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Abstract

Following up on the success of previous chemometralenges arranged during
the annual congress organised by the French Chemosn8ociety, the organisation
committee decided to repeat the idea for the Chmeioie 2007 event
(http://www.chimiometrie.fiy held in Lyon, France (29-30 November) by featgrin
another dataset on its website. As for the firsttest in 2004, this dataset was
selected to test the ability of participants to lgpmegression methods to NIR data.
The aim of Challenge 2007 was to perform a calibnamodel as robust and precise
as possible with only a few reference values alklarhe committee received nine
answers; this paper summarizes the best three apgms, as well as the approach
proposed by the organisers.

1. Introduction

For the fourth consecutive year and following oanirthe success of the
chemometric contests organised during previous ressgs [1, 2, 3], another dataset
was proposed for the ‘Chimiométrie 2007’ meetiddgty://www.chimiometrie.fry
held in Lyon, France (29-30 November 2007). Astfa first contest in 2004, this
dataset was selected to test the ability of paditis to apply regression methods to
NIR data. The aim of Challenge 2007 was to perfargalibration model as robust
and precise as possible when only a few referenliees were available. Regression
algorithms, as PLS (Partial Least Squares) are semgible to outlying observations,
which are typically expected to be present in expental data. One of the solutions
for this drawback of the classical regression teqpes is the possibility of
constructing robust versions of the regressionrdlgos [4-9]. In the early 1990s,
Dardenne et al. [10] studied the effects of varipiugperties such as moisture, particle
size and ambient temperature on NIR calibration et®th order to reduce the wet
chemistry needed for them. Artificial spectral @ions were created by changing the
moisture and particle size of wheat samples wheligting the protein content.
These samples, measured at different temperatures monochromator, produced
wide spectral variations that helped to developusbbmodels. The data used in this
challenge come from that paper.

Nine participants took up the challenge with thepmsed data. The results
were evaluated on the basis of the best validatitaria (R and RMSEP) obtained
for the predicted values of the test set, and afsthe quality of the approach from a
methodological perspective. The three best appesaetere presented during the
congress and are summarised here, together witlagheoach put forward by the
organizers of Challenge 2007.




2. Material and Methods

Several datasets were provided to the participaatxalibration dataset, an
experimental design dataset, a standard replicdtset and a test dataset.

2.1 Calibration Dataset

For this challenge, only 10 spectra of ground wleajuired using a FOSS
NIRSystems 4500, measured between 1300 nm and @80&ach 2 nm, were
supplied, together with the protein content of #flesamples measured in g/Kg Dry
Matter (DM). The aim was to perform a calibratiomdel as robust and precise as
possible with the available 10 reference valuepfotein content.

2.2 Experimental Design Dataset

There were also the spectra from an experimensibdebased on other 11
samples of ground wheat (with unknown referenceias)l These 11 whole grain
samples were separated into two homogeneous setswas dried to reduce the
moisture content to +/-9%, and the other was miogstéo reach 13-14% humidity.
Each grain sample set was then divided again ingmaps: the first subsample was
ground finely (Cyclotec apparatus, level C) and seeond one was ground more
coarsely (Ika apparatus, level I). A total of 1X#mple sets was thus available. These
samples were measured by reflection NIR in dupicatt three room temperatures
(18°C, 23°C and 27°C). The experimental design kbideta therefore contained
11x4x3x2 = 264 spectra.

2.3 Standard Replicates Dataset

Additional spectral information was supplied fromeoset of 10 samples
(sealed cells) scanned on 31 different instrumehtse same type and from a second
set of 10 scanned on 17 instruments. A total ofgj8fctra was thus available.
The reference values corresponding to the expetahdrsign samples and to the 10
samples measured on the different instruments wteown.

2.4 Test Dataset

Some 2,000 spectra from routine analyses were @uhjfiom +/-10 different
instruments with several levels of granulometrymidity and temperature, and
provided by the Requasud network (http://www.reqdase/) from 1991 to 2007. The
2,000 spectra each had a reference protein valtened by the reference method,
but these values were not communicated to thecgaatits.

The calibration dataset was kept in matriges, Yca Whereas the data from the
experimental design in a matriXeq and the standard replicates dataset in two
matricesXinsy1 (31 instruments) an&insy2 (17 instruments). The Test dataset was
kept inXtest.

3. Results

3.1. Participant 1

Two approaches were tested: exhaustive calibratiorartificial data, and
Orthogonal Signal Correction (OSC) [11] on thed#iaial data.
Approach 1: Exhaustive calibration on artificial data



This approach involved using information about peyation and ‘injecting’ it
into the 10 spectra of the calibration datasét) in order to generate an artificial
calibration databas& . As this new calibration database included allsgume
perturbations, PLS would automatically be ableinol the most robust direction for
prediction.

In order to do so, initially all the possible peltating vectors were identified
using the experimental design datas&iy( and the standard replicates dataXgi{:

+ Xinstr2) for each of the 24 spectrfimple ) Of the same sample i (one sample i had
24 ‘| combinations of possible perturbations). T2# vectors of perturbations were
calculated as follows:

_O(xi) =xij = xi (1)

where ~ xis the mean spectra of sample | apdsthe I" spectra of sample i. All the
perturbations were put in a new matiyy containing the 264 possible perturbations.
The same procedure was followed in order to iderif possible perturbations from
the instruments, resulting in a matby,s of 480 spectra. Figure 1 shows an example
of the perturbation spectra that could be obtained.
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Figure 1. Examples of perturbation spectra from a) the arpental design
dataset and b) the standard replicated dataset.

Finally, all the perturbations fronbDey and Di,sy Were combined (using
addition), resulting in a matrix of 127,464 vect@iz64x 480) + 264 + 480)). In order
to generate an artificial database, 20,000 pertiot were randomly taken and
added to 2,000 repetitions of the 10 spectra fKag) resulting in a matriXaris. The
reference values corresponding to this mayt: were obtained from the 2,000



repetitions of the reference value for the calibratdatasety.,, because the
perturbations added to the spectra should not ehtnegreference value.
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Figure 2 : PCA plot showing the spectral space of the iaseel calibration dataset
(Xarit) including the originaKca.

Figure 2 shows that the spectral space of the radililm database increased
when comparing fronXcy to Xaiir using PCA. This was due to the integration of
perturbation into the database. The model was tt@ibrated usingXa and a
second derivative (window 9, polynomial order 3)pas-processing and wavelength
selection (from 1950 to 2250 nm). Some non-lingargmained, but the model in
cross-validation gave interesting performanceguie3).
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Figure 3 : Final model constructed using, for participant 1.



Approach 2: OSC approach on artificial data

Orthogonalisation techniques are an interestingrradtive for building robust
models. They include the External Parameter Orthaligation (EPO) [12] approach
(see participants 2 and 3). The Orthogonal Sigratection (OSC) approach takes
account of the reference values [11]. OSC basedrorexperimental design was
proposed to take advantages of both EPO and OSCIfltBis application, however,
although perturbation variability was present ie #xperimental designs, there was
no variability in the reference values. The OSCrapph was therefore proposed as a
pre-treatment on the previously built artificiallibeation database, where reference
values and perturbation variability were present.

The other pre-treatments used were a second deevating the Savitsky and
Golay algorithm ([14]) with a window of 9 and a pobmial of degree 3, followed by
an SNV on the whole wavelength range. Cross-vatidabptimised the calibration
model with only two latent variables and one OSQda removed, giving a
parsimonious model.

3.2. Participant 2

The method chosen for calibration was PLS. Thea tygtimisation of the
model was carried out by testing different pre-pssing methods, using the
calibration error (SEC) and the cross-validatioavkeone-out error (SECV) as
selection criteria. Because the spectra were &ffieloy a baseline and a multiplicative
effect, the pre-treatment used was a second demvasing the Savitsky and Golay
algorithm with a window of 9 and a polynomial ofgdee 3 ([14]), followed by SNV
([15]), as explained in [16]. Two models were re&al: one was based on the raw
spectra, and the other was based on the pre-pesteggsectra, as previously
described.

Both models were then submitted to a test for déactor, independently from
other factors, in order to determine its influend@ do this, the matrices of
experiments were averaged according to the faotrgvolved, in order to retain the
variability only for the matrix whose effect neededbe evaluated. Both models were
then tested on this reduced matrix. For examplatudy the influence of moisture,
the experimental design was averaged in terms afujometry, temperature and
repetitions, which supplied 22 spectra: 11 for ding products and 11 for the humid
products. The predictions for each sample at twaste contents were then
compared.

The method used to improve the robustness of thieragon was based on
EPO ([12, 17]). This involves the orthogonalisatmnthe measurement space of the
spectra, on the basis of the disturbances causéldebiactors. The orthogonalisation
removes the components of the sub-space spanndidebgifferences between the
spectra repeated for the same sample. On one tlenhore the number of removed
components increases, the more spectra of eachesé#egme similar and then the
calculated predictions on these spectra become snoikar. On the other hand, if too
many components are removed, this could alter thération. To choose the
dimension of the space to be removed by orthogeetadin, we used the Wilks's
lambda, which represents the ratio of the variantse samples and the variance intra
samples. This indicator was calculated in accoréamith the number of removed
factors and the number of latent variables of tredeh The examination of its
evolution enabled us to choose the optimal dimengdoe removed.

Finally, the orthogonalisation of the models waieed in two ways:



- By individual orthogonalisation, i.éringing together the six projectors (4 for
Xeady 1 for Xinstn and 1 forXinsi2) calculated individually for every size of
influence

- By a global orthogonalisation, i.e. calculatinglabgl projector, on all th&
matrices brought together.

These two methods were applied to both models &raivpre-treated), resulting in
four different predictions for the test set. Theeth most different predictions were
retained.

As previously explained, the models were submitiech test for each factor
independently to determine its influence. The dwiitsi of these models to the
different size factors is illustrated in Table hetleft side corresponds to the raw
samples and right side to the pre-treated datagh&svn in the table, the factors have
varying influences on the robustness of the model:

Table 1 :Validation criteria of the models after test fockdactor individually (the
left side corresponds to the raw samples and sigletto the pre-treated data) for
participant 2 :

Raw data Pretreated data

R2 Bias SEP Slope Offset R2 Bias SEP Slope Offset
Humidity 0,97 -26,90 7,10 0,82 2,85 1,00 1,93 5,66 0,80 27,60
Granulometry 0,99 -11,70 3,00 1,02 -14,70 0,99 -2,77 2,34 0,97 1,75
Temperature 1,00 -0,12 1,61 0,97 3,46 1,00 -0,33 1,17 1,02 -2,86
Repetition 1,00 0,21 1,00 1,01 -1,42 1,00 -0,06 0,52 1,00 -0,68
S1 0,83 - 5,73 - - 0,91 - 4,12 - -
S2 0,95 - 2,95 - - 0,96 - 2,55

- For moisture, there is clearly a positive effectitd pre-treatment: the bias is
far less strong, as is the dispersion about thibrasibn line. However, the
slope is far from 1 (+/-0.8) in both cases.

- For granulometry, the pre-treatment reduces the dmal the dispersion about
the calibration line.

- Temperature and sample repetition seem to be Blighituential. The pre-
treatment improves the prediction, independentlghefrobustness.

The sensitivity of the models, after orthogonai@matto the different size factors
is illustrated in Table 2. It shows the clear adage of orthogonalisation, especially
for the most influential factors. The number of gmments that need to be removed is
3 for the factors of influence in the first expeemtal design, and 8 for the inter
spectrometer repetitions.

Table 2 :Validation criteria of the models after test fockdactor individually after
orthogonalisation (the left side corresponds torélve samples and right side to the
pre-treated data) for participant 2.

Raw data Pretreated data

R2 Bias SEP Slope Offset R2 Bias SEP Slope Offset
Humidity 0,99 0,05 2,51 1,01 -1,60 1,00 0,13 1,47 1,00 0,75
Granulometry 0,99 -0,27 2,46 1,03 -4,85 1,00 0,00 1,40 1,01 -1,68
Temperature 1,00 0,01 1,37 0,98 2,02 1,00 0,00 0,58 1,00 -0,44
Repetition 1,00 -0,20 0,47 1,00 -0,73 1,00 -0,07 0,28 1,00 -0,25
S1 0,98 - 1,77 - - 0,98 0,00 1,69 - -
S2 0,99 - 0,96 - - 1,00 - 0,66

3.3. Participant 3
As a first step, the goal was to show that the regleparameters (e.qg.,
moisture, grinding, temperature, and repeatabditydifferent NIR apparatus) were



significant. To demonstrate external parameter mance, PCA was performed after
centering raw spectra. For each PCA, clusters weagle up of each external
parameter (Figure 4).
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Figure 4 : PCA scores calculated without pre-processing, shgwnportance of
external parameters: (a) temperature, (b) mois{ayeyrinding (d) repeatability on
different NIR apparatus.

A pre-processing method was then applied, its amdto remove from the
data space the part that was most influenced bgxtexnal parameter variations. The
method proposed was EPO [12], which estimates d@naspiic subspace by computing
a PCA on a set of spectra measured on the sametgbjéile the external parameter
varies.

Different pre-treatments were applied: SNAB] (standard normal variate),
MSC [18] (multiplicative scatter correction), first deaitive spectra using Savistsky
Golay algorithm, and raw spectra. The first derxaspectra pre-treatment gave the
best result.

As for participant 2, when applying EPO pre-prooegs there are two
possibilities: by individual orthogonalisation,.ieliminating external parameters on
an ad hoc basis and by a global orthogonalisaBoith possibilities were tested and
the second method was chosen because it gave sh&>6& representation in that
example. Figure 5 shows the two first scores of RGWH EPO pre-processing on the
first derivative spectra and on raw spectra. Comgathis with Figure 4.d clearly

shows the powerful performance of EPO pre-procgssin
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Figure 5 : Two first component scores of PCA with EPO pre-pssing: (a) on 1st
derivative spectra, (b) on raw spectra.

The PLS model was calibrated on the calibrationrimadfter EPO pre-
treatment of the first derivative spectra. The Jiioke technique [19] was used to fix
the required number of factors for model constorctiCross-validation was applied
in regression, so the optimal factor number wasrdahed based on the prediction of
the sample kept out of the individual model. A finaodel with two latent variables
and an R of 0.99 and RMSEC (root mean square error in catitn) of 3.30 was
applied to the test dataset matrix.

3.4 Challenge organisers
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Figure 6 : Spectra of the 10 available sampl¥s,().

Figure 6 shows the spectra of the 10 available &mnphe strategy proposed
sought to create a huge calibration set by takoupant of the experimental design
and the repetitions between instruments. The md@a iwas to compute all the
differences between all the pairs of the same sampboth the experimental design



and the repetitions, and then add these differeteweise 10 spectra with known Y
values. The procedure can be described in two:steps

Sep 1 - The experimental desigiX{y comprised 11 samples x 2 moistures x
2 grinders x 3 temperatures x 2 replicated scansothl, 264 spectra were available.
All the differences between the pairs of sampleseeveemputed, giving a total of 552
(24 * (24-1)) differences per sample. Then, for fHesamples, a matrix containing
6,072 differences was retained. Figure 7 showthafle differences.

Absorbance ( log (1/R))
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Figure 7 : Differences between the pairs of samples basetleoaxperimental design
dataset.

Sep 2 — The differences between the two series of 10pgEsnscanned on
different instruments were computed. For seX}s(1) scanned on 31 instruments,
930 (31* (31-1)) differences were calculated focteaample. For set 2X{istr2)
scanned on 17 instruments, 272 (17* (17-1)) diffees for each sample were
obtained. For the 10 samples, a total of 12,02@rdihces were computed, as shown

in Figure 8.
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Figure 8 : Differences between the two series of samples schbhased on the
Standard Replicates Dataset.

All these differences were added to the 10 avaslapkctraX.a), giving a total of
180,920 spectra with only 10 reference values. @ummputer and time limitations,
a random selection of spectra was made and therfindel was constructed using
2,548 spectra and 10 reference values. Figure @sslioe projection of the 2,000
samples of the test datasKic() on the 2,548 spectra set constructed, indicahag

both sets match perfectly.
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Figure 9 : PC1 vs. PC2 showing the projection of the 2,000pas0f the Xt
on the 2,548 spectra dataset constructed by tHeoha organisers.
The proposed model was constructed using least«g|gapport vector machines
(LS-SVM) [20]. The results are shown in Figure 10.
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Figure 10 : Results obtained after the application of the SVbtai for the challenge
organisers. a) model using only the 10 availabhtedas ofXc4; b) prediction oXiest
based on model represented in a; ¢) model consttuding the 2,548 spectra
obtained following the strategy described and @fmtion ofXs based on model
represented in c.

Figure 10 provides a comparison in terms of RMSEQ RPD between the model
using only the 10 available samples (Figure 10nd)the model constructed using the
2,548 spectra obtained following the strategy dbsedr(Figure 10 c). In both cases,
the prediction for the test dataset is also shdvigufes 10 b and d respectively).

4. Final results

The evaluation of the approaches was based oretedsults obtained for the
predicted values of the test dataset (2,000 specitze reference protein value
obtained by the reference method for these sp&¢sa not communicated to the
participants. For the evaluation, thé Bnd RMSEP (Root Mean Square Error in
Prediction) were used as validation criteria. Adliadnal parameter, RPD (ratio of
the standard deviation of the population over ttamdard error of prediction), was
also included. The results for the different apphms are summarised in Table 3.

Table 3 : Summary of the results of the different approadhésrms of R,
RMSEP and RPD (ratio of the standard deviatiorhefgopulation over the standard
error of prediction).

R2 RMSEP RPD
Participant 1 (approach 1) 0,91 3,91 3,32
Participant 1 (approach 2) 0,88 4,51 2,88
Participant 2 0,89 4,24 3,05
Participant 3 0,86 4,86 2,65

Challenge organizer 0,93 3,56 3,82




5. Conclusion

The challenge produced a wide diversity of residtsvever, when evaluating
the 10 answers received (nine from the participaote from the organisers) as a
whole, Challenge 2007 showed that it is still pbkesto perform a robust and precise
calibration when only a few reference values aralable. The use of well-defined
experimental designs, including repeated measursmarder different conditions,
will lead to the use of simple, easy and low-costriuments and the construction of
robust models.

During the congress the approaches summarisediegeepresented, together
with the challenge organisers' approach. The paaints found the results interesting
and it was decided to include another challengé¢hf®mext congress.

The data of this challenge and previous challemgasailable on the internet
address of the French Chemometric Societip(//www.chimiometrie.fry.
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