hs(xs−1, x) , where B
χθ,r−`1:s−1,s−1

θ,s−1 is
the backward smoothing kernel (see (20)). Then,

T̃2 =

∣∣∣∣∣
∫
χθ,r−`1:s(dxs)h̃s(xs)Lθ,s:t−1(xs,dxt)Lθ,t:t+`2−1(xt,X)∫

χθ,r−`1:s(dxs)Lθ,s:t−1(xs,dxt)Lθ,t:t+`2−1(xt,X)

−
∫
χθ,r−`1:s(dxs)h̃s(xs)Lθ,s:t−1(xs,X)∫

χθ,r−`1:s(dxs)Lθ,s:t−1(xs,X)

∣∣∣∣∣ .
10



Then, by Lemma 3.2(ii),

T̃2 ≤ ρt−sosc(h̃s) ≤ 2ρt−s sup
x∈X
|h̃s(x)| ≤ 2ρt−s sup

(x,x′)∈X2

|hs(x, x′)| .

The proof is concluded upon noting that, for any constant c,

osc(h) = 2inf
c∈R

{
sup

(x,x′)∈X2

|hs(x, x′)− c|

}
.

(ii) By (23), for any increasing sequence of non negative integers (r`)`≥0,
(t`)`≥0 s.t. lim r` = lim t` = +∞, the sequence {Φχ,−r`θ,0,t`

(h,y)}`≥0 is a Cauchy
sequence uniformly in θ and χ. Then, there exists a limit Φθ (h,y) s.t.

lim
`→+∞

sup
χ

sup
θ∈Θ

∣∣∣Φχ,−r`θ,0,t`
(h,y)− Φθ (h,y)

∣∣∣ = 0 . (25)

We write, for any r < s ≤ t and any ` ≥ 1∣∣∣Φχ,rθ,s,t (h,y)− Φθ (h, ϑsy)
∣∣∣

≤
∣∣∣Φχ,rθ,s,t (h,y)− Φχ,r−`θ,s,t+` (h,y)

∣∣∣+
∣∣∣Φχ,r−`θ,s,t+` (h,y)− Φθ (h, ϑsy)

∣∣∣ .
Since Φχ,r−`θ,s,t+` (h,y) = Φχ,r−`−sθ,0,t+`−s (h, ϑsy), Proposition 3.3(i) yields∣∣∣Φχ,rθ,s,t (h,y)− Φθ (h, ϑsy)

∣∣∣ ≤ (ρs−r−1 + ρt−s
)

osc(hs)

+
∣∣∣Φχ,r−`−sθ,0,t+`−s (h, ϑsy)− Φθ (h, ϑsy)

∣∣∣ .
The proof is concluded by (25).

3.3 Limiting normalized log-likelihood
This section contains results adapted from [6] which are stated here for better
clarity. Define for any r ≤ s,

δχ,rθ,s (y)
def
= `χ,rθ,s+1(y)− `χ,rθ,s (y) , (26)

where `χ,rθ,s+1(y) is defined by

`χ,rθ,s+1(Y)
def
= log

∫
χ(dxr)

s+1∏
u=r+1

mθ(xu−1, xu)gθ(xu,Yu) λ(dxr+1:s+1) . (27)

For any T > 0 and any probability distribution χ on (X,X ), we thus have

`χ,0θ,T (y) =

T−1∑
s=0

(
`χ,0θ,s+1(y)− `χ,0θ,s (y)

)
=

T−1∑
s=0

δχ,0θ,s (y) . (28)
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It is established in Lemma 3.5 that for any θ ∈ Θ, y ∈ YZ, s ≥ 0 and any initial
distribution χ, the sequence {δχ,s−rθ,s (y)}r≥0 is a Cauchy sequence and its limit
does not depend upon χ. Regularity conditions on this limit are given in Lem-
mas 3.6 and 3.7. Finally, Theorem 3.8 shows that for any θ, limT T

−1`χ,0θ,T (Y)
exists w.p.1. and this limit is a (deterministic) continuous function in θ.

Lemma 3.5. Assume H2.

(i) For any `, r, s ≥ 0, any initial distributions χ, χ′ on X and any y ∈ YZ

sup
θ∈Θ

∣∣∣δχ,s−rθ,s (y)− δχ
′,s−r−`

θ,s (y)
∣∣∣ ≤ 2

1− ρ
ρr .

(ii) For any θ ∈ Θ, there exists a function y 7→ δθ(y) such that for any initial
distribution χ, any y ∈ YZ and any r, s ≥ 0,

sup
θ∈Θ

∣∣∣δχ,s−rθ,s (y)− δθ(ϑs ◦ y)
∣∣∣ ≤ 2

1− ρ
ρr .

Proof. Proof of (i). Let s ≥ 0 and r and r′ be such that r′ > r. By (26) and
(27), we have |δχ,s−rθ,s (y)− δχ

′,s−r′
θ,s (y)| = | logα− log β| where

α
def
=

∫
χ(dxs−r)

∏s+1
i=s−r+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)∫

χ(dxs−r)
∏s
i=s−r+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)

, (29)

β
def
=

∫
χ′(dxs−r′)

∏s+1
i=s−r′+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)∫

χ′(dxs−r′)
∏s
i=s−r′+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)

.

We prove that

α ∧ β ≥ σ−
∫
gθ(xs+1, ys+1)λ(dxs+1) , (30)

|α− β| ≤ 2ρrσ+

∫
gθ(xs+1, ys+1)λ(dxs+1) , (31)

and the proof is concluded since | logα− log β| ≤ |α− β|/(α ∧ β).
The minorization on α and β is a consequence of H2 upon noting that α and

β are of the form
∫
µ(dxs)mθ(xs, xs+1)gθ(xs+1, ys+1)λ(dxs+1) for some proba-

bility measure µ. The upper bound on |α−β| is a consequence of Lemma 3.2(i)
applied with

χ̃(dxs−r)←
∫
Xr′−r

χ′(dxs−r′)

{
s−r−1∏
i=s−r′

gθ(xi, yi)mθ(xi, xi+1)

}
λ(dxs−r′+1:s−r)

and h(u)←
∫
gθ(xs+1, ys+1)mθ(u, xs+1)λ(dxs+1).

Proof of (ii). By (i), for any y ∈ YZ, the sequence {δχ,−rθ,0 (y)}r≥0 is a Cauchy
sequence uniformly in θ: there exists a limit denoted by δθ(y) - which does not
depend upon χ - such that

lim
r→+∞

sup
θ∈Θ

∣∣∣δχ,−rθ,0 (y)− δθ(y)
∣∣∣ = 0 . (32)
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We write for r ≤ r′∣∣∣δχ,s−rθ,s (y)− δθ(ϑs ◦ y)
∣∣∣ ≤ ∣∣∣δχ,s−rθ,s (y)− δχ,s−r

′

θ,s (y)
∣∣∣+
∣∣∣δχ,s−r′θ,s (y)− δθ(ϑs ◦ y)

∣∣∣ .
Observe that by definition, δχ,s−rθ,s (y) = δχ,−rθ,0 (ϑs ◦ y). This property, combined
with Lemma 3.5(i), yield

sup
θ∈Θ

∣∣∣δχ,s−rθ,s (y)− δθ(ϑs ◦ y)
∣∣∣ ≤ 2

1− ρ
ρr + sup

θ∈Θ

∣∣∣δχ,−r′θ,0 (ϑs ◦ y)− δθ(ϑs ◦ y)
∣∣∣ .

When r′ → +∞, the second term in the rhs tends to zero by (32) - for fixed y, s
and χ -. This concludes the proof.

Lemma 3.6. Assume H2. For any y ∈ YZ and s ≥ 0,

sup
r≥0

sup
θ∈Θ

∣∣∣δχ,s−rθ,s (y)
∣∣∣ ≤ |log σ+b+(ys+1)|+ |log σ−b−(ys+1)| ,

and, for any r ≥ 0,

sup
θ∈Θ
|δθ(y)| ≤ 2

(1− ρ)
ρr + |log σ+b+(y1)|+ |log σ−b−(y1)| ,

where b+ and b− are defined by (2) and (3) .

Proof. For any 0 < m ≤ A/B ≤ M , | log(A/B)| ≤ |logM |+ |logm|. Note that
by definition, δχ,0θ,s (y) is of the form log(A/B) and under H4(b), σ−b−(ys+1) ≤
A/B ≤ σ+b+(ys+1). The second upper bound is a consequence of Lemma 3.5(ii).

Lemma 3.7. Assume H1-2 and H4. Then, θ 7→ E [δθ(Y)] is continuous on Θ
and

lim
η→0

E

[
sup

{θ,θ′∈Θ;|θ−θ′|<η}
|δθ(Y)− δθ′(Y)|

]
= 0 , P−a.s. (33)

Proof. By the dominated convergence theorem, Lemma 3.6 and H4(b), θ 7→
E? [δθ(Y)] is continuous if θ 7→ δθ(y) is continuous for any y ∈ YZ. Let y ∈ YZ.
By Lemma 3.5(ii), limr→+∞ supθ∈Θ |δ

χ,−r
θ,0 (y)−δθ(y)| = 0. Therefore, θ 7→ δθ(y)

is continuous provided for any r ≥ 0, θ 7→ δχ,−rθ,0 (y) is continuous (for fixed y and
χ). By definition of δχ,−rθ,0 (y), see (26), it is sufficient to prove that θ 7→ `χ,−rθ,s (y)

is continuous for s ∈ {0, 1}. By definition of `χ,−rθ,s (y), see (27),

`χ,−rθ,s (y) = log

∫
χ(dx−r)

s∏
i=−r+1

mθ(xi−1, xi)gθ(xi, yi)λ(dxi) .
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Under H1(a), θ 7→
∏s
i=−r+1mθ(xi−1, xi)gθ(xi, yi) is continuous on Θ, for any

x−r:s and y. In addition, under H1, for any θ ∈ Θ,∣∣∣∣∣
s∏

i=−r+1

mθ(xi, xi+1)gθ(xi+1,yi+1)

∣∣∣∣∣
= exp

(
(s+ r)φ(θ) +

〈
ψ(θ),

s∑
i=−r+1

S(xi, xi+1,yi+1)

〉)
.

Since, by H1, φ and ψ are continuous, and since Θ is compact, there exist
constants C1 and C2 such that,

sup
θ∈K

∣∣∣∣∣
s∏

i=−r+1

mθ(xi, xi+1)gθ(xi+1,yi+1)

∣∣∣∣∣
≤ C1 exp

(
C2

s∑
i=−r+1

sup
x,x′
|S(x, x,′ ,yi+1)|

)
.

Since the measure χ(dx−r)
∏s
i=−r+1 λ(dxi) is finite, the dominated conver-

gence theorem now implies that `χ,−rθ,s (y) is continuous on Θ.
For the proof of (33), let us apply the dominated convergence theorem again.

Since Θ is compact, for any y ∈ YZ, θ 7→ δθ(y) is uniformly continuous and
lim
η→0

sup
|θ−θ′|<η

|δθ(y)− δθ′(y)| = 0. In addition, we have by Lemma 3.6

sup
{θ,θ′∈Θ;|θ−θ′|<η}

|δθ(y)− δθ′(y)|

≤ 2 sup
θ∈Θ
|δθ(y)| ≤ 4

(1− ρ)
+ 2 {|log σ+ b+(y1)|+ |log σ− b−(y1)|} .

Under H4, this upper bound is P-integrable. This concludes the proof.

Theorem 3.8. Assume H1-2 and H4. Define the function ` : Θ → R by
`(θ)

def
= E [δθ(Y)], where δθ(y) is defined in Lemma 3.6.

(i) The function θ 7→ `(θ) is continuous on Θ.

(ii) For any initial distribution χ on (X,X )∣∣∣∣ 1

T
`χ,0θ,T (Y)− `(θ)

∣∣∣∣ −→T→+∞
0 , P−a.s. (34)

where `χ,0θ,T (Y) is defined in (27).

(iii) For any initial distribution χ on (X,X )

sup
θ∈Θ

∣∣∣∣ 1

T
`χ,0θ,T (Y)− `(θ)

∣∣∣∣ −→T→+∞
0 , P−a.s. (35)
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Proof. (i) is proved in Lemma 3.7.
(ii) By (28), for any T > 0, we have, for any y ∈ YZ:

1

T
`χ,0θ,T (y) =

1

T

T−1∑
s=0

δχ,0θ,s (y)

=
1

T

T−1∑
s=0

(
δχ,0θ,s (y)− δθ(ϑs ◦ y)

)
+

1

T

T−1∑
s=0

δθ(ϑ
s ◦ y) .

By Lemma 3.5(ii), for any 0 ≤ s ≤ T − 1,
∣∣∣δχ,0θ,s (Y)− δθ(ϑs ◦Y)

∣∣∣ ≤ 2 ρs

1−ρ . Since
ρ ∈ (0, 1),

lim
T→∞

1

T

T−1∑
s=0

(
δχ,0θ,s (Y)− δθ(ϑs ◦Y)

)
= 0 P−a.s. .

By Lemma 3.6

E [δθ(Y)] ≤ 2

(1− ρ)
+ E [|log σ+b+(Y1)|+ |log σ−b−(Y1)|] ,

and the rhs is finite under assumption H4(b). By H4(a), the ergodic theorem,
see [1, Theorem 24.1, p.314], concludes the proof.

(iii) Since Θ is compact, (35) holds if for any ε > 0, any θ′ ∈ Θ, there exists
η > 0 such that

lim
T→+∞

sup
{θ;|θ−θ′|<η}∩Θ

∣∣∣T−1`χ,0θ,T (Y)− T−1`χ,0θ′,T (Y)
∣∣∣ ≤ ε , P−a.s. (36)

Let ε > 0 and θ′ ∈ Θ. Choose η > 0 such that

E

[
sup

{θ∈Θ;|θ−θ′|<η}
|δθ(Y)− δθ′(Y)|

]
≤ ε ; (37)

such an η exists by Lemma 3.7. By (28), we have, for any θ ∈ Θ such that
|θ − θ′| < η ∣∣∣∣ 1

T
`χ,0θ,T (Y)− 1

T
`χ,0θ′,T (Y)

∣∣∣∣ ≤ 1

T

T−1∑
s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ . (38)

In addition, by Lemma 3.5(ii)

T−1∑
s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣

≤ 2

T−1∑
s=0

sup
θ∈Θ

∣∣∣δχ,0θ,s (Y)− δθ(ϑs ◦Y)
∣∣∣+

T−1∑
s=0

|δθ(ϑs ◦Y)− δθ′(ϑs ◦Y)|

≤ 4

(1− ρ)2
+

T−1∑
s=0

Ξ(ϑs ◦Y)
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where Ξ(y)
def
= sup{θ∈Θ;|θ−θ′|<η} |δθ(y − δθ′(y)|. This implies that

lim
T→+∞

sup
{θ∈Θ;|θ−θ′|<η}

1

T

T−1∑
s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ ≤ lim

T→+∞

1

T

T−1∑
s=0

Ξ(ϑs ◦Y) .

Under H4, the ergodic theorem implies that the rhs converges P−a.s. to E [Ξ(Y)],
see [1, p.314]. Then, using again (37),

lim
T→+∞

sup
{θ∈Θ;|θ−θ′|<η}

1

T

T−1∑
s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ ≤ ε , P−a.s.

Then, (36) holds and this concludes the proof.

3.4 Limit of the normalized score
This section is devoted to the proof of the P−a.s. convergence of the normal-
ized score T−1∇θ`χ,0θ,T (Y) to ∇θ`(θ). This result is established under additional
assumptions on the model.

S1 (a) For any y ∈ Y and for all (x, x′) ∈ X2, θ 7→ gθ(x, y) and θ 7→ mθ(x, x
′)

are continuously differentiable on Θ.
(b) We assume that E [φ(Y0)] < +∞ where

φ(y)
def
= sup

θ∈Θ
sup

(x,x′)∈X2

|∇θ logmθ(x, x
′) +∇θ log gθ(x

′, y)| . (39)

Lemma 3.9. Assume S1. For any initial distribution χ, any integers s, r ≥ 0
and any y ∈ YZ such that φ(yu) < +∞ for any u ∈ Z, the function θ 7→
`χ,s−rθ,s (y) is continuously differentiable on Θ and

∇θ`χ,s−rθ,s (y) =

s∑
u=s−r

Φχ,s−r−1
θ,u,s (Υθ,y) ,

where Υθ is the function defined on X2 × Y by

Υθ : (x, x′, y) 7→ ∇θ log {mθ(x, x
′)gθ(x

′, y)} .

Proof. Under S1, the dominated convergence theorem implies that the function
θ 7→ `χ,s−rθ,s (y) is continuously differentiable and its derivative is obtained by
permutation of the gradient and integral operators.

Lemma 3.10. Assume H2 and S1.

(i) There exists a function ξ : YZ → R+ such that for any s ≥ 0 and any
r, r′ ≥ s, any initial distribution χ, χ′ on X and any y ∈ YZ such that
φ(yu) < +∞ for any u ∈ Z,

sup
θ∈Θ

∣∣∣∇θδχ,s−rθ,s (y)−∇θδχ
′,s−r′

θ,s (y)
∣∣∣ ≤ 16ρ−1/4

1− ρ
ρ(r′∧r)/4 ξ(y) ,
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where
ξ(y)

def
=
∑
u∈Z

φ(yu)ρ|u|/4 . (40)

(ii) For any y ∈ YZ satisfying ξ(y) < +∞, the function θ 7→ δθ(y) given by
Lemma 3.5(ii) is continuously differentiable on Θ; and, for any θ ∈ Θ, any
initial distribution χ and any integers r ≥ s ≥ 0,

sup
θ∈Θ

∣∣∣∇θδχ,s−rθ,s (y)−∇θδθ(y ◦ ϑs)
∣∣∣ ≤ 16ρ−1/4

1− ρ
ρr/4 ξ(y) .

Proof. (i) By definition of δχ,s−rθ,s (y), see (26) and Lemma 3.9,

∇θδχ,s−rθ,s (y)−∇θδχ
′,s−r′

θ,s (y)

= ∇θ`χ,s−rθ,s+1 (y)−∇θ`χ,s−rθ,s (y)−∇θ`χ
′,s−r′
θ,s+1 (y) +∇θ`χ

′,s−r′
θ,s (y)

=

s∑
u=s−r

(
Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
)

−
s∑

u=s−r′

(
Φχ
′,s−r′−1
θ,u,s+1 (Υθ,y)− Φχ

′,s−r′−1
θ,u,s (Υθ,y)

)
+ Φχ,s−r−1

θ,s+1,s+1(Υθ,y)− Φχ
′,s−r′−1
θ,s+1,s+1(Υθ,y) .

We can assume without loss of generality that r′ ≤ r so that

∇θδχ,s−rθ,s (y)−∇θδχ
′,s−r′

θ,s (y)

=

s−r′−1∑
u=s−r

{
Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
}

+Φχ,s−r−1
θ,s+1,s+1(Υθ,y)−Φχ

′,s−r′−1
θ,s+1,s+1(Υθ,y)

+

s∑
u=s−r′

{
Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)− Φχ
′,s−r′−1
θ,u,s+1 (Υθ,y) + Φχ

′,s−r′−1
θ,u,s (Υθ,y)

}
.

Under H2 and S1, Remark 3.4 can be applied and for any s− r ≤ u ≤ s− r′−1,∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣ ≤ 2ρs−uφ(yu),

where φu(y) is defined in (39). Similarly, by Remark 3.4∣∣∣Φχ,s−r−1
θ,s+1,s+1(Υθ,y)− Φχ

′,s−r′−1
θ,s+1,s+1(Υθ,y)

∣∣∣ ≤ 2ρr
′+1φ(ys+1) .

For any s− r′ ≤ u ≤ s, by Remark 3.4,∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ

′,s−r′−1
θ,u,s+1 (Υθ,y) + Φχ

′,s−r′−1
θ,u,s (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣

≤
∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ

′,s−r′−1
θ,u,s+1 (Υθ,y)

∣∣∣+∣∣∣Φχ′,s−r′−1
θ,u,s (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣

≤ 4ρu+r′−sφ(yu)
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and by Remark 3.4,∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ

′,s−r′−1
θ,u,s+1 (Υθ,y) + Φχ

′,s−r′−1
θ,u,s (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣

≤
∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣+∣∣∣Φχ′,s−r′−1

θ,u,s+1 (Υθ,y)− Φχ
′,s−r′−1
θ,u,s (Υθ,y)

∣∣∣
≤ 4ρs−uφ(yu) .

Hence,

∣∣∣∇θδχ,s−rθ,s (y)−∇θδχ
′,s−r′

θ,s (y)
∣∣∣ ≤ 2

s−r′−1∑
u=s−r

ρs−uφ(yu)+4

s+1∑
u=s−r′

(
ρu+r′−s ∧ ρs−u

)
φ(yu) .

Furthermore,

s+1∑
u=s−r′

φ(yu)
(
ρu+r′−s ∧ ρs−u

)
≤

∑
s−r′≤u≤bs−r′/2c

ρs−uφ(yu) +
∑

u≥bs−r′/2c

ρu+r′−sφ(yu)

≤ ρr
′/2
∑
u∈Z

φ(yu)ρ|u|/4 · · ·

×

 ∑
u≤bs−r′/2c

ρs−u−r
′/2−|u|/4 +

∑
bs−r′/2c+1≤u≤s+1

ρu+r′/2−s−|u|/4


≤ 2

ρ(r′−1)/4

1− ρ
∑
u∈Z

φ(yu)ρ|u|/4 ,

where we used that sups−r′≤u≤bs−r′/2c |u| ≤ r′ and supbs−r′/2c+1≤u≤s+1 |u| ≤
r′ + 1. Moreover, upon noting that −u/2 + (s + 1)/2 ≤ s − u − r′/2 when
u ≤ s− r′ − 1,

s−r′−1∑
u=s−r

φ(yu)ρs−u ≤ ρr
′/2

s−r′−1∑
u=s−r

φ(yu)ρs−u−r
′/2

≤ ρr
′/2

s−r′−1∑
u=s−r

φ(yu)ρ−u/2+(s+1)/2

≤ ρr
′/2ρ(s+1)/2

s−r′−1∑
u=s−r

φ(yu)ρ|u|/2 ,

where we used that s− r′ − 1 ≤ 0 in the last inequality.
Hence,

sup
θ∈Θ

∣∣∣∇θδχ,s−rθ,s (y)−∇θδχ
′,s−r′

θ,s (y)
∣∣∣ ≤ 16

1− ρ
ρ(r′−1)/4

∑
u∈Z

φ(yu)ρ|u|/4 . (41)
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(ii) Let y ∈ YZ such that ξ(y) < +∞. Then for any u ∈ Z, φ(yu) < +∞. By
Lemma 3.9 and Eq. (26), the functions {θ 7→ δχ,−rθ,0 (y)}r≥0 are C1 functions on
Θ. By (i), there exists a function θ 7→ δ̃θ(y) such that

lim
r→+∞

sup
θ∈Θ

∣∣∣∇θδχ,−rθ,0 (y)− δ̃θ(y)
∣∣∣ = 0 .

Furthermore, by Lemma 3.5,

lim
r→+∞

sup
θ∈Θ

∣∣∣δχ,−rθ,0 (y)− δθ(y)
∣∣∣ = 0 .

Then, θ 7→ δθ(y) is C1 on Θ and for any θ ∈ Θ, δ̃θ(y) = ∇θδθ(y).
We thus proved that for any y ∈ YZ such that ξ(y) < +∞ and for any initial

distribution χ,
lim

r→+∞
sup
θ∈Θ

∣∣∣∇θδχ,−rθ,0 (y)−∇θδθ(y)
∣∣∣ = 0 . (42)

Observe that by definition, ∇θδχ,s−rθ,s (y) = ∇θδχ,−rθ,0 (ϑs ◦ y). This property,
combined with Lemma 3.10(i), yields

sup
θ∈Θ

∣∣∣∇θδχ,s−rθ,s (y)−∇θδθ(ϑs ◦ y)
∣∣∣

≤ 16ρ−1/4

1− ρ
ρr/4 ξ(y) + sup

θ∈Θ

∣∣∣∇θδχ,−r′θ,0 (ϑs ◦ y)−∇θδθ(ϑs ◦ y)
∣∣∣ .

Since ξ(ϑs ◦ y) < +∞, when r′ → +∞, the second term tends to zero by (42) -
for fixed y, s and χ -. This concludes the proof.

Lemma 3.11. (i) Assume S1. For any y ∈ YZ such that φ(yu) < +∞ for
any u ∈ Z, for any integers r, s ≥ 0,

sup
θ∈Θ

∣∣∣∇θδχ,s−rθ,s (y)
∣∣∣ ≤ 2

s+1∑
u=s−r

φ(yu) .

(ii) Assume H2 and S1. Then, for any y ∈ YZ such that ξ(y) < +∞ and for
any r ≥ 0,

sup
θ∈Θ
|∇θδθ(y)| ≤ 2

1∑
u=−r

φ(yu) +
16ρ−1/4

1− ρ
ξ(y)ρr/4 ,

where ξ(y) is defined in Lemma 3.10.

Proof. (i) By (26) and Lemma 3.9,∣∣∣∇θδχ,s−rθ,s (y)
∣∣∣ =

∣∣∣∇θ`χ,s−rθ,s+1 (y)−∇θ`χ,s−rθ,s (y)
∣∣∣

≤ 2

s+1∑
u=s−r

∣∣∣∣∫ χ(dxs−r)Lθ,s−r:u−1(xs−r,dxu)∇θ log [mθ(xu−1, xu)gθ(xu,yu)]Lθ,u:s−1(xu,X)∫
χ(dxs−r)Lθ,s−r:s−1(xs−r,X)

∣∣∣∣ .
19



The proof is concluded upon noting that for any s− r ≤ u ≤ s+ 1,∣∣∣∣∫ χ(dxs−r)gθ(xs−r, ys−r)Lθ,s−r:u−1(xs−r,dxu)∇θ log gθ(xu,yu)Lθ,u:s−1(xu,X)∫
χ(dxs−r)gθ(xs−r,ys−r)Lθ,s−r:s−1(xs−r,X)

∣∣∣∣
is upper bounded by φ(yu).

(ii) is a consequence of Lemma 3.10(ii) and Lemma 3.11(i).

Theorem 3.12. Assume H2, H4(a) and S1.

(i) For any T ≥ 0 and any distribution χ on X, the functions θ 7→ `χ,0θ,T (Y)
and θ 7→ `(θ) are continuously differentiable P−a.s.

(ii) For any initial distribution χ on (X,X ),

1

T
∇θ`χ,0θ,T (Y) −→

T→+∞
∇θ`(θ) P−a.s. (43)

Proof. By (28) and Lemma 3.9, for any y such that φ(yu) < +∞ for any u ∈ Z,
`χ,0θ,T (y) and δχ,0θ,s (y) are continuously differentiable and (28) implies

∇θ`χ,0θ,T (y) =

T−1∑
s=0

∇θδχ,0θ,s (y) .

This decomposition leads to

1

T
∇θ`χ,0θ,T (Y) =

1

T

T−1∑
s=0

(
∇θδχ,0θ,s (Y)−∇θδθ(ϑs ◦Y)

)
+

1

T

T−1∑
s=0

∇θδθ(ϑs ◦Y) .

(44)
Consider the first term of the rhs of (44). Since Y is a stationary process,

assumption S1(b) implies that E [ξ(Y)] < +∞, where ξ is defined by (40).
Then, ξ(Y) < +∞ P−a.s. and by Lemma 3.10(ii), for any 0 ≤ s ≤ T − 1,∣∣∣∇θδχ,0θ,s (Y)−∇θδθ(ϑs ◦Y)

∣∣∣ ≤ ξ(Y)
16ρ−1/4

1− ρ
ρs/4 .

Therefore

1

T

T−1∑
s=0

∣∣∣∇θδχ,0θ,s (Y)−∇θδθ(ϑs ◦Y)
∣∣∣ ≤ 1

T
ξ(Y)

16ρ−1/4

1− ρ
1

1− ρ1/4
,

and

lim
T→∞

1

T

T−1∑
s=0

(
∇θδχ,0θ,s (Y)−∇θδθ(ϑs ◦Y)

)
= 0 , P−a.s.

Finally, consider the second term of the rhs of (44). By Lemma 3.11 (applied
with r = 1), E [|∇θδθ(Y)|] < +∞. Under H4, the ergodic theorem (see [1,
Theorem 24.1, p.314]) states that

lim
T→∞

1

T

T−1∑
s=0

∇θδθ(ϑs ◦Y) = E [∇θδθ(Y)] , P−a.s.
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Then, by (44) and the above discussion,

lim
T→∞

1

T
∇θ`χ,0θ,T (Y) = E [∇θδθ(Y)] , P−a.s.

By Lemma 3.11, applied with r = 0,

sup
θ∈Θ
|∇θδθ(Y)| ≤ 2 [φ(Y0) + φ(Y1)] + ξ(Y)ρ1/2 ,

and the rhs is integrable under the stated assumptions. Therefore, by the dom-
inated convergence theorem, E [∇θδθ(Y)] = ∇θE [δθ(Y)] = ∇θ`(θ) . This con-
cludes the proof.
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4 Additional experiments
In this section, we provide additional plots for the applications studied in [7,
Section 3].

4.1 Linear Gaussian model
Figure 1 illustrates the fact that the convergence properties of the BOEM do
not depend on the initial distribution χ used in each block. Data are sampled
using φ = 0.97, σ2

u = 0.6 and σ2
v = 1. All runs are started with φ = 0.1, σ2

u = 1
and σ2

v = 2. Figure 1 displays the estimation of φ by the averaged BOEM
algorithm with τn ∼ n and τn ∼ n1.5, over 100 independent Monte Carlo runs
as a function of the number of blocks. We consider first the case when χ is the
stationary distribution of the hidden process i.e. χ ≡ N (0, (1 − φ2)−1σ2

u), and
the case when χ is the filtering distribution obtained at the end of the previous
block, computed with the Kalman filter. The estimation error is similar for both
initialization schemes, even when φ is close to 1 and for any choice of {τn}n≥1.

The theoretical analysis of BOEM says that a sufficient condition for con-
vergence is the increasing size of the blocks. On Figure 2, we compare different
strategies for the definition of τn

def
= Tn − Tn−1. A slowly increasing sequence

{τn}n≥0 is compared to different strategies using the same number of observa-
tions within each block. We consider the Linear Gaussian model:

Xt+1 = φXt + σuUt , Yt = Xt + σvVt ,

where X0 ∼ N
(
0, σ2

u(1− φ2)−1
)
, {Ut}t≥0, {Vt}t≥0 are i.i.d. standard Gaussian

r.v., independent from X0. Data are sampled using φ = 0.9, σ2
u = 0.6 and

σ2
v = 1. All runs are started with φ = 0.1, σ2

u = 1 and σ2
v = 2. Figure 2 shows

the estimation of φ over 100 independent Monte Carlo runs (same conclusions
could be drawn for σ2

u and σ2
v). For each choice of {τn}n≥0, the median and first

and last quartiles of the estimation are represented as a function of the number
of observations.

We observe that BOEM does not converge when the block size sequence
is constant and small: as shown in Figure 2, if the number of observations
is too small (τn = 25), the algorithm is a poor approximation of the limiting
EM recursion and does not converge. With greater block sizes (τn = 100 or
τn = 350), the algorithm converges but the convergence is slower because it
is initialized far from the true value and many observations are needed to get
several estimations. BOEM with slowly increasing block sizes has a better
behavior since many estimations are produced at the beginning and, once the
estimates are closer to the true value, the bigger block sizes reduce the variance
of the estimation.

Moreover, our convergence rates are given up to a multiplicative constant :
the theory says that

∑
n τ
−γ/2
n <∞ where γ is related to the ergodic behavior

of the HMM (see assumptions H5).
Even if the sequence is chosen to increase at a polynomial rate, we can have

τn ∼ c nα (α > 1) with a constant c such that the first blocks are quite small
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Figure 1: Estimation of φ after 5, 10, 25, 50 and 150 blocks, with two different
initialization schemes: the stationary distribution (left) and the filtering distri-
bution at the end of the previous block (right). The boxplots are computed
with 100 Monte Carlo runs.

to allow a sufficiently large number of updates of the parameters {θn, n ≥ 1}.
During a (deterministic) "burn-in" period, the first blocks can even be of a fixed
length before beginning the “increasing” procedure.

4.2 Finite state-space HMM
Observations are sampled using d = 6, v = 0.5, xi = i ,∀i ∈ {1, . . . , d} and the
true transition matrix is given by

m =


0.5 0.05 0.1 0.15 0.15 0.05
0.2 0.35 0.1 0.15 0.05 0.15
0.1 0.1 0.6 0.05 0.05 0.1
0.02 0.03 0.1 0.7 0.1 0.05
0.1 0.05 0.13 0.02 0.6 0.1
0.1 0.1 0.13 0.12 0.1 0.45

 .
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(a) τn = n1.1 (red) and τn = 25 (blue).
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(b) τn = n1.1 (red) and τn = 100 (blue).
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(c) τn = n1.1 (red) and τn = 350 (blue).

Figure 2: Estimation of φ with different block size schemes: the median (bold
line) and the first and last quartiles (dotted line) are shown for τn = n1.1 (red),
τn = 100 (black) and τn = 350 (purple). The quantities are computed with 100
Monte Carlo runs.

4.2.1 Comparison to an online EM based procedure

In this case, we want to estimate the states {x1, . . . , xd}. All the runs are started
from v = 2 and from the initial states {−1; 0; .5; 2; 3; 4}. The experiment is
the same as the one in [7, Section 3.2]. The averaged BOEM is compared to
an online EM procedure (see [2]) combined with Polyak-Ruppert averaging (see
[9]). This online EM based algorithm follows a stochastic approximation update
and depends on a step-size sequence {γn}n≥0 which is chosen in the same way
as in [7, Section 3.2]. Figure 3 displays the empirical median and first and last
quartiles for the estimation of x2 with both averaged algorithms as a function of
the number of observations. These estimates are obtained over 100 independent
Monte Carlo runs with τn = n1.1 and γn = n−0.53. Both algorithms converge
to the true value x2 = 2 and these plots confirm the similar behavior of BOEM
and the online EM of [2].

4.2.2 Comparison to a recursive maximum likelihood procedure

In the numerical applications below, we give supplementary graphs to compare
the convergence of the averaged BOEM with the convergence of the Polyak-
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(a) Estimation of x2 with averaged BOEM.
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(b) Estimation of x2 with averaged OEM.

Figure 3: Estimation of x2 using the averaged online EM and averaged BOEM.
Each plot displays the empirical median (bold line) and the first and last quar-
tiles (dotted lines) over 100 independent Monte Carlo runs with τn = n1.1 and
γn = n−0.53. The first ten observations are omitted for a better visibility.

Ruppert averaged RML procedure. The experiment is the same as the one in
[7, Section 3.2]. Figure 4 and 5 displays the empirical median and first and
last quartiles of the estimation of v and m(1, 2) over 100 independent Monte
Carlo runs. Both algorithms have a similar behavior for the estimation of these
parameters.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of observations

(a) Averaged BOEM.
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(b) Averaged RML.

Figure 4: Empirical median (bold line) and first and last quartiles (dotted
line) for the estimation of v using the averaged RML algorithm (right) and the
averaged BOEM algorithm (left). The true values is v = 0.5 and the averaging
procedure is starter after 10000 observations. The first 10000 observations are
not displayed for a better clarity.

4.3 Stochastic volatility model
Consider the following stochastic volatility model:

Xt+1 = φXt + σUt , Yt = βe
Xt
2 Vt ,
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(a) Averaged BOEM.
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Figure 5: Empirical median (bold line) and first and last quartiles (dotted line)
for the estimation of m(1, 2) using the averaged RML algorithm (right) and
the averaged BOEM algorithm (left). The true values is m(1, 2) = 0.05 and
the averaging procedure is starter after 10000 observations. The first 10000
observations are not displayed for a better clarity.

where X0 ∼ N
(
0, (1− φ2)−1σ2

)
and (Ut)t≥0 and (Vt)t≥0 are two sequences of

i.i.d. standard Gaussian r.v., independent from X0. Data are sampled using
φ = 0.8, σ2 = 0.2 and β2 = 1. All runs are started with φ = 0.1, σ2 = 0.6 and
β2 = 2.

In this model, the smoothed sufficient statistics {S̄χ,Tn−1
τn (θn−1,Y)}n≥1 can

not be computed explicitly. We thus propose to replace the exact computation
by a Monte Carlo approximation based on particle filtering. The performance of
the Stochastic BOEM is compared to the online EM algorithm given in [2] (see
also [5]). To our best knowledge, there do not exist results on the asymptotic
behavior of the algorithms by [2, 5]; these algorithms rely on many approxi-
mations that make the proof quite difficult (some insights on the asymptotic
behavior are given in [2]). Despite there are no results in the literature on the
rate of convergence of the Online EM algorithm by [2] we choose the step size γn
in [2] and the block size τn s.t. γn = n−0.6 and τn ∝ n3/2 (see [7, Section 3.2] for
a discussion on this choice). 50 particles are used for the approximation of the
filtering distribution by Particle filtering. We report in Figure 6, the boxplots
for the estimation of the three parameters (β, φ, σ2) for the Polyak-Ruppert
[9] averaged Online EM and the averaged BOEM. Both average versions are
started after 20000 observations. Figure 6 displays the estimation of φ, σ2 and
β2. This figure shows that both algorithms have the same behavior. Similar con-
clusions are obtained by considering other true values for φ (such as φ = 0.95).
Therefore, the intuition is that online EM and Stochastic BOEM have the same
asymptotic behavior. The main advantage of the second approach is that it
relies on approximations which can be controlled in such a way that we are able
to show that the limiting points of the particle version of the Stochastic BOEM
algorithms are the stationary points of the limiting normalized log-likelihood of
the observations.

We now compare the two algorithms when the true value of φ is (in absolute
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Figure 6: Estimation of φ, σ2 and β2 using the averaged online EM algorithm
(left) and the averaged BOEM (right), after n = {1000, 10k, 50k, 100k} obser-
vations. The true value of φ is 0.8.

value) closer to 1: we choose φ = 0.95, β2 and σ2 being the same as in the
previous experiment.

As illustrated on Figure 7, the same conclusions are drawn for greater values
of φ.
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Figure 7: Estimation of φ using the averaged online EM algorithm (left) and the
averaged BOEM algorithm (right), after n = {5k, 25k, 40k, 50k} observations.
The true value of φ is 0.95.
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