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Abstract

Most GPS time-series exhibit a seasonal signal that can have an amplitude

of a few millimetres. This seasonal signal can be removed by fitting an

extra sinusoidal signal with a period of one year to the GPS data during the

estimation of the linear trend.

However, Blewitt and Lavallée (2002) showed that including an annual

signal in the estimation process still can give a larger linear trend error than

the trend error estimated from data from which the annual signal has been

removed by other means. They assumed that the GPS data only contained

white noise and we extend their result to the case of power-law plus white

noise which is known to exist in most GPS observations. For the GPS stations

CASC, LAGO, PDEL and TETN the difference in trend error between having

or not having an annual signal in the data is around ten times larger when a

power-law plus white noise model is used instead of a pure white noise model.
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Next, our methodology can be used to estimate for any station how much

the accuracy of the linear trend will improve when one tries to subtract the

annual signal from the GPS time-series by using a physical model.

Finally, we demonstrate that for short time-series the trend error is more

influenced by the fact that the noise properties also need to be estimated

from the data. This causes on average an underestimation of the trend error.

Key words: GPS, time-series, noise

1. Introduction

The time-series analysis of daily GPS positions to estimate the secular

motion of discrete points due to plate tectonics, has become a routine op-

eration. Examples are the routinely processing of the European Permanent

Network of EUREF (Bruyninx, 2004), and the daily processing carried out

at the Scripps Orbit and Permanent Array Center (Prawirodirdjo and Bock,

2004). At both initiatives hundreds of permanent GPS stations are analysed

in a semi-automatic manner.

Mostly a linear plate motion, also called a linear trend, is assumed. In

addition, the fact that these daily GPS observations are correlated in time

is nowadays usually taken into account. This results in a larger uncertainty

of the estimated linear trend compared to the formal error of uncorrelated

observations (Johnson and Agnew, 1995).

It has been observed that most GPS position time-series exhibit an annual

signal with an amplitude of a few millimetres (e.g., Dong et al., 2002). For 27

GPS stations located over Iberia, taken from the WEGENER’s GEOdynamic

Data and Analysis Center (GEODAC), we found on average 1 mm amplitude
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in North and East component and 2 mm in the vertical component.

Although the causes are not yet completely understood, the most likely

explanations are a combination of atmospheric loading (e.g., van Dam et al.,

1997), hydrological loading (e.g., van Dam et al., 2001), and thermal expan-

sion of the GPS stations (e.g., Romagnoli et al., 2003).

Blewitt and Lavallée (2002) demonstrated that an annual signal within

the data deteriorates the accuracy of the estimated linear trend in time-series

with an observation time span of a few years, even when this annual signal

is taken into account during the estimation process.

They also showed that the presence of an annual signal has no influence

on the accuracy of the linear trend when the observation period is around

1.5, 2.5, 3.5 and 4.5 years. At these specific observation periods there is

no correlation between the annual signal and the linear trend. For longer

observation spans the correlation between the annual signal and the linear

trend can be neglected.

However, their results are based on the assumption of having white noise

in the GPS observations while we already mentioned that it is nowadays

accepted that GPS noise is correlated in time. In this research we investigate

how temporal correlated noise alters the conclusions of Blewitt and Lavallée

(2002). In addition, since we also have to estimate the parameters of the noise

that is present within the data, we investigate how our imperfect knowledge

of their properties influences the estimated trend error.
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2. Theory

Let us assume that we have a data set of N daily GPS positions which

we designate by the vector x. These could be positions in East, North or

Up direction. Since each direction is analysed separately, we only describe

the procedure in one component. To these data we fit a linear trend that

represents the tectonic motion and an arbitrary offset using Weighted Least-

Squares. The design matrix is simply:

H =

















1 t0

1 t1
...

...

1 tN−1

















with t0 = 0, t1 = 1, . . . (1)

To include an annual signal in the design matrix, we need to modify it as

follows:

H =

















1 t0 cos(ωat0) sin(ωat0)

1 t1 cos(ωat1) sin(ωat1)
...

...

1 tN cos(ωatN) sin(ωatN)

















(2)

where ωa is the angular velocity of the annual signal.

If we also assume that we know the covariance matrix of the noise that

is present within the signal, designated by C, then the covariance matrix of

the estimated parameters θ̂ is (Kay, 1993):

Cov(θ̂) =
(

HTC−1H
)

−1
(3)

Eq. (3) does not account for modelling errors. If for example the data

would contain a quadratic signal (the tectonic plate is accelerating) while we
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don’t account for it in our design matrix, then the fit between the model

and observations would be worse that it could be. This normally results

in larger values in the covariance matrix C, which is estimated from the

misfit between model and observations. As a result, the uncertainty of the

estimated parameters is larger than it could be. The better we model the

signal, the better is the accuracy of the estimated parameters.

On the other hand, if we try to fit a too complex model to the data

with many parameters there is the risk that the accuracy of the estimated

parameters decreases. This happens when there is a large correlation between

the different parameters which complicates their separation.

The separation of different signals within the data is also less accurate

when the noise is correlated in time. If the noise is not correlated in time

then it is called white noise, otherwise it is called coloured noise. When

the spectrum of the noise is of the form 1/fα, where f is the frequency,

one speaks about power-law noise. The parameter α is called the spectral

index. Caporali (2003) and Williams et al. (2004), among others, have shown

that the noise in GPS data can be well described as the sum of white and

power-law noise.

As a result, the covariance matrix of the noise can be written as (Williams,

2003b):

C = σ2
wI + σ2

pl E(α) (4)

where σ2
w and σ2

pl are the variances of the white and power-law noise. I is

the unit matrix and E represents the covariances due to the power-law noise

and depends on the spectral index α.
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3. Observations

To illustrate the effects related to analysing short time-series we used GPS

data from four stations of which two are in Portuguese Mainland: CASC

and LAGO. The other stations are PDEL, Ponta Delgada in the Azores,

and TETN which is situated in the north of Morocco. The first three time-

series have an observation span of longer than nine years while TETN only

has 2.4 years of continuous GPS observations. Only the last station can be

considered to be a short time-series but we will use the longer time-series to

validate our results.

Data have been processed using JPL’s GIPSY software package (Webb

and Zumberge, 1995), following the precise point positioning strategy which

resulted in time-series of daily coordinate solutions. These time-series were

afterwards converted to the ITRF2005 reference frame (Altamimi et al., 2007)

and filtered to remove outliers. Offsets were estimated at epochs when the

GPS receiver or antenna were replaced.

For CASC, the time-series of the North component is presented in Fig.

1. The power spectral density of the differences between observations and

the fitted model, is given in Fig. 2. In this last figure also the estimated

power-law plus white noise model has been plotted which fits well to the

observed power spectral density. The plots of the position time-series and

power spectral density for the other stations and components look similar.

INSERT FIGURE 1 HERE.

INSERT FIGURE 2 HERE.

The values of the estimated trend and its associated error for these time-

series were estimated using the Maximum Likelihood Estimation method

6
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(Mao et al., 1999; Williams, 2003b; Langbein, 2004) and are presented in

Table 1. One can see that the East component is always less accurate than

the North component. This table also contains the estimated values of the

white plus power-law noise model discussed in section 2. We also listed the

value of the standard deviation σw when only white noise is assumed to exist

in the GPS observations.

INSERT TABLE 1 HERE.

The uncertainty of the linear trend was computed using Eq. (3) as func-

tion of the observation span. For the covariance matrix C we used two

models: the power-law plus white noise model and a pure white noise model.

The values for both noise models were taken from Table 1. In addition, we

performed the computations with and without estimating the annual signal

in the design matrices, see Eqs. (1) and (2). The results for the North com-

ponent of CASC are plotted in Fig. 3. It shows that the trend error for

data with power-law plus white noise is larger than when only white noise

is, wrongly, assumed to be present in the data. This was already observed

by Mao et al. (1999) who stated that the difference can vary by a factor of

5–11.

INSERT FIGURE 3 HERE.

The trend error for the white noise model in Fig. 3 corresponds to Fig.

4 of Blewitt and Lavallée (2002) although our values are almost three times

smaller because we used a value for σw of 2.36 mm (last column Table 1)

instead of 4 mm that was used by Blewitt and Lavellée.

Fig. 3 shows that the predicted trend error is larger when an annual

signal is included in the design matrix. To see this effect more clearly, we

7
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computed the difference between the errors associated with the two different

design matrices. The results are plotted in Fig. 4 and show that for power-

law plus white noise the difference is around ten times larger compared to

pure white noise. The same result was obtained at the other stations for

both the East and North component.

INSERT FIGURE 4 HERE.

This figure demonstrates that having an annual signal in your data pro-

duces larger uncertainties in your trend value compared to the situation of

having no annual signal in your data. Estimating an additional annual signal

in your estimation process does therefore not completely eliminate its effect

on the linear trend.

For the pure white noise model we can see minimum influence of the an-

nual signal on the trend error at observation spans of integer plus a half year

intervals (Blewitt and Lavallée, 2002). However, for power-law plus white

noise, which is found in most GPS time-series, we find minimal influence

closer to integer plus a quarter year intervals.

4. Influence of estimating the noise

To predict the trend error in short time-series, we have until now assumed

that we know the values of the power-law plus white noise model within the

GPS time-series. However, this is normally not the case and we must estimate

these parameter values from the data.

To investigate the influence of estimating the noise properties from the

data we have cut up the CASC time-series in non-overlapping segments of

equal lengths. By analysing each segment separately, we obtained informa-

8
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tion about the spread in the predicted trend error for short time-series. The

results for the North component have been plotted as black dots in Fig. 5

where the segment lengths was varied between two and six years. The large

trend error of 2.4 mm/year for an observation span of two years in one of

the segments of the CASC time-series has been caused by the fact that it

contains a gap of 150 days.

The predicted trend error using the power-law plus white noise properties

of Table 1 is represented by the solid black line (see also Fig. 3).

To get a better idea of the spread in the predicted trend error one can

expect when analysing short GPS time-series, we performed a Monte Carlo

simulation. For each observation span we computed and analysed 100 syn-

thetic time-series that contained the same power-law plus white noise prop-

erties as is listed in Table 1 for CASC, North component. Afterwards, we

computed for each observation span the mean and standard deviation of the

predicted trend error. The area between ±1 standard deviation around the

mean has been plotted as a grey area in Fig. 5.

INSERT FIGURE 5 HERE.

The Monte Carlo results in Fig. 5 show that the predicted trend error is

on average underestimated for short time-series (Williams et al., 2004). That

is, the estimated trend values in the Monte Carlo simulation vary more than

one would expect from these predicted trend errors. This underestimation

caused by the fact that some of the power-law noise is considered to be part

of the linear trend by the MLE method which results in smaller residuals.

This influence of estimating the noise properties from the data has a

larger effect on the trend error than having an annual signal in the GPS

9
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observations. It is therefore more effective to try to improve our knowledge

of the noise within GPS observations than to improve our knowledge about

what is causing the annuals signal when one is interested in the linear trend.

To reduce the spread in the predicted trend error we note from Table 1

that the value of the spectral index lies between 1.1 and 1.5. Furthermore,

the value of σw is roughly three times that of σpl. If we assume that we can

keep the value of α and the ratio σw/σpl fixed, the covariance matrix can be

written as (Williams, 2008):

C = σ2J (5)

Another argument for using this simplified model for the covariance was given

by Bos et al. (2008) who showed that power-law noise has a larger influence

than white noise on the linear trend.

Having fixed the structure of our noise model, we only need to estimate

the scale factor σ2 to determine the covariance matrix C. Before doing so, it

is convenient to define the following parameter vector β = (θ, σ2).

The logarithm of the probability density function is (Williams, 2003b):

ln p(x| β) = −
1

2
[N ln 2π + ln det(C)+

(x − Hθ)T
C−1(x − Hθ)

]

(6)

For any unbiased estimator, the variance of the estimated parameters is given

by the Cramer-Rao lower bound (Kay, 1993):

Var(βi) ≥
[

I(β)−1
]

ii
(7)

where I(β) is the Fisher information matrix. The latter is defined by:

I(β) = −E

[

∂ ln2 p(x| β)

∂β2

]

(8)

10
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The E operator represents the expected value. After computing the various

derivatives of Eq. (6), we obtain the following expression for the variance in

the estimated values of σ2:

Var(σ2) =
2σ4

N
(9)

Here we replaced the inequality sign of Eq. (7) with an equal sign because

we used the Maximum Likelihood Estimation (MLE) method to estimate its

value. MLE is asymptotically efficient and approaches the Cramer-Rao lower

bound when the sample size becomes large (Kay, 1993). Using Eq. (5), we

can write the variance of the variance of θ as:

Cov(θ̂) =
2σ4

N

(

HTJ−1H
)

−1
(10)

Instead of having one uncertainty for the trend error, say σt, we now have

a range of trend errors because the value of σ is not exactly known. This

causes a varying predicted trend error:

σt

√

1 ±

√

2

N
≈ σt ±

σt

2

√

2

N
(11)

The last term represents the standard deviation in the predicted trend error

itself.

We repeated the analysis of the CASC time-series but now we set the

values α = 1.3 and σpl/σw = 3.3. Only σpl was estimated which corresponds

to the noise model of Eq. 5. The results are plotted in Fig. 6.

INSERT FIGURE 6 HERE.

The Monte Carlo results, the grey area, show that the spread in the pre-

dicted trend error is much smaller compared to those plotted in Fig. 5. This

11
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spread agrees well with the one predicted by Eq. (11). In addition, they are

unbiased. The spread in the predicted trend error for the CASC segments

has also decreased although the variations are still significantly larger than

one would expect from the Monte Carlo simulations. The assumption that

the noise properties are constant over time seems therefore questionable. The

reason why the noise properties vary over time is unknown and deserves fur-

ther investigation. One possible explanation could be the existence of small

offsets which have not been detected but are altering the noise properties

(Williams, 2003a).

5. Conclusions

Under equal noise conditions, the accuracy of the estimated linear trend

is worse in GPS time-series that have a seasonal signal compared to those

which have not, even when an annual signal is included in the estimation

process. We have shown in Fig 4 that for realistic GPS time-series with

power-law plus white noise this difference in trend error is larger than for the

situation when only white noise is assumed to exist in the data as was done

by Blewitt and Lavallée (2002).

Our results can be used to estimate how much the accuracy of the linear

trend will improve when one tries to reduce the annual signal in short GPS

time-series by, for example, subtracting atmospheric and hydrological loading

values.

We have also demonstrated that for short time-series the trend error is

significantly influenced by the fact that the noise properties also need to

be estimated from the data. This causes a variation in the predicted trend

12
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error that is larger than the effect of having an additional annual signal

in the estimation process. It is therefore more effective to try to improve

our knowledge of the noise within GPS observations than to improve our

knowledge about what is causing the annuals signal when one is interested

in the linear trend.

Our Monte Carlo simulation confirmed the result of Williams et al. (2004)

that the trend error is on average underestimated for short time-series.

Finally we have shown that when the noise model can be simplified to

a simple scaling of a priori known covariance matrix, Eq. 5, the underes-

timation of the trend error and the spread in the predicted trend error is

significantly reduced. For this simple noise model we derived Eq. (11) that

provides the uncertainty in the predicted trend error.
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Figure 1: The upper panel shows the North component of the GPS position time-series at

CASC. The lower panel shows the same data set after subtraction of a linear trend and a

yearly signal.
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Figure 2: Power spectral density of the GPS residuals at CASC, North component. The

circles denote the spectral density computed from the observations and the solid line is

the fitted power-law plus white noise model.
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Figure 3: The predicted trend error as function of the observation span for CASC, North

component, for different noise models. These errors have been computed with and without

having an annual signal in the design matrix. Having an annual signal in the estimation

process produces slightly larger errors.
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Figure 4: The difference of the predicted trend errors shown in Fig. 3 computed with and

without an annual signal in the design matrix for different noise models.
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Figure 5: The predicted trend error as function of the observation span for CASC, North

component. The black dots represent the predicted trend error for different segments

of the GPS time-series. The black line corresponds to the predicted trend error using

the power-law plus white noise model values listed in Table 1. The grey area has been

produced by Monte Carlo simulation.

 0

 1

 2

 3

 1  2  3  4  5  6
 0

 1

 2

 3

 1  2  3  4  5  6

tr
en

d 
er

ro
r 

(m
m

/y
ea

r)

Observation period (years)

Figure 6: The same as Fig. 5 but with α = 1.3 and σpl/σw = 3.3. Only σpl was estimated

from the data.
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Table 1: The values of the estimated trend with its associated error for the North and

East component. For each station the time span of the observation is given in years. Also

listed are the estimated standard deviations of the power-law and white noise present in

the data, σpl and σw, and the spectral index α of the power-law noise. The last column

contains the value of σw when only white noise is assumed to exist within the data. An

annual signal was included in the estimation process.

Station ∆T Comp. trend ± std α σpl σw only σw

(years) (mm/year) (mm) (mm) (mm)

CASC 12.3 E 17.5 ±0.6 1.4 1.06 2.85 3.81

N 16.7 ±0.3 1.3 0.61 2.01 2.36

LAGO 9.6 E 17.1 ±0.8 1.5 0.84 2.83 3.70

N 17.0 ±0.3 1.4 0.53 1.60 2.06

PDEL 9.4 E 12.2 ±0.7 1.4 1.03 2.92 3.92

N 16.8 ±0.3 1.1 1.16 2.45 3.38

TETN 2.4 E 13.7 ±2.0 1.1 2.06 3.05 4.51

N 16.3 ±0.8 1.1 0.92 2.05 3.02
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