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In this paper we present a complete solution to the problem of multifractal analysis of multiple ergodic averages in the case of symbolic dynamics for functions of two variables depending on the first coordinate.

Introduction and results

Let T : X → X be a continuous map on a compact metric space X. Let f 1 , • • • , f ( ≥ 2) be real valued continuous functions defined on X. We consider the following possible limits (for different x ∈ X):

(1)

M f1,••• ,f (x) = lim n→∞ 1 n n k=1 f 1 (T k x)f 2 (T 2k x) • • • f (T k x).
Such limits are widely studied in ergodic theory. It was proposed in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] to give a multifractal analysis of the multiple ergodic average M f1,••• ,f (x). The authors of [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] succeeded in a very special case where X = {-1, 1} N , f k (x) = x 1 for all k and T is the shift, by using Riesz products. In this note, we shall study the shift map T on the symbolic space X = Σ m = S N with S = {0, 1, • • • , m -1} (m ≥ 2). We assume that = 2 (the case ≥ 3 seems more difficult) and f 1 and f 2 are Hölder continuous. We endow Σ m with the standard metric: d(x, y) = m -n where n is the largest k ≥ 0 such that

x 1 = y 1 , • • • , x k = y k .
The Hausdorff dimension of a set A in Σ m will be denoted by dim A.

For any α ∈ R, define

L(α) = {x ∈ Σ m : M f1,f2 (x) = α}.
Let α min = min x,y∈Σm f 1 (x)f 2 (y) and α max = max x,y∈Σm f 1 (x)f 2 (y). Our question is to determine the Hausdorff dimension of L(α). We further assume that α min < α max (otherwise both f 1 and f 2 are constant and the problem is trivial). From classical dynamical system point of view, the set L(α) is not standard and its dimension can not be described by invariant measures supported on it. Let us first examine the largest dimension of ergodic measures supported on the set L(α) by introducing the so-called invariant spectrum:

F inv (α) = sup {dim µ : µ ergodic, µ(L(α)) = 1 } .
Recall that (see [START_REF] Wu | Fan Sur les dimension de measure[END_REF])

dim µ = inf{dim B : B Borel set, µ(B c ) = 0}.
The dimension F inv (α) is in general smaller than dim L(α) (compare the next two theorems). It is even possible that no ergodic measure is supported on L(α).

Theorem 1.1. Let f 1 and f 2 be two Hölder continuous functions on Σ m . If L(α) supports an ergodic measure, then

F inv (α) = sup dim µ : µ ergodic, f 1 dµ f 2 dµ = α .
It is known [START_REF] Fan | Peyrière Generic points in systems of specification and Banach valued Birkhff ergodic average[END_REF] that the above supremum is the dimension of the set of points x such that

lim n→∞ 1 n n k=1 f 1 (T k x) • lim n→∞ 1 n n k=1 f 2 (T k x) = α.
Assume that f 1 and f 2 are the same function f . As a corollary of Theorem 1.1, µ(L(α)) = 1 for some ergodic measure µ implies α ≥ 0. So, if f takes a negative value α < 0, then Theorem 1 shows that there is no ergodic measure supported on L(α). However, Theorem 2 shows that dim L(α) > 0.

In the following we assume that both f 1 and f 2 depend only on the first coordinate. For any s ∈ R, consider the non-linear transfer equation

(2) t s (x) 2 =
T y=x e sf1(x)f2(y) t s (y).

It can be proved that the equation admits a unique solution t s : Σ m → R + , which depends only on the first coordinate. Let dx denote the measure of maximal entropy for the shift on Σ m and let

P (s) = log Σm t s (x)dx + log m.
Also it can be proved that P is an analytic convex function and even strictly convex when α min < α max (Lemma 3.1).

Theorem 1.2. Let f 1 and f 2 be two functions on Σ m depending only on the first coordinate. For α ∈ [P (-∞), P (+∞)], we have

L(α) = ∅. For α ∈ [P (-∞), P (+∞)], we have dim L(α) = 1 2 log m (P (s α ) -s α P (s α ))
where s α is the unique solution of P (s) = α.

We can prove that α min ≤ P (-∞) ≤ P (+∞) ≤ α max and that α min = P (-∞) if and only if there exist i

0 , i 1 , • • • , i ∈ S ( ≥ 1) with i 0 = i such that f 1 (i k )f 2 (i k+1 ) = α min (similar criterion for α max = P (+∞)).
Let us look at two examples on Σ 2 . For 1 for the graphs of dim L(α) and F inv (α). Remark that F inv (α) = 0 but dim L(α) > 0 for -1 ≤ α < 0. Also remark that dim L(α) was computed in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] by using Riesz products. See Figure 2 for the graphs of dim L(α) and F inv (α) when f 1 (x) = f 2 (x) = x 1 . In the second case F inv (α) = H( √ α) and dim L(α) can be numerically computed through P (s) = 2 log t 0 (s) where x = t 0 (s) is the real solution of the third order algebraic equation

f 1 (x) = f 2 (x) = 2x 1 -1, we have dim L(α) = 1 2 + 1 2 H 1 + α 2 , F inv (α) = H 1 + √ α 2 where H(x) = -x log 2 x -(1 -x) log 2 (1 -x). See Figure
x 3 -2x 2 -(e s -1)
x + (e s -1) = 0.

These two examples show that F inv (α) < dim L(α) except for some special α's.

The proof of Theorem 1.2 is based on the following observation. If f 1 and f 2 depend only on the first coordinate

x 1 , k f 1 (T k x)f 2 (T 2k
) can be decomposed into the sum of j f 1 (T i2 j x)f 2 (T i2 j+1 x) with odd i, which have independent coordinates. This observation was used in [START_REF] Fan | Level sets of multiple ergodic averages[END_REF] to compute the box dimension of X 0 = {x : ∀n, x n x 2n = 0} which is a subset of L(0) (here f 1 (x) = f 2 (x) = x 1 is considered). The Hausdorff dimension of X 0 was later computed in [START_REF] Kenyon | Hausdorff dimension for fractals invariant under the multiplicative integers[END_REF] where a non-linear transfer operator characterizes the measure of maximal Hausdorff dimension for X 0 .

We have stated the results for functions of the form f 1 (x 1 )f 2 (y 1 ) (product of two functions depending on the first coordinate). But the results with obvious modifications hold for functions of the form f (x 1 , y 1 ).

Proof of Theorem 1.1

Let µ be an ergodic measure such that µ(L(α)) = 1. Then

α = lim n→∞ 1 n n k=1 E µ [f 1 (T k x)f 2 (T 2k x)] = lim n→∞ 1 n n k=1 E µ [f 1 (x)f 2 (T k x)] = E µ [f 1 (x)M f2 (x)].
(The first and third equalities are due to Lebesgue convergence theorem and the second one is due to the invariance of µ). Since µ is ergodic,

M f2 (x) = E µ f 2 for µ-a.e. x. So, α = E µ f 1 E µ f 2 . It follows that F inv (α) ≤ sup {dim µ : µ ergodic, E µ f 1 E µ f 2 = α } .
To obtain the inverse inequality, it suffices to observe that the above supremum is attained by a Gibbs measure ν which is mixing and that the mixing property implies M f1,f2 (x) = E ν f 1 E ν f 2 ν-a.e..

Proof of Theorem 1.2

We will prove a result which is a bit more general than Theorem 1.2. Our proof is sketchy and a full proof is contained in [START_REF] Fan | Multiple ergodic averages and nonlinear transfer operaters[END_REF] where other generalizations are also considered.

Here is the setting. Let ϕ : S × S → R be a non constant function with minimal value α min and maximal value α max . For α ∈ R, define

E(α) = x ∈ Σ m : lim n→∞ n -1 n k=1 ϕ(x k , x 2k ) = α .
Lemma 3.1. For any s ∈ R, the system

t 2 i = m-1 j=0 e sϕ(i,j) t j (i = 0, 1, • • • , m -1)
admits a unique solution (t 0 (s), t 1 (s), • • • , t m-1 (s)) with strictly positive components, which is an analytic function of s. The function

P (s) = log m-1 j=0 t j (s)
is strictly convex.

The proof of the lemma is lengthy. The existence and uniqueness of the solution are based on the fact that the square roots of right members of the system define an increasing operator on a suitable compact hypercube. The analyticity of the solution is a consequence of the implicit function theorem. Theorem 3.1. For any α ∈ [P (-∞), P (+∞)], we have

E(α) = 1 2 log m (P (s α ) -s α P (s α ))
where s α is the unique solution of P (s) = α.

The solution (t 0 (s), t 1 (s), • • • , t m-1 (s)) of the above system allows us to define a Markov measure µ s with initial probability (π(i)) i∈S and probability transition matrix (p i,j ) S×S defined by

π(i) = t i (s) t 0 (s) + t i (s) + • • • + t m-1 (s) , p i,j = e sϕ(i,j) t j (s) t i (s) 2 .
Now decompose the set of positive integers N * into Λ i (i being odd) with Λ i = {i2 k } k≥0 so that Σ m = i:2 |i S Λi . Take a copy µ s on each S Λi and then define the product measure of these copies. This gives a probability measure P s on Σ m . Let D(P s , x) be the lower local dimension of P s at x. where s α is the solution of P (s) = α. From the lemma, we can deduce that L(α) = ∅ if α ∈ [P (-∞), P (+∞)]. In order to get the inverse inequality, we only have to show that P sα is supported on L(α). We first prove the following law of large numbers by showing the exponential correlation decay of (F n ) under P s .

Lemma 3.3. Let (F n ) be a sequence of functions defined on S × S such that sup n sup x,y |F n (x, y)| < ∞. For P s -a.e. x ∈ Σ m , we have

lim n→∞ 1 n n k=1 (F k (x k , x 2k ) -E Ps F k (x k , x 2k )) = 0.
Applying the above lemma to F n (x n , x 2n ) = ϕ(x n , x 2n ) for all n and computing E Ps ϕ(x n , x 2n ), we get Thus we finished the proof for α ∈ (P (-∞), P (+∞)). If α = P (-∞) (resp. P (+∞)), as in the standard multifractal analysis, we use the probabilities P s et let s tend to -∞ (resp. +∞).
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 1 Figure 1. When f1(x) = f2(x) = 2x1 -1.
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 2 Figure 2. When f1(x) = f2(x) = x1.
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 321 For any x ∈ E(α), we have D(P s , x) ≤ 1 2 log m [P (s) -αs]. It follows that dim E(α) ≤ log m [P (s) -αs]. Minimizing the right hand side gives rise to dim E(α) ≤ 1 2 log m [P (s α ) -αs α ]
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 34 For P s -a.e. x ∈ Σ m , we havelim n→∞ 1 n n k=1 ϕ(x k , x 2k ) = P (s).
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