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Supplement paper to “Online Expectation

Maximization based algorithms for inference in

Hidden Markov Models”

Sylvain Le Corff∗† and Gersende Fort†

August 19, 2011

This is a supplementary material to the paper [6].
It contains technical discussions and/or results adapted from published pa-

pers: in section 2, we show that geometrically ergodic Markov chains satisfy the
assumptions H4b and H5; in sections 3 and 4, we provide results - useful for
the proofs of some theorems in [6] - which are close to existing results in the
literature.

It also contains in Section 5, additional plots for the illustration of comments
in [6, Section 3].

To make this supplement paper as self-contained as possible, we decided to
rewrite in Section 1 the model and the main definitions introduced in [6].

1 Assumptions and Model

Let Y = {Yt}t∈Z be the observation process defined on (Ω,P⋆,F) and taking
values in Y

Z where Y is a general space endowed with a countably generated
σ-field B(Y).

A HMM model parameterized by θ, for θ in a set Θ ⊆ R
dθ , is fitted to

the observations: consider a family of transition kernels {mθ(x, x
′)dλ(x′)}θ∈Θ

onto X × B(X) where X is a general state-space equipped with a countably
generated σ-field B(X), and λ is a bounded non-negative measure on (X,B(X)).
Let {gθ(x, y)dν(y)}θ∈Θ be a family of transition kernels on (X × B(Y)), where
ν is a measure on (Y,B(Y)).

It is assumed:

H1 (a) There exist continuous functions φ : Θ → R, ψ : Θ → R
d and

S : X× X× Y
Z → R

d s.t.

logmθ(x, x
′) + log gθ(x

′, y) = φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉 ,
∗This work is partially supported by the French National Research Agency, under the

program ANR-08-BLAN-0218 BigMC
†LCTI, CNRS and TELECOM ParisTech, 46 rue Barrault 75634 Paris Cedex 13, France
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where 〈·, ·〉 denotes the scalar product on R
d.

(b) There exists an open subset S of Rd that contains the convex hull of
S(X× X× Y

Z).

(c) There exists a continuous function θ̄ : S → Θ s.t. for any s ∈ S,

θ̄(s) = argmaxθ∈Θ {φ(θ) + 〈s, ψ(θ)〉} .

H2 There exist σ− and σ+ s.t. for any (x, x′) ∈ X
2 and any θ ∈ Θ, 0 < σ− ≤

mθ(x, x
′) ≤ σ+. Set ρ

def
= 1− (σ−/σ+) .

H3-(γ) E⋆

[
supx,x′∈X2 |S(x, x′,Y0)|γ

]
< +∞.

H4 (a) Under P⋆, Y is a stationary sequence.

(b) The shift operator is ergodic with respect to P⋆.

(c) E⋆ [| log b−(Y0)|+ | log b+(Y0)|] < +∞ where

b−(y)
def
= infθ∈Θ

∫
gθ(x, y)λ(dx) , (1)

b+(y)
def
= supθ∈Θ

∫
gθ(x, y)λ(dx) . (2)

For any sequence of r.v. Z
def
= {Zt}t∈Z on (Ω, P̃,F), let

FZ
k

def
= σ ({Zu}u≤k) and GZk

def
= σ ({Zu}u≥k)

be σ-fields associated to Z. We also define the mixing coefficients by, see [3],

βZ(n) = sup
u∈Z

sup
B∈GZ

u+n

|P̃(B|FZ
u )− P̃(B)| , ∀ n ≥ 0 . (3)

H5 There exist C ∈ [0, 1) and β ∈ (0, 1) s.t. for any n ≥ 0, βY(n) ≤ Cβn,
where βY is defined in (3).

H6 -(γ) The block size sequence {τn}n≥1 satisfies
∑

k≥0 τ
−γ/2
k <∞.

Define for any θ ∈ Θ,

S̄(θ)
def
= E⋆ [Eθ [S(X−1, X0,Y0)|Y]] . (4)

R(θ)
def
= θ̄

(
S̄(θ)

)
. (5)

G(s)
def
= S̄(θ̄(s)) , ∀s ∈ S , (6)

where θ̄ is given by H1(c).

H7 (a) G is twice continuously differentiable on S.

(b) s⋆ = G(s⋆) and there exists 0 < γ < 1 s.t. sp(Γ) ≤ γ where sp
denotes the spectral norm.
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Set

Tn
def
=

n∑

i=1

τi , T0
def
= 0 .

H8 (a) {τn+1/τn}n≥0 converges to q and γq < 1.

(b) lim supn
∑n

k=1{
∣∣∣ τk+1

τk
− q
∣∣∣√τk + log τk}/

√
Tn <∞.

2 Checking H4(b) and H5

2.1 Checking H4(b)

The following discussion has been suggested by R. Douc1 and E. Moulines2.
The authors would like to thank them for the fruitful discussions.

Assumption H4(b) can be easily proved when Y is a positive recurrent and
ψ-irreducible Markov chain. Assume first that Y is a one-sided Markov chain
{Yt}t≥0 with invariant probability π defined on a probability space (Ω,F ,Pπ).

We may choose Ω
def
= Y

N and F def
= B(Y)⊗N, Y being the canonical process. To

prove H4(b), we show that Y is mixing (see [3, Chapter 13]) i.e.

lim
k→+∞

Pπ{Y ∈ A, ϑk(Y) ∈ B} = Pπ{Y ∈ A}Pπ{Y ∈ B} , ∀A,B ∈ B(Y)⊗N .

(7)
This is sufficient to prove (7) when A is a cylinder, i.e. when there exists p ∈ N

such that A = {ω def
= {wi}i≥0 ∈ Y

N; (wi1 · · · , wip) ∈ H}, where H ∈ B(Y)⊗p

and (i1, · · · , ip) is a p-tuple of distinct non-negative integers. For all sufficiently
large k, by the Markov property,

Pπ{Y ∈ A, ϑk(Y) ∈ B} = Eπ

[
1A(Y)1B(ϑ

k(Y))
]

= Eπ

[
1A(Y)E

Yip

[
E
Yk−ip

[1B(Y)]
]]

.

Under the stated assumption on Y, we can choose Y0 such that π(Y0) = 1

and for any x ∈ Y0, Ex

[
E
Yk−ip

[1B(Y)]
]
−→

k→+∞
Pπ{B}. The proof is then

concluded by the dominated convergence theorem. This result implies that
if Y is a two sided Markov chain {Yt}t∈Z, with a positive recurrent and ψ-
irreducible transition kernel, then Y is ergodic. Indeed, Pπ may be extended on
(Y⊗Z,B(Y)⊗Z) where B(Y)⊗Z is generated by ∪i<j∈ZFi,j , with, for any integers

i < j, Fi,j
def
= σ ({Yk; i ≤ k ≤ j}). For any integers i, j and k s.t. i < j and any

A,B ∈ Fi,j ,

Pπ{A ∩ ϑ−k(B)} = Pπ{ϑ−i(A) ∩ ϑ−k(ϑ−i(B))} ,

where ϑ−i(A), ϑ−i(B) ∈ σ ({Yk; k ≥ 0}). Then, we can conclude as above.

1randal.douc@it-sudparis.eu
2eric.moulines@telecom-paristech.fr
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2.2 Checking H5

1) Combining [9, Chapter 9] and recent results on the control of the ergodicity
of Markov chains by coupling technique, see [4], it can be proved that H5
holds for ψ-irreducible, aperiodic and geometrically ergodic Markov chains.

2) Upon noting that, for all n ≥ 0, βY(n) ≤ β(X,Y)(n), we can similarly prove
that H4(b) (and H5) hold when Y is the observation process of a joint ψ-
irreductible and aperiodic Markov chain (X,Y) (e.g. (X,Y) is a hidden
Markov model). In this case, irreducibility, aperiodicity and geometric er-
godicity have to be established for the Markov transition kernel Q of the
X× Y valued Markov chain {(Xt, Yt)}t∈Z.

3 Detailed proofs of [6]

Recall the following definition from [6]: for a distribution χ on (X,B(X)), posi-
tive integers T, τ and θ ∈ Θ, set

S̄χ,T
τ (θ,Y)

def
=

1

τ

T+τ∑

t=T+1

Φχ,T
θ,t,T+τ (S,Y) , (8)

where S is the function given by H1(a) and

Φχ,r
θ,s,t(S,y)

def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1, yi+1)}S(xs−1, xs, ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1

i=r mθ(xi, xi+1)gθ(xi+1, yi+1)} dλ(xr+1:t)
. (9)

3.1 Proof of [6, Theorem 4.4]

We check the assumptions of [5, Proposition 9] and [5, Proposition 11] with

T (θ)
def
= R(θ) (see (5)), Fn(θ)

def
= θ̄

(
S̄χ,Tn
τn+1

(θn,Y)
)

and L def
= {θ ∈ Θ; R(θ) = θ}.

We start by checking the conditions of [5, Proposition 11]. Under the stated
assumptions, (a) holds. For (c) we prove that for any compact subset K ⊂ Θ,

∣∣∣W ◦ R(θn)−W ◦ θ̄(S̄χ,Tn
τn+1

(θn,Y))
∣∣∣1θn∈K −→

n→+∞
0 P⋆ − a.s . (10)

By Theorem 4.1, the function S̄ given by (4) is continuous on Θ and then

S̄(K) def
= {s ∈ S; ∃θ ∈ K, s = S̄(θ)} is compact and, for any δ > 0 (small

enough), we can define the compact subset S̄(K, δ) def
=
{
s ∈ R

d; d(s, S̄(K)) ≤ δ
}

of S, where d(s, S̄(K)) def
= infs′∈S̄(K) |s− s′|. Let δ > 0 (small enough) and

ε > 0. Since W◦ θ̄ is continuous (see H1(c) and [6, Proposition 4.2]) and S̄(K, δ)
is compact, W ◦ θ̄ is uniformly continuous on S̄(K, δ) and there exists η > 0 s.t.,

∀x, y ∈ S̄(K, δ) , |x− y| ≤ η ⇒ |W ◦ θ̄(x)−W ◦ θ̄(y)| ≤ ε . (11)
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Set α
def
= δ ∧ η and ∆Sn

def
= |S̄(θn)− S̄χ,Tn

τn+1
(θn,Y)|1θn∈K. We write,

P⋆

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̄χ,Tn
τn+1

(θn,Y))
∣∣∣1θn∈K ≥ ε

}

= P⋆

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̄χ,Tn
τn+1

(θn,Y))
∣∣∣1θn∈K ≥ ε; ∆Sn > δ

}

+ P⋆

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̄χ,Tn
τn+1

(θn,Y))
∣∣∣1θn∈K ≥ ε; ∆Sn ≤ δ

}

≤ P⋆ {∆Sn > δ}+ P⋆ {∆Sn > η} ≤ 2P⋆ {∆Sn > α} .

By the Markov inequality and [6, Proposition 6.5], since 2 < p̄1 < p̄2, there
exists a constant C s.t.

P⋆

{∣∣∣W ◦ θ̄(S̄(θn))−W ◦ θ̄(S̄χ,Tn
τn+1

(θn,Y))
∣∣∣1θn∈K ≥ ε

}

≤ 2

αp1
E⋆

[
|S̄(θn)− S̄χ,Tn

τn+1
(θn,Y)|p̄1

]
≤ C

[
1

τn+1

]p̄1/2

.

(10) follows from H6-(p̄1) and the Borel-Cantelli lemma. The proof of the
condition (b) follows the same lines. By [5, Proposition 11], this implies that
lim supn pn < +∞ P⋆ − a.s and that {θn}n≥0 is a compact sequence P⋆ − a.s.
For the other statements, we apply [5, Proposition 9]. L∩K is compact since L
is closed and K is compact. We now prove that for any compact subset K ⊂ Θ,

|W(θn+1)−W ◦ R(θn)|1θn∈K −→
n→+∞

0 P⋆ − a.s . (12)

Since lim supn pn < +∞ P⋆ − a.s, it is sufficient to prove this convergence on
the set {ω ∈ Ω; lim supn pn(w) < +∞}. For any ω s.t. lim supn pn(w) < +∞,
there exists (a random) n0 s.t., for any n ≥ n0, pn(w) = pn+1(w) and then
θn+1(w) = θn+1/2(w), see [6, Eq.(4)]. Therefore (12) follows from (10).

3.2 Proof of [6, Proposition 6.6]

We start with rewriting some definitions and assumptions introduced in [6].
Define the sequences Sn, µnρn, n ≥ 0 by

S0
def
= S̄χ,0

τ1 (θ0,Y) and Sn
def
= S̄χ,Tn

τn+1
(θn,Y) , ∀n ≥ 0 , (13)

where S̄χ,T
τ is given by (8); µ0 = 0, ρ0 = S0 − s⋆ and

µn
def
= Γµn−1 + en , ρn

def
= Sn − s⋆ − µn , n ≥ 1 , (14)

where,

en
def
= Sn − S̄(θn) , n ≥ 1 , (15)

and S̄ is given by (4).
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(proof) Let p ∈ (2, p̄2). By (14), for all n ≥ 1, µn =
∑n−1

k=0 Γ
ken−k. By H7

and the Minkowski inequality, for all n ≥ 1, ‖µn‖⋆,p ≤
∑n−1

k=0 γ
k ‖en−k‖⋆,p. By

(13) and [6, Proposition 6.5], there exists a constant C s.t. for any n ≥ 1,

‖µn‖⋆,p ≤ C
n−1∑

k=0

γk

√
1

τn+1−k
.

By [7, Result 178, p. 39] and H8(a) (upon noting that q ≥ 1 so that
√
qγ < 1),

this yields
√
τnµn = OLp(1).

By H7, using a Taylor expansion with integral form of the remainder term,

G(Sn−1)−G(s⋆)− Γ (Sn−1 − s⋆)

=
d∑

i,j=1

(Sn−1,i − s⋆,i) (Sn−1,j − s⋆,j)Rn−1(i, j)

=
d∑

i,j=1

(µn−1,i + ρn−1,i)(µn−1,j + ρn−1,j)Rn−1(i, j) ,

where xn,i denotes the i-th component of xn ∈ R
d and

Rn(i, j)
def
=

∫ 1

0

(1− t) ∂2G

∂si∂sj
(s⋆ + t(Sn − s⋆)) dt , n ∈ N, 1 ≤ i, j ≤ d .

Observe that under H7, lim supn |Rn|1limn θn=θ⋆ < ∞ w.p.1. Define for n ≥ 1
and k ≤ n,

Hn
def
=

d∑

i=1

(2µn,i + ρn,i)Rn(i, ·) , rn
def
=

d∑

i,j=1

Rn(i, j)µn,iµn,j , (16)

δn
def
= S̄(θn)−G(Sn−1) , ψ(n, k)

def
= (Γ +Hn) · · · (Γ +Hk) (17)

with the convention ψ(n, n+ 1)
def
= Id. By (14),

ρn = ψ(n− 1, 0)ρ0 +

n−1∑

k=0

ψ(n− 1, k + 1)rk +

n∑

k=1

ψ(n− 1, k)δk . (18)

Since
√
τnµn = OLp

(1), H6-(p̄1) implies that µn −→
n→+∞

0 P⋆ − a.s. Then, by

(14), ρn1limn Sn=s⋆ −→
n→+∞

0 P⋆ − a.s and by (16) lim
n→+∞

|Hn|1limn Sn=s⋆ = 0

P⋆ − a.s. Let γ̃ ∈ (γ, q−1), where γ is given by H7 and q by H8(a). Since
lim

n→+∞
|Hn|1limn Sn=s⋆ = 0, there exists a P⋆−a.s finite random variable Z1 s.t.,

for all 0 ≤ k ≤ n− 1,

|ψ(n− 1, k)|1limn Sn=s⋆ ≤ γ̃n−kZ11limn Sn=s⋆ . (19)
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Therefore, |ψ(n− 1, 0)ρ0|1limn Sn=s⋆ ≤ γ̃nZ1 |ρ0| P⋆ − a.s, and, by H3-(p̄2),
(9), (8) and (13) E⋆ [|ρ0|p̄2 ] < +∞ which implies that ρ0 < +∞ P⋆ − a.s. Since
qγ̃ < 1, the first term in the RHS of (18) is τ−1

n oLp(1)Oa.s(1).
We now consider the second term in the RHS of (18). From equation (19),

∣∣∣∣∣

n−1∑

k=0

ψ(n− 1, k + 1)rk

∣∣∣∣∣1limn Sn=s⋆ ≤ Z1

n−1∑

k=0

γ̃n−k−1 |rk|1limn Sn=s⋆ P⋆ − a.s .

By (16) and H7, there exists a P⋆ − a.s finite random variable Z2 s.t.

|rk|1limn Sn=s⋆ ≤ Z2

d∑

i,j=1

µk,iµk,j ,P⋆ − a.s .

In addition, since
√
τnµn = OLp

(1), there exists a constant C s.t.

∥∥∥∥∥∥

n−1∑

k=0

γ̃n−k−1
d∑

i,j=1

µk,iµk,j

∥∥∥∥∥∥
⋆,p/2

≤ C
n−1∑

k=0

γ̃n−k−1

τk
.

Applying again [7, Result 178, p. 39] yields that the second term in the RHS
of (18) is τ−1

n Oa.s(1)OLp/2
(1). We finally consider the third term in the RHS of

(18). By H1(c), on the set {ω ∈ Ω; lim
n→+∞

Sn(ω) = s⋆} we have lim
n→+∞

θ̄(Sn(ω)) =

θ̄(s⋆). Hence, for any ω ∈ Ω⋆, the set {θ̄(Sn(ω)}n≥0 is compact and θn+1(ω) =
θn+1/2(ω) for all large n. By (6) and (4), there exists a random integer n0(ω)
s.t. for all n ≥ n0(ω), δn(ω) = 0. Then, there exists a P⋆ − a.s-finite random
variable Z3 s.t. for all n ≥ 1,

∣∣∣∣∣

n∑

k=1

ψ(n− 1, k)δk1limn Sn=s⋆

∣∣∣∣∣ ≤ γ̃
nZ3 .

Since under H7 limn τnγ̃n = 0, this implies that the third term in the RHS of
(18) is τ−1

n oa.s(1).

4 General results on HMM

In this section, we derive results on the forgetting properties of HMM (sec-
tion 4.1), on the asymptotic behavior of the normalized log-likelihood (sec-
tion 4.2) and on the normalized score (section 4.3).

We consider a HMM with kernelsm(x, x′)dλ(x′) onto X×B(X) and g(x, y)dν(y)
on (X×B(Y)). X is a general state-space equipped with a countably generated
σ-field B(X), and λ is a bounded non-negative measure on (X,B(X)); ν is a
measure on (Y,B(Y)).

7



For any initial distribution χ on (X,B(X)), any r < s ≤ t and any sequence
y ∈ Y

Z, define the probability measure Φχ,r
s,t (·,y) by

Φχ,r
s,t (h,y)

def
=

∫
χ(dxr){

∏t−1
i=r m(xi, xi+1)g(xi+1, yi+1)}h(xs−1, xs, ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1

i=r m(xi, xi+1)g(xi+1, yi+1)} dλ(xr+1:t)
, (20)

for any bounded function h.
For any s ∈ Z and any A ∈ B(X), define

Ls(x,A)
def
=

∫
m(x, x′)g(x′, ys+1)✶A(x

′)λ(dx′) , (21)

and, for any s ≤ t denote by Lθ,s:t the composition of the kernels defined by

Ls:s
def
= Ls , Ls:u+1(x,A)

def
=

∫
Ls:u(x, dx

′)Lu+1(x
′, A) .

By convention, Ls:s−1 is the identity kernel: Ls:s−1(x,A) = δx(A). For any
sequence y ∈ Y

Z and any function h : X2 × Y → R, denote by hs the function
on X

2 → R given by

hs(x, x
′)

def
= h(x, x′, ys) . (22)

With these notations, equation (20) becomes

Φχ,r
s,t (h,y) =

∫
χ(dxr)Lr:s−2(xs, dxs−1)hs(xs−1, xs)Ls:t−1(xs,X)∫

χ(dxr)Lr:t−1(xr,X)
. (23)

4.1 Forward and Backward forgetting

For any y ∈ Y
Z, any probability distribution χ on (X,B(X)) and for any integers

such that r ≤ s < t, let us define two Markov kernels on (X,B(X)) by

Fs,t(x,A)
def
=

∫
Ls(x, dxs+1)1A(xs+1)Ls+1:t−1(xs+1,X)

Ls:t−1(x,X)
, (24)

Bχ,r
s (x,A)

def
=

∫
φχ,rs|r:s(dxs)1A(xs)m(xs, x)∫

φχ,rs|r:s(dxs)m(xs, x)
, (25)

where

φχ,rs|r:s(A)
def
=

∫
χ(dxr)Lr:s−1(xr, dxs)1A(xs)∫

χ(dxr)Lr:s−1(xr,X)
.

Finally, the Dobrushin coefficient of a Markov kernel F : (X,B(X)) −→ [0, 1] is
defined by:

δ(F )
def
=

1

2
sup

(x,x′)∈X2

||F (x, ·)− F (x′, ·)||TV .

8



Lemma 4.1. Assume that there exist positive numbers σ−, σ+ such that σ− ≤
m(x, x′) ≤ σ+ for any x, x′ ∈ X. Then for any y ∈ Y

Z, δ(Fs,t) ≤ ρ and

δ(Bχ,r
s ) ≤ ρ where ρ

def
= σ−/σ+.

Proof. Let r, s, t be such that r ≤ s < t. Under the stated assumptions,

∫
Ls(xs, dxs+1)1A(xs+1)Ls+1:t−1(xs+1,X)

≥ σ−
∫
g(xs+1, ys+1)1A(xs+1)Ls+1:t−1(xs+1,X)λ(dxs+1)

and

Ls:t−1(xs,X) ≤ σ+
∫
g(xs+1, ys+1)Ls+1:t−1(xs+1,X)λ(dxs+1) .

This yields to

Fs,t(xs, A) ≥
σ−
σ+

∫
g(xs+1, ys+1)Ls+1:t−1(xs+1,X)✶A(xs+1)λ(dxs+1)∫

g(xs+1, ys+1)Ls+1:t−1(xs+1,X)λ(dxs+1)
.

Similarly, the assumption implies

Bχ,r
s (xs+1, A) ≥

σ−
σ+

φχ,rs|r:s(A) ,

which gives the upper bound for the Dobrushin coefficients, see [2, Lemma
4.3.13].

Lemma 4.2. Assume that there exist positive numbers σ−, σ+ such that σ− ≤
m(x, x′) ≤ σ+ for any x, x′ ∈ X. Let y ∈ Y

Z.

(i) for any bounded function h, any probability distributions χ and χ̃ and any
integers r ≤ s ≤ t
∣∣∣∣

∫
χ(dxr)Lr:s−1(xr, dxs)h(xs)Ls:t−1(xs,X)∫

χ(dxr)Lr:t−1(xr,X)

−
∫
χ̃(dxr)Lr:s−1(xr, dxs)h(xs)Ls:t−1(xs,X)∫

χ̃(dxr)Lr:t−1(xr,X)

∣∣∣∣ ≤ ρs−rosc(h) ,

(26)

(ii) for any bounded function h, for any non-negative functions f and f̃ and
any integers r ≤ s ≤ t
∣∣∣∣

∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f(xt)∫
χ(dxs)Ls:t−1(xs, dxt)f(xt)

−
∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f̃(xt)∫
χ(dxs)Ls:t−1(xs, dxt)f̃(xt)

∣∣∣∣∣ ≤ ρ
t−sosc(h) .

(27)
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Proof of (i). See [2, Proposition 4.3.23].
Proof of (ii) When s = t, then (ii) is equal to

∣∣∣∣∣

∫
χ(dxt)h(xt)f(xt)∫
χ(dxt)f(xt)

−
∫
χ(dxt)h(xt)f̃(xt)∫
χ(dxt)f̃(xt)

∣∣∣∣∣ .

This is of the form (η − η̃)h where η and η̃ are probability distributions on
(X,B(X)). Then,

|(η − η̃)h| ≤ 1

2
||η − η̃||TV osc (h) ≤ osc(h) .

Let s < t. By definition of the backward smoothing kernel, see (25),

Bχ,s
s (xs+1, A) =

∫
χ(dxs)1A(xs)m(xs, xs+1)∫

χ(dxs)m(xs, xs+1)
.

Therefore,
∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f(xt)

=

∫
χ(dxs)Ls(xs, dxs+1)B

χ,s
s h(xs+1)Ls+1:t−1(xs+1, dxt)f(xt) .

By repeated application of the backward smoothing kernel we have
∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f(xt) =

∫
χ(dxs)Ls:t−1(xs, dxt)B

χ,s
t−1:sh(xt)f(xt) ,

where we denote by Bχ,s
t−1:s the composition of the kernels defined by induction

for s ≤ u

Bχ,s
s:s

def
= Bχ,s

s , Bχ,s
u:s(x,A)

def
=

∫
Bχ,s

u (x, dx′)Bχ,s
u−1:s(x

′, A) .

Finally, by definition of φχ,st|s:t

∣∣∣∣∣

∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f(xt)∫
χ(dxs)Ls:t−1(xs, dxt)f(xt)

−
∫
χ(dxs)h(xs)Ls:t−1(xs, dxt)f̃(xt)∫
χ(dxs)Ls:t−1(xs, dxt)f̃(xt)

∣∣∣∣∣

=

∣∣∣∣∣∣

φχ,st|s:t

[(
Bχ,s

t−1:sh
)
f
]

φχ,st|s:t [f ]
−
φχ,st|s:t

[(
Bχ,s

t−1:sh
)
f̃
]

φχ,st|s:t

[
f̃
]

∣∣∣∣∣∣
.

This is of the form (η − η̃) Bχ,s
t−1:sh where η and η̃ are probability distributions

on (X,B(X)). The proof of the second statement is completed upon noting that

∣∣ηBχ,s
t−1:sh− η̃Bχ,s

t−1:sh
∣∣ ≤ 1

2
||η − η̃||TV osc

(
Bχ,s

t−1:sh
)

≤ 1

2
||µ− µ̃||TV δ

(
Bχ,s

t−1:s

)
osc(h) ≤ ρt−sosc(h) ,
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where we used Lemma 4.1 in the last inequality.

4.2 Limiting normalized log-likelihood

Define for any r ≤ s,

δχ,rθ,s (y)
def
= ℓχ,rθ,s+1(y)− ℓ

χ,r
θ,s (y) , (28)

where ℓχ,rθ,s+1(y) is defined by

ℓχ,rθ,s+1(Y)
def
= log

(∫
χ(dxr)

s+1∏

u=r+1

mθ(xu−1, xu)gθ(xu,Yu) λ(dxr+1) · · ·λ(dxs+1)

)
.

(29)
For any T > 0 and any probability distribution χ on (X,B(X)), we thus have

ℓχ,0θ,T (y) =

T−1∑

s=0

(
ℓχ,0θ,s+1(y)− ℓ

χ,0
θ,s (y)

)
=

T−1∑

s=0

δχ,0θ,s (y) . (30)

It is established in Lemma 4.3 that for any θ ∈ Θ, y ∈ Y
Z, s ≥ 0 and any initial

distribution χ, the sequence {δχ,s−r
θ,s (y)}r≥0 is a Cauchy sequence and its limit

does not depend upon χ. Regularity conditions on this limit are given in Lem-
mas 4.4 and 4.5. Finally, Theorem 4.6 shows that for any θ, limT T

−1ℓχ,0θ,T (Y)
exists w.p.1. and this limit is a (deterministic) continuous function in θ.

Lemma 4.3. Assume H2.

(i) For any ℓ, r, s ≥ 0, any initial distributions χ, χ′ on X and any y ∈ Y
Z

sup
θ∈Θ

∣∣∣δχ,s−r
θ,s (y)− δχ

′,s−r−ℓ
θ,s (y)

∣∣∣ ≤ 2

1− ρρ
r .

(ii) For any θ ∈ Θ, there exists a function y 7→ δθ(y) such that for any initial
distribution χ, any y ∈ Y

Z and any r, s ≥ 0,

sup
θ∈Θ

∣∣∣δχ,s−r
θ,s (y)− δθ(ϑs ◦ y)

∣∣∣ ≤ 2

1− ρρ
r .

Proof. Proof of (i). Let s ≥ 0 and r and r′ be such that r′ > r. By (29) and

(28), we have |δχ,s−r
θ,s (y)− δχ

′,s−r′

θ,s (y)| = | logα− log β| where

α
def
=

∫
χ(dxs−r)

∏s+1
i=s−r+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)∫

χ(dxs−r)
∏s

i=s−r+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)
, (31)

β
def
=

∫
χ′(dxs−r′)

∏s+1
i=s−r′+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)∫

χ′(dxs−r′)
∏s

i=s−r′+1mθ(xi−1, xi)gθ(xi, yi)λ(dxi)
.

11



We prove that

α ∧ β ≥ σ−
∫
gθ(xs+1, ys+1)λ(dxs+1) , (32)

|α− β| ≤ 2ρrσ+

∫
gθ(xs+1, ys+1)λ(dxs+1) , (33)

and the proof is concluded since | logα− log β| ≤ |α− β|/(α ∧ β).
The minorization on α and β is a consequence of H2 upon noting that α and

β are of the form
∫
µ(dxs)mθ(xs, xs+1)gθ(xs+1, ys+1)λ(dxs+1) for some proba-

bility measure µ. The upper bound on |α−β| is a consequence of Lemma 4.2(i)
applied with

χ̃(dxs−r)←
∫

Xr′−r

χ′(dxs−r′)

{
s−r−1∏

i=s−r′

gθ(xi, yi)mθ(xi, xi+1)

}
λ(dxs−r′+1:s−r)

and h(u)←
∫
gθ(xs+1, ys+1)mθ(u, xs+1)λ(dxs+1).

Proof of (ii). By (i), for any y ∈ Y
Z, the sequence {δχ,−r

θ,0 (y)}r≥0 is a Cauchy
sequence uniformly in θ: there exists a limit denoted by δθ(y) - which does not
depend upon χ - such that

lim
r→+∞

sup
θ∈Θ

∣∣∣δχ,−r
θ,0 (y)− δθ(y)

∣∣∣ = 0 . (34)

We write for r ≤ r′
∣∣∣δχ,s−r

θ,s (y)− δθ(ϑs ◦ y)
∣∣∣ ≤

∣∣∣δχ,s−r
θ,s (y)− δχ,s−r′

θ,s (y)
∣∣∣+
∣∣∣δχ,s−r′

θ,s (y)− δθ(ϑs ◦ y)
∣∣∣ .

Observe that by definition, δχ,s−r
θ,s (y) = δχ,−r

θ,0 (ϑs ◦ y). This property, combined
with Lemma 4.3(i), yield

sup
θ∈Θ

∣∣∣δχ,s−r
θ,s (y)− δθ(ϑs ◦ y)

∣∣∣ ≤ 2

1− ρρ
r + sup

θ∈Θ

∣∣∣δχ,−r′

θ,0 (ϑs ◦ y)− δθ(ϑs ◦ y)
∣∣∣ .

When r′ → +∞, the second term in the rhs tends to zero by (34) - for fixed y, s
and χ -. This concludes the proof.

Lemma 4.4. Assume H2. For any y ∈ Y
Z and s ≥ 0,

sup
r≥0

sup
θ∈Θ

∣∣∣δχ,s−r
θ,s (y)

∣∣∣ ≤ |log σ+b+(ys+1)|+ |log σ−b−(ys+1)| ,

and, for any r ≥ 0,

sup
θ∈Θ
|δθ(y)| ≤

2

(1− ρ)ρ
r + |log σ+b+(y1)|+ |log σ−b−(y1)| ,

where b+ and b− are defined by (1).
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Proof. For any 0 < m ≤ A/B ≤ M , | log(A/B)| ≤ |logM |+ |logm|. Note that
by definition, δχ,0θ,s (y) is of the form log(A/B) and under H4(c), σ−b−(ys+1) ≤
A/B ≤ σ+b+(ys+1). The second upper bound is a consequence of Lemma 4.3(ii).

Lemma 4.5. Assume H1, H2, H4(a) and H4(c). Then, θ 7→ E⋆ [δθ(Y)] is
continuous on Θ. If in addition Θ is compact,

lim
η→0

E∗

[
sup

{θ,θ′∈Θ;|θ−θ′|<η}

|δθ(Y)− δθ′(Y)|
]
= 0 P⋆ − a.s . (35)

Proof. By the dominated convergence theorem, Lemma 4.4 and H4(c), θ 7→
E⋆ [δθ(Y)] is continuous if θ 7→ δθ(y) is continuous for any y ∈ Y

Z. Let y ∈ Y
Z.

By Lemma 4.3(ii), limr→+∞ supθ∈Θ |δχ,−r
θ,0 (y)−δθ(y)| = 0. Therefore, θ 7→ δθ(y)

is continuous provided for any r ≥ 0, θ 7→ δχ,−r
θ,0 (y) is continuous (for fixed y and

χ). By definition of δχ,−r
θ,0 (y), see (28), it is sufficient to prove that θ 7→ ℓχ,−r

θ,s (y)

is continuous for s ∈ {0, 1}. By definition of ℓχ,−r
θ,s (y), see (29),

ℓχ,−r
θ,s (y) = log

∫
χ(dx−r)

s∏

i=−r+1

mθ(xi−1, xi)gθ(xi, yi)λ(dxi) .

Under H1(a), θ 7→ ∏s
i=−r+1mθ(xi−1, xi)gθ(xi, yi) is continuous on Θ, for any

x−r:s and y. In addition, under H1, for any θ ∈ Θ,

∣∣∣∣∣

s∏

i=−r+1

mθ(xi, xi+1)gθ(xi+1,yi+1)

∣∣∣∣∣

= exp

(
(s+ r)φ(θ) +

〈
ψ(θ),

s∑

i=−r+1

S(xi, xi+1,yi+1)

〉)
.

Let K be a compact subset of Θ. Since by H1 φ and ψ are continuous, there
exist constants C1 and C2 such that,

sup
θ∈K

∣∣∣∣∣

s∏

i=−r+1

mθ(xi, xi+1)gθ(xi+1,yi+1)

∣∣∣∣∣

≤ C1 exp

(
C2

s∑

i=−r+1

sup
x,x′

|S(x, x,′ ,yi+1)|
)
.

Since the measure χ(dx−r)
∏s

i=−r+1 λ(dxi) is finite, the dominated conver-

gence theorem now implies that ℓχ,−r
θ,s (y) is continuous on Θ.

For the proof of (35), let us apply the dominated convergence theorem again.
Since Θ is compact, for any y ∈ Y

Z, θ 7→ δθ(y) is uniformly continuous and
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lim
η→0

sup
|θ−θ′|<η

|δθ(y)− δθ′(y)| = 0. In addition, we have by Lemma 4.4

sup
{θ,θ′∈Θ;|θ−θ′|<η}

|δθ(y)− δθ′(y)|

≤ 2 sup
θ∈Θ
|δθ(y)| ≤

4

(1− ρ) + 2 {|log σ+ b+(y1)|+ |log σ− b−(y1)|} .

Under H4(a) and H4(c), this upper bound is P⋆-integrable. This concludes the
proof.

Theorem 4.6. Assume H1, H2, H4. Define the function c⋆ : Θ → R by

c⋆(θ)
def
= E⋆ [δθ(Y)], where δθ(y) is defined in Lemma 4.4.

(i) The function θ 7→ c⋆(θ) is continuous on Θ.

(ii) For any initial distribution χ on (X,B(X))
∣∣∣∣
1

T
ℓχ,0θ,T (Y)− c∗(θ)

∣∣∣∣ −→T→+∞
0 P⋆ − a.s . (36)

where ℓχ,0θ,T (Y) is defined in (29).

(iii) If in addition Θ is compact, for any initial distribution χ on (X,B(X))

sup
θ∈Θ

∣∣∣∣
1

T
ℓχ,0θ,T (Y)− c∗(θ)

∣∣∣∣ −→T→+∞
0 P⋆ − a.s . (37)

Proof. (i) is proved in Lemma 4.5.
(ii) By (30), for any T > 0, we have, for any y ∈ Y

Z:

1

T
ℓχ,0θ,T (y) =

1

T

T−1∑

s=0

δχ,0θ,s (y)

=
1

T

T−1∑

s=0

(
δχ,0θ,s (y)− δθ(ϑs ◦ y)

)
+

1

T

T−1∑

s=0

δθ(ϑ
s ◦ y) .

By Lemma 4.3(ii), for any 0 ≤ s ≤ T − 1,
∣∣∣δχ,0θ,s (Y)− δθ(ϑs ◦Y)

∣∣∣ ≤ 2 ρs

1−ρ . Since

ρ ∈ (0, 1),

lim
T→∞

1

T

T−1∑

s=0

(
δχ,0θ,s (Y)− δθ(ϑs ◦Y)

)
= 0 P⋆ − a.s .

By Lemma 4.4

E⋆ [δθ(Y)] ≤ 2

(1− ρ) + E⋆ [|log σ+b+(Y1)|+ |log σ−b−(Y1)|] ,
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and the rhs is finite under assumption H4(c). By H4(a-b), the ergodic theorem,
see [1, Theorem 24.1, p.314], concludes the proof.

(iii) Since Θ is compact, (37) holds if for any ε > 0, any θ′ ∈ Θ, there exists
η > 0 such that

lim
T→+∞

sup
{θ;|θ−θ′|<η}∩Θ

∣∣∣T−1ℓχ,0θ,T (Y)− T−1ℓχ,0θ′,T (Y)
∣∣∣ ≤ ε , P⋆ − a.s . (38)

Let ε > 0 and θ′ ∈ Θ. Choose η > 0 such that

E⋆

[
sup

{θ∈Θ;|θ−θ′|<η}

|δθ(Y)− δθ′(Y)|
]
≤ ε ; (39)

such an η exists by Lemma 4.5. By (30), we have, for any θ ∈ Θ such that
|θ − θ′| < η

∣∣∣∣
1

T
ℓχ,0θ,T (Y)− 1

T
ℓχ,0θ′,T (Y)

∣∣∣∣ ≤
1

T

T−1∑

s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ . (40)

In addition, by Lemma 4.3(ii)

T−1∑

s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣

≤ 2

T−1∑

s=0

sup
θ∈Θ

∣∣∣δχ,0θ,s (Y)− δθ(ϑs ◦Y)
∣∣∣+

T−1∑

s=0

|δθ(ϑs ◦Y)− δθ′(ϑs ◦Y)|

≤ 4

(1− ρ)2 +
T−1∑

s=0

Ξ(ϑs ◦Y)

where Ξ(y)
def
= sup{θ∈Θ;|θ−θ′|<η} |δθ(y − δθ′(y)|. This implies that

lim
T→+∞

sup
{θ∈Θ;|θ−θ′|<η}

1

T

T−1∑

s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ ≤ lim

T→+∞

1

T

T−1∑

s=0

Ξ(ϑs ◦Y) .

Under H4(a-b), the ergodic theorem implies that the rhs converges P⋆ a.s to
E⋆ [Ξ(Y)], see [1, p.314]. Then, using again (39),

lim
T→+∞

sup
{θ∈Θ;|θ−θ′|<η}

1

T

T−1∑

s=0

∣∣∣δχ,0θ,s (Y)− δχ,0θ′,s(Y)
∣∣∣ ≤ ε P⋆ − a.s .

Then, (38) holds and this concludes the proof.
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4.3 Limit of the normalized score

This section is devoted to the proof of the P⋆−a.s convergence of the normalized
score T−1∇θℓ

χ,0
θ,T (Y) to ∇θc⋆(θ). This result is established under additional

assumptions on the model.

S1 (a) For any y ∈ Y and for all (x, x′) ∈ X
2, θ 7→ gθ(x, y) and θ 7→ mθ(x, x

′)
are continuously differentiable on Θ.

(b) We assume that E⋆ [φ(Y0)] < +∞ where

φ(y)
def
= sup

θ∈Θ
sup

(x,x′)∈X2

|∇θ logmθ(x, x
′) +∇θ log gθ(x

′, y)| . (41)

Lemma 4.7. Assume S1. For any initial distribution χ, any integers s, r ≥ 0
and any y ∈ Y

Z such that φ(yu) < +∞ for any u ∈ Z, the function θ 7→
ℓχ,s−r
θ,s (y) is continuously differentiable on Θ and

∇θℓ
χ,s−r
θ,s (y) =

s∑

u=s−r

Φχ,s−r−1
θ,u,s (Υθ,y) ,

where Υθ is the function defined on X
2 × Y by

Υθ : (x, x′, y) 7→ ∇θ log {mθ(x, x
′)gθ(x

′, y)} .

Proof. Under S1, the dominated convergence theorem implies that the function
θ 7→ ℓχ,s−r

θ,s (y) is continuously differentiable and its derivative is obtained by
permutation of the gradient and integral operators.

Lemma 4.8. Assume H2 and S1.

(i) There exists a function ξ : YZ → R+ such that for any s ≥ 0 and any
r, r′ ≥ s, any initial distribution χ, χ′ on X and any y ∈ Y

Z such that
φ(yu) < +∞ for any u ∈ Z,

sup
θ∈Θ

∣∣∣∇θδ
χ,s−r
θ,s (y)−∇θδ

χ′,s−r′

θ,s (y)
∣∣∣ ≤ 16ρ−1/4

1− ρ ρ(r
′∧r)/4 ξ(y) ,

where
ξ(y)

def
=
∑

u∈Z

φ(yu)ρ
|u|/4 . (42)

(ii) For any y ∈ Y
Z satisfying ξ(y) < +∞, the function θ 7→ δθ(y) given by

Lemma 4.3(ii) is continuously differentiable on Θ; and, for any θ ∈ Θ, any
initial distribution χ and any integers r ≥ s ≥ 0,

sup
θ∈Θ

∣∣∣∇θδ
χ,s−r
θ,s (y)−∇θδθ(y ◦ ϑs)

∣∣∣ ≤ 16ρ−1/4

1− ρ ρr/4 ξ(y) .
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Proof. (i) By definition of δχ,s−r
θ,s (y), see (28) and Lemma 4.7,

∇θδ
χ,s−r
θ,s (y)−∇θδ

χ′,s−r′

θ,s (y)

= ∇θℓ
χ,s−r
θ,s+1 (y)−∇θℓ

χ,s−r
θ,s (y)−∇θℓ

χ′,s−r′

θ,s+1 (y) +∇θℓ
χ′,s−r′

θ,s (y)

=

s∑

u=s−r

(
Φχ,s−r−1

θ,u,s+1 (Υθ,y)− Φχ,s−r−1
θ,u,s (Υθ,y)

)

−
s∑

u=s−r′

(
Φχ′,s−r′−1

θ,u,s+1 (Υθ,y)− Φχ′,s−r′−1
θ,u,s (Υθ,y)

)

+Φχ,s−r−1
θ,s+1,s+1(Υθ,y)− Φχ′,s−r′−1

θ,s+1,s+1(Υθ,y) .

We can assume without loss of generality that r′ ≤ r so that

∇θδ
χ,s−r
θ,s (y)−∇θδ

χ′,s−r′

θ,s (y)

=

s−r′−1∑

u=s−r

{
Φχ,s−r−1

θ,u,s+1 (Υθ,y)− Φχ,s−r−1
θ,u,s (Υθ,y)

}
+Φχ,s−r−1

θ,s+1,s+1(Υθ,y)−Φχ′,s−r′−1
θ,s+1,s+1(Υθ,y)

+
s∑

u=s−r′

{
Φχ,s−r−1

θ,u,s+1 (Υθ,y)− Φχ,s−r−1
θ,u,s (Υθ,y)− Φχ′,s−r′−1

θ,u,s+1 (Υθ,y) + Φχ′,s−r′−1
θ,u,s (Υθ,y)

}
.

Under H2 and S1, Remark A.2 can be applied and for any s−r ≤ u ≤ s−r′−1,

∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣ ≤ 2ρs−uφ(yu),

where φu(y) is defined in (41). Similarly, by Remark A.2

∣∣∣Φχ,s−r−1
θ,s+1,s+1(Υθ,y)− Φχ′,s−r′−1

θ,s+1,s+1(Υθ,y)
∣∣∣ ≤ 2ρr

′+1φ(ys+1) .

For any s− r′ ≤ u ≤ s, by Remark A.2,

∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ′,s−r′−1

θ,u,s+1 (Υθ,y) + Φχ′,s−r′−1
θ,u,s (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣

≤
∣∣∣Φχ,s−r−1

θ,u,s+1 (Υθ,y)− Φχ′,s−r′−1
θ,u,s+1 (Υθ,y)

∣∣∣+
∣∣∣Φχ′,s−r′−1

θ,u,s (Υθ,y)− Φχ,s−r−1
θ,u,s (Υθ,y)

∣∣∣

≤ 4ρu+r′−sφ(yu)

and by Remark A.2,

∣∣∣Φχ,s−r−1
θ,u,s+1 (Υθ,y)− Φχ′,s−r′−1

θ,u,s+1 (Υθ,y) + Φχ′,s−r′−1
θ,u,s (Υθ,y)− Φχ,s−r−1

θ,u,s (Υθ,y)
∣∣∣

≤
∣∣∣Φχ,s−r−1

θ,u,s+1 (Υθ,y)− Φχ,s−r−1
θ,u,s (Υθ,y)

∣∣∣+
∣∣∣Φχ′,s−r′−1

θ,u,s+1 (Υθ,y)− Φχ′,s−r′−1
θ,u,s (Υθ,y)

∣∣∣

≤ 4ρs−uφ(yu) .

17



Hence,

∣∣∣∇θδ
χ,s−r
θ,s (y)−∇θδ

χ′,s−r′

θ,s (y)
∣∣∣ ≤ 2

s−r′−1∑

u=s−r

ρs−uφ(yu)+4

s+1∑

u=s−r′

(
ρu+r′−s ∧ ρs−u

)
φ(yu) .

Furthermore,

s+1∑

u=s−r′

φ(yu)
(
ρu+r′−s ∧ ρs−u

)

≤
∑

s−r′≤u≤⌊s−r′/2⌋

ρs−uφ(yu) +
∑

u≥⌊s−r′/2⌋

ρu+r′−sφ(yu)

≤ ρr′/2
∑

u∈Z

φ(yu)ρ
|u|/4 · · ·

×




∑

u≤⌊s−r′/2⌋

ρs−u−r′/2−|u|/4 +
∑

⌊s−r′/2⌋+1≤u≤s+1

ρu+r′/2−s−|u|/4




≤ 2
ρ(r

′−1)/4

1− ρ
∑

u∈Z

φ(yu)ρ
|u|/4 ,

where we used that sups−r′≤u≤⌊s−r′/2⌋ |u| ≤ r′ and sup⌊s−r′/2⌋+1≤u≤s+1 |u| ≤
r′ + 1. Moreover, upon noting that −u/2 + (s + 1)/2 ≤ s − u − r′/2 when
u ≤ s− r′ − 1,

s−r′−1∑

u=s−r

φ(yu)ρ
s−u ≤ ρr′/2

s−r′−1∑

u=s−r

φ(yu)ρ
s−u−r′/2

≤ ρr′/2
s−r′−1∑

u=s−r

φ(yu)ρ
−u/2+(s+1)/2

≤ ρr′/2ρ(s+1)/2
s−r′−1∑

u=s−r

φ(yu)ρ
|u|/2 ,

where we used that s− r′ − 1 ≤ 0 in the last inequality.
Hence,

sup
θ∈Θ

∣∣∣∇θδ
χ,s−r
θ,s (y)−∇θδ

χ′,s−r′

θ,s (y)
∣∣∣ ≤ 16

1− ρρ
(r′−1)/4

∑

u∈Z

φ(yu)ρ
|u|/4 . (43)

(ii) Let y ∈ Y
Z such that ξ(y) < +∞. Then for any u ∈ Z, φ(yu) < +∞. By

Lemma 4.7 and Eq. (28), the functions {θ 7→ δχ,−r
θ,0 (y)}r≥0 are C1 functions on

Θ. By (i), there exists a function θ 7→ δ̃θ(y) such that

lim
r→+∞

sup
θ∈Θ

∣∣∣∇θδ
χ,−r
θ,0 (y)− δ̃θ(y)

∣∣∣ = 0 .

18



Furthermore, by Lemma 4.3,

lim
r→+∞

sup
θ∈Θ

∣∣∣δχ,−r
θ,0 (y)− δθ(y)

∣∣∣ = 0 .

Then, θ 7→ δθ(y) is C1 on Θ and for any θ ∈ Θ, δ̃θ(y) = ∇θδθ(y).
We thus proved that for any y ∈ Y

Z such that ξ(y) < +∞ and for any initial
distribution χ,

lim
r→+∞

sup
θ∈Θ

∣∣∣∇θδ
χ,−r
θ,0 (y)−∇θδθ(y)

∣∣∣ = 0 . (44)

Observe that by definition, ∇θδ
χ,s−r
θ,s (y) = ∇θδ

χ,−r
θ,0 (ϑs ◦ y). This property,

combined with Lemma 4.8(i), yields

sup
θ∈Θ

∣∣∣∇θδ
χ,s−r
θ,s (y)−∇θδθ(ϑ

s ◦ y)
∣∣∣

≤ 16ρ−1/4

1− ρ ρr/4 ξ(y) + sup
θ∈Θ

∣∣∣∇θδ
χ,−r′

θ,0 (ϑs ◦ y)−∇θδθ(ϑ
s ◦ y)

∣∣∣ .

Since ξ(ϑs ◦ y) < +∞, when r′ → +∞, the second term tends to zero by (44) -
for fixed y, s and χ -. This concludes the proof.

Lemma 4.9. (i) Assume S1. For any y ∈ Y
Z such that φ(yu) < +∞ for

any u ∈ Z, for any integers r, s ≥ 0,

sup
θ∈Θ

∣∣∣∇θδ
χ,s−r
θ,s (y)

∣∣∣ ≤ 2

s+1∑

u=s−r

φ(yu) .

(ii) Assume H2 and S1. Then, for any y ∈ Y
Z such that ξ(y) < +∞ and for

any r ≥ 0,

sup
θ∈Θ
|∇θδθ(y)| ≤ 2

1∑

u=−r

φ(yu) +
16ρ−1/4

1− ρ ξ(y)ρr/4 ,

where ξ(y) is defined in Lemma 4.8.

Proof. (i) By (28) and Lemma 4.7,

∣∣∣∇θδ
χ,s−r
θ,s (y)

∣∣∣ =
∣∣∣∇θℓ

χ,s−r
θ,s+1 (y)−∇θℓ

χ,s−r
θ,s (y)

∣∣∣

≤ 2

s+1∑

u=s−r

∣∣∣∣

∫
χ(dxs−r)Lθ,s−r:u−1(xs−r, dxu)∇θ log [mθ(xu−1, xu)gθ(xu,yu)]Lθ,u:s−1(xu,X)∫

χ(dxs−r)Lθ,s−r:s−1(xs−r,X)

∣∣∣∣ .

The proof is concluded upon noting that for any s− r ≤ u ≤ s+ 1,
∣∣∣∣

∫
χ(dxs−r)gθ(xs−r, ys−r)Lθ,s−r:u−1(xs−r, dxu)∇θ log gθ(xu,yu)Lθ,u:s−1(xu,X)∫

χ(dxs−r)gθ(xs−r,ys−r)Lθ,s−r:s−1(xs−r,X)

∣∣∣∣

is upper bounded by φ(yu).
(ii) is a consequence of Lemma 4.8(ii) and Lemma 4.9(i).
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Theorem 4.10. Assume H2, H4(a-b) and S1.

(i) For any T ≥ 0 and any distribution χ on X, the functions θ 7→ ℓχ,0θ,T (Y)
and θ 7→ c⋆(θ) are continuously differentiable P∗ − a.s.

(ii) For any initial distribution χ on (X,B(X)),
1

T
∇θℓ

χ,0
θ,T (Y) −→

T→+∞
∇θc∗(θ) P⋆ − a.s . (45)

Proof. By (30) and Lemma 4.7, for any y such that φ(yu) < +∞ for any u ∈ Z,
ℓχ,0θ,T (y) and δχ,0θ,s (y) are continuously differentiable and (30) implies

∇θℓ
χ,0
θ,T (y) =

T−1∑

s=0

∇θδ
χ,0
θ,s (y) .

This decomposition leads to

1

T
∇θℓ

χ,0
θ,T (Y) =

1

T

T−1∑

s=0

(
∇θδ

χ,0
θ,s (Y)−∇θδθ(ϑ

s ◦Y)
)
+

1

T

T−1∑

s=0

∇θδθ(ϑ
s ◦Y) .

(46)
Consider the first term of the rhs of (46). Since Y is a stationary process,

assumption S1(b) implies that E⋆ [ξ(Y)] < +∞, where ξ is defined by (42).
Then, ξ(Y) < +∞ P⋆ a.s and by Lemma 4.8(ii), for any 0 ≤ s ≤ T − 1,

∣∣∣∇θδ
χ,0
θ,s (Y)−∇θδθ(ϑ

s ◦Y)
∣∣∣ ≤ ξ(Y)

16ρ−1/4

1− ρ ρs/4 .

Therefore

1

T

T−1∑

s=0

∣∣∣∇θδ
χ,0
θ,s (Y)−∇θδθ(ϑ

s ◦Y)
∣∣∣ ≤ 1

T
ξ(Y)

16ρ−1/4

1− ρ
1

1− ρ1/4 ,

and

lim
T→∞

1

T

T−1∑

s=0

(
∇θδ

χ,0
θ,s (Y)−∇θδθ(ϑ

s ◦Y)
)
= 0 P⋆ a.s .

Finally, consider the second term of the rhs of (46). By Lemma 4.9 (applied
with r = 1), E⋆ [|∇θδθ(Y)|] < +∞. Under H4(b), the ergodic theorem (see [1,
Theorem 24.1, p.314]) states that

lim
T→∞

1

T

T−1∑

s=0

∇θδθ(ϑ
s ◦Y) = E⋆ [∇θδθ(Y)] P⋆ a.s .

Then, by (46) and the above discussion,

lim
T→∞

1

T
∇θℓ

χ,0
θ,T (Y) = E⋆ [∇θδθ(Y)] P⋆ a.s .
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By Lemma 4.9, applied with r = 0,

sup
θ∈Θ
|∇θδθ(Y)| ≤ 2 [φ(Y0) + φ(Y1)] + ξ(Y)ρ1/2 ,

and the rhs is integrable under the stated assumptions. Therefore, by the dom-
inated convergence theorem, E⋆ [∇θδθ(Y)] = ∇θE⋆ [δθ(Y)] = ∇θc⋆(θ) . This
concludes the proof.

4.4 Contrast and the limit set L
Theorem 4.11. Assume H2, H3-(1), H4(a-b) and S1. Then, θ ∈ L if and
only if ∇θc⋆(θ) = 0 where c⋆(θ) = limT→+∞ T−1ℓχ,0θ,T (Y) P⋆− a.s for any initial
distribution χ on (X,B(X)).

Proof. For any initial distribution χ, all θ ∈ Θ and all T > 0,

1

T
∇θℓ

χ,0
θ,T (Y) =

1

T

∫
∇θ log p

χ
θ (x0:T ,Y1:T )

pχθ (x0:T ,Y1:T )∫
pχθ (z0:T ,Y1:T )λ(dz0:T )

λ(dx0:T ) ,

where pχθ is defined in (22) in [6]. Under Assumption H1(a)

1

T
∇θ log p

χ
θ (x0:T ,Y1:T ) = ∇θφ(θ) +∇θψ

T (θ)

{
1

T

T∑

t=1

S(xt−1, xt,Yt)

}
,

and then, by definition of Φχ,0
θ,t,T (S,Y) (see (9)),

1

T
∇θℓ

χ,0
θ,T (Y) = ∇θφ(θ) +∇θψ

T (θ)

{
1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y)

}
. (47)

Under the stated assumptions, Theorem 4.1 in [6] and Theorem 4.10 can be
applied. Therefore, (47) becomes, as T → +∞,

∇θc⋆(θ) = ∇θφ(θ) +∇θψ
T (θ) {E⋆ [Eθ [S(X−1, X0,Y0)|Y]]} .

The proof follows upon noting that by definition of θ̄, the unique solution
to the equation ∇θφ(τ) + ∇θψ

T (τ) {E⋆ [Eθ [S(X−1, X0,Y0)|Y]]} = 0 is τ =
R(θ).

5 Additional experiments

In this section, we provide additional plots for the applications studied in [6,
section 3].
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5.1 Linear Gaussian model

Figure 1 illustrates the fact that the convergence properties of the BOEM do
not depend on the initial distribution χ used in each block. Data are sampled
using φ = 0.97, σ2

u = 0.6 and σ2
v = 1. All runs are started with φ = 0.1, σ2

u = 1
and σ2

v = 2. Figure 1 displays the estimation of φ by the averaged BOEM
algorithm with τn ∼ n and τn ∼ n1.5, over 100 independent Monte Carlo runs
as a function of the number of blocks. We consider first the case when χ is the
stationary distribution of the hidden process i.e. χ ≡ N (0, (1 − φ2)−1σ2

u), and
the case when χ is the filtering distribution obtained at the end of the previous
block, computed with the Kalman filter. The estimation error is similar for both
initialization schemes, even when φ is close to 1 and for any choice of {τn}n≥1.

5 10 25 50 150
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0.8

0.9

1

Number of blocks

(a) τn ∼ n

5 10 25 50 150

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of blocks

(b) τn ∼ n1.5

Figure 1: Estimation of φ after 5, 10, 25, 50 and 150 blocks, with two different
initialization schemes: the stationary distribution (left) and the filtering distri-
bution at the end of the previous block (right). The boxplots are computed
with 100 Monte Carlo runs.
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5.2 Finite state-space HMM

In the numerical applications below, we give a supplementary graph to compare
the convergence of the averaged BOEM with the convergence of the Polyak-
Ruppert averaged RML procedure. The experiment is the same as the one in [6,
section 3]. Figure 2 displays boxplots of the estimation of m(1, 4) after different
numbers of observations n; the boxplots are over 100 independent Monte Carlo
runs. The variance of the estimation given by the averaged BOEM is smaller
than the one given by the averaged RML. Same conclusions can be drawn for
the estimation of the other entries of the transition matrix m.

10000 25000 50000 100000 150000

0

0.1

0.2

0.3

0.4

Number of observations

Figure 2: Estimation of m(1, 4) using the averaged RML algorithm (left) and
the averaged BOEM algorithm (right), based on n = {10k, 25k, 50k, 100k, 150k}
observations.

5.3 Stochastic volatility model

We report in Figure 3, the boxplots for the estimation of the parameters β2 and
σ2 for the Polyak-Ruppert [8] averaged Online EM and the averaged BOEM.
Both average versions are started after 20000 observations. Data are sampled
using φ = 0.8, σ2 = 0.2 and β2 = 1. All runs are started with φ = 0.1, σ2 = 0.6
and β2 = 2. This figure illustrates the similar behavior of both algorithms.

We now compare the two algorithms when the true value of φ is (in absolute
value) closer to 1: we choose φ = 0.95, β2 and σ2 being the same as in the
previous experiment.

As illustrated on Figure 4, the same conclusions are drawn for greater values
of φ.
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