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Online Expectation Maximization based algorithms for inference in Hidden Markov Models

The Expectation Maximization (EM) algorithm is a versatile tool for model parameter estimation in latent data models. When processing large data sets or data stream however, EM becomes intractable since it requires the whole data set to be available at each iteration of the algorithm. In this contribution, a new generic online EM algorithm for model parameter inference in general Hidden Markov Model is proposed. This new algorithm updates the parameter estimate after a block of observations is processed (online). The convergence of this new algorithm is established, and the rate of convergence is studied showing the impact of the block-size sequence. An averaging procedure is also proposed to improve the rate of convergence. Finally, practical illustrations are presented to highlight the performance of these algorithms in comparison to other online maximum likelihood procedures.

Introduction

A hidden Markov model (HMM) is a stochastic process {X k , Y k } k≥0 in X × Y, where the state sequence {X k } k≥0 is a Markov chain and where the observations {Y k } k≥0 are independent conditionally on {X k } k≥0 . Moreover, the conditional distribution of Y k given the state sequence depends only on X k . The sequence {X k } k≥0 being unobservable, any statistical inference task is carried out using the observations {Y k } k≥0 . These HMM can be applied in a large variety of disciplines such as financial econometrics ( [START_REF] Mamon | Hidden Markov Models in Finance[END_REF]), biology ( [START_REF] Churchill | Hidden Markov chains and the analysis of genome structure[END_REF]) or speech recognition ( [START_REF] Juang | Hidden Markov models for speech recognition[END_REF]). This new algorithm, called Block Online EM (BOEM) is derived in Section 2 together with an averaged version. Section 3 is devoted to practical applications: the BOEM algorithm is used to perform parameter inference in HMM where the forward recursions mentioned above are available explicitly. In the case of finite state-space HMM, the BOEM algorithm is compared to a gradient-type recursive maximum likelihood procedure and to the online EM algorithm of [START_REF] Cappé | Online EM algorithm for Hidden Markov Models[END_REF]. The convergence of the BOEM algorithm is addressed in Section 4. The BOEM algorithm is seen as a perturbation of a deterministic limiting EM algorithm which is shown to converge to the stationary points of the limiting relative entropy (to which the true parameter belongs if the model is well specified). The perturbation is shown to vanish (in some sense) as the number of observations increases thus implying that the BOEM algorithms inherits the asymptotic behavior of the limiting EM algorithm. Finally, in Section 5, we study the rate of convergence of the BOEM algorithm as a function of the block-size sequence. We prove that the averaged BOEM algorithm is rate-optimal when the blocksize sequence grows polynomially. All the proofs are postponed to Section 6; supplementary proofs and comments are provided in [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]. [START_REF] Cappé | Online sequential Monte Carlo EM algorithm[END_REF] The Block Online EM algorithms

Notations and Model assumptions

Our model is defined as follows. Let Θ be a compact subset of R d θ . We are given a family of transition kernels {M θ } θ∈Θ , M θ : X × X → [0, 1], a positive σ-finite measure µ on (Y, Y), and a family of transition densities with respect to µ, {g θ } θ∈Θ , g θ : X × Y → R + . For each θ ∈ Θ, define the transition kernel K θ on X × Y by

K θ [(x, y), C] def =
1 C (x , y ) g θ (x , y ) µ(dy ) M θ (x, dx ) .

Denote by {X k , Y k } k≥0 the canonical coordinate process on the measurable space (X × Y) N , (X ⊗ Y) ⊗N . For any θ ∈ Θ and any probability distribution χ on (X, X ), let P χ θ be the probability distribution on ((X × Y) N , (X ⊗ Y) ⊗N ) such that {X k , Y k } k≥0 is Markov chain with initial distribution P χ θ ((X 0 , Y 0 ) ∈ C) = 1 C (x, y) g θ (x, y) µ(dy) χ(dx) and transition kernel K θ . The expectation with respect to P χ θ is denoted by E χ θ . Throughout this paper, it is assumed that the Markov transition kernel K θ has a unique invariant distribution π θ (see below for further comments). For the stationary Markov chain with initial distribution π θ , we write P θ and E θ instead of P π θ θ and E π θ θ . Note also that the stationary Markov chain {X k , Y k } k≥0 can be extended to a two-sided Markov chain {X k , Y k } k∈Z .

It is assumed that, for any θ ∈ Θ and any x ∈ X, M θ (x, •) has a density m θ (x, •) with respect to a finite measure λ on (X, X ). Define the complete data likelihood by p θ (x 0:T , y 0:T ) def = g θ (x 0 , y 0 )

T -1 i=0 m θ (x i , x i+1 )g θ (x i+1 , y i+1 ) , (1) 
where, for any u ≤ s, we will use the shorthand notation x u:s for the sequence (x u , • • • , x s ). For any probability distribution χ on (X, X ), any θ ∈ Θ and any s ≤ u ≤ v ≤ t, we have

E χ θ [f (X u:v )|Y s:t ] = f (x u:v )φ χ θ,u:v|s:t (dx u:v ) ,
where φ χ θ,u:v|s:t is the so-called fixed-interval smoothing distribution. We also define the fixed-interval smoothing distribution when X s ∼ χ:

E χ,s θ [f (X u:v )|Y s+1:t ] = t i=s+1 {m θ (x i-1 , x i )g θ (x i , Y i )}f (x u:v )χ(dx s )λ(dx s+1:t ) t i=s+1 {m θ (x i-1 , x i )g θ (x i , Y i )}χ(dx s )λ(dx s+1:t ) . (2) 
Given an initial distribution χ on (X, X ) and T + 1 observations Y 0:T , the EM algorithm maximizes the so-called incomplete data log-likelihood θ → χ (

) 3 
The central concept of the EM algorithm is that the intermediate quantity defined by

θ → Q(θ, θ ) def = E χ θ [log p θ (X 0:T , Y 1:T )|Y 1:
T ] may be used as a surrogate for χ θ,T (Y 0:T ) in the maximization procedure. Therefore, the EM algorithm iteratively builds a sequence {θ n } n≥0 of parameter estimates following the two steps:

i) Compute θ → Q(θ, θ n ). ii) Choose θ n+1 as a maximizer of θ → Q(θ, θ n ).
In the sequel, it is assumed that there exist functions S, φ and ψ such that (see A1 for a more precise definition), for any (x, x ) ∈ X 2 and any y ∈ Y,

m θ (x, x )g θ (x , y) = exp {φ(θ) + S(x, x, , y), ψ(θ) } .
Therefore, the complete data likelihood belongs to the curved exponential family and the step i) of the EM algorithm amounts to computing

θ → Q(θ, θ n ) = φ(θ) + 1 T T t=1 E χ θn [S(X t-1 , X t , Y t )|Y 1:T ] , ψ(θ) ,
where •, • is the scalar product on R d (and where the contribution of g θ (x 0 , Y 0 ) is omitted for brevity). It is also assumed that for any s ∈ S, where S is an appropriately defined set, the function θ → φ(θ) + s, ψ(θ) has a unique maximum denoted by θ(s). Hence, a step of the EM algorithm writes

θ n = θ 1 T T t=1 E χ θn-1 [S(X t-1 , X t , Y t )|Y 1:T ] .

The Block Online EM (BOEM) algorithms

We now derive an online version of the EM algorithm. Define Sχ,T τ (θ, Y) as the intermediate quantity of the EM algorithm computed with the observations Y T :T +τ :

Sχ,T τ (θ, Y) def = 1 τ T +τ t=T +1 E χ,T θ [S(X t-1 , X t , Y t )|Y T +1:T +τ ] , (4) 
where [START_REF] Cappé | Online sequential Monte Carlo EM algorithm[END_REF]. Let {τ n } n≥1 be a sequence of positive integers such that lim n→∞ τ n = +∞ and set

E χ,T θ [•|Y T +1:T +τ ] is defined by
T n def = n k=1 τ k and T 0 def = 0 ; (5) 
τ n denotes the length of the n-th block. Given an initial value θ 0 ∈ Θ, the BOEM algorithm defines a sequence {θ n } n≥1 by

θ n def = θ [S n-1 ] , and S n-1 def = Sχn-1,Tn-1 τn (θ n-1 , Y) , (6) 
where {χ n } n≥0 is a family of probability distributions on (X, X ). By analogy to the regression problem, an estimator with reduced variance can be obtained by averaging and weighting the successive estimates (see [START_REF] Kushner | Stochastic Approximation Algorithms and Applications[END_REF][START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] for a discussion on the averaging procedures). Define Σ 0 def = 0 and for n ≥ 1,

Σ n def = 1 T n n j=1 τ j S j-1 . (7) 
Note that this quantity can be computed iteratively and does not require to store the past statistics {S j } n-1 j=0 . Given an initial value θ 0 , the averaged BOEM algorithm defines a sequence { θ n } n≥1 by

θ n def = θ (Σ n ) . (8) 
The algorithm above relies on the assumption that S n can be computed in closed form. In the HMM case, this property is satisfied only for linear Gaussian models or when the state-space is finite. In all other cases, S n cannot be computed explicitly and will be replaced by a Monte Carlo approximation S n . Several Monte Carlo approximations can be used to compute S n . The convergence properties of the Monte Carlo BOEM algorithms rely on the assumption that the Monte Carlo error can be controlled on each block. [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF] provides examples of applications when Sequential Monte Carlo algorithms are used. Hereafter, we use the same notation {θ n } n≥0 and { θ n } n≥0 for the original BOEM algorithm or its Monte Carlo approximation.

Our algorithms update the parameter after processing a block of observations. Nevertheless, the intermediate quantity S n can be either exactly computed or approximated in such a way that the observations are processed online. In this case, the intermediate quantity S n or S n is updated online for each observation. Such an algorithm is described in [3, Section 2.2] and [9, Proposition 2.1] and can be applied either to finite state-space HMM or to linear Gaussian models. [START_REF] Del Moral | Forward smoothing using sequential Monte Carlo[END_REF] proposed a Sequential Monte Carlo approximation to compute S n online for more complex models (see also [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF]).

The classical theory of maximum likelihood estimation often relies on the assumption that the "true" distribution of the observations belongs to the specified parametric family of distributions. In many cases, it is doubtful that this assumption is satisfied. It is therefore natural to investigate the convergence of the BOEM algorithms and to identify the possible limit for misspecified models i.e. when the observations {Y k } k≥0 are from an ergodic process which is not necessarily an HMM.

Application to inverse problems in Hidden Markov Models

In Section 3.1, the performance of the BOEM algorithm and its averaged version are illustrated in a linear Gaussian model. In Section 3.2, the BOEM algorithm is compared to online maximum likelihood procedures in the case of finite statespace HMM. Applications of the Monte Carlo BOEM algorithm to more complex models with Sequential Monte Carlo methods can be found in [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF].

Linear Gaussian Model

Consider the linear Gaussian model:

X t+1 = φX t + σ u U t , Y t = X t + σ v V t ,
where X 0 ∼ N 0, σ 2 u (1 -φ 2 ) -1 , {U t } t≥0 , {V t } t≥0 are independent i.i.d. standard Gaussian r.v., independent from X 0 . Data are sampled using φ = 0.9, σ 2 u = 0.6 and σ 2 v = 1. All runs are started with φ = 0.1, σ 2 u = 1 and σ 2 v = 2. We illustrate the convergence of the BOEM algorithms. We choose τ n = n 1.1 . We display in Figure 1 the median and lower and upper quartiles for the estimation of φ obtained with 100 independent Monte Carlo experiments.

Both the BOEM algorithm and its averaged version converge to the true value φ = 0.9; the averaging procedure clearly improves the variance of the estimation. We now discuss the role of {τ n } n≥0 . Figure 2 displays the empirical variance, when estimating φ, computed with 100 independent Monte Carlo runs, for different numbers of observations and, for both the BOEM algorithm and its averaged version. We consider four polynomial rates τ n ∼ n b , b ∈ {1.2, 1.8, 2, 2.5}. Figure 2a shows that the choice of {τ n } n≥0 has a great impact on the empirical variance of the (non averaged) BOEM path {θ n } n≥0 . To reduce this variability, a solution could consist in increasing the block sizes τ n at a larger. The influence of the block size sequence τ n is greatly reduced with the averaging procedure as shown in Figure 2b. We will show in Section 5 that averaging really improves the rate of convergence of the BOEM algorithm.

Finite state-space HMM

We consider a Gaussian mixture process with Markov dependence of the form: Y t = X t +V t where {X t } t≥0 is a Markov chain taking values in X def = {x 1 , . . . , x d }, with initial distribution χ and a d × d transition matrix m. {V t } t≥0 are i.i.d. N (0, v) r.v., independent from {X t } t≥0 , i.e., for all (x, y) ∈ X × Y, 

g θ (x, y) def = (2πv) -1/2 exp - (y -x) 2 2v ,
        .
In the experiments below, the initial distribution below is chosen as the uniform distribution on X. The statistics used to estimate θ are, for all

(i, j) ∈ {1, • • • , d} and all (x, x ) ∈ X 2 , S i,0 (x, x , y) = 1 xi (x ) , S i,1 (x, x , y) = y1 xi (x ) , (9) 
S i,2 (x, x , y) = y 2 1 xi (x ) , S i,j (x, x , y) = 1 xi (x)1 xj (x ) .
The online computation of these intermediate quantities is given [3, Section 2.2].

The computations below are performed for each statistic in [START_REF] Del Moral | Forward smoothing using sequential Monte Carlo[END_REF]. Define, for all x ∈ X, φ 0 (x) = χ(x) and ρ 0 (x) = 0.

i) For t ∈ {1, • • • , τ }, compute, for any x ∈ X, φ t (x) = x ∈X φ t-1 (x )m x ,x g θ (x, Y t+T ) x ,x ∈X φ t-1 (x )m x ,x g θ (x , Y t+T )
, and

r t (x, x ) = φ t-1 (x )m x ,x x ∈X φ t-1 (x )m x ,x . ρ t (x) = x ∈X 1 t S(x, x , Y t+T ) + 1 - 1 t ρ t-1 (x ) r t (x, x ) . ii) Set Sχ,T τ (θ, Y) = x∈X ρ τ (x)φ τ (x) .
At the end of the block, the new estimate is given, for all (i, j) ∈ {1, • • • , d} 2 by (the dependence on Y, θ, χ, T and τ is dropped from the notation)

m i,j = Si,j d j=1 Si,j , x i = Si,1 Si,0 , v = d i=1 Si,2 + d i=1 x 2 i Si,0 -2 d i=1 x i Si,1 .
We first compare the averaged BOEM algorithm to the online EM (OEM) procedure of [START_REF] Cappé | Online EM algorithm for Hidden Markov Models[END_REF] combined with a Polyak-Ruppert averaging (see [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF]). Note that the convergence of the OEM algorithm is still an open problem. In this case, we want to estimate the variance v and the states {x 1 , . . . , x d }. All the runs are started from v = 2 and from the initial states {-1; 0; .5; 2; 3; 4}. The algorithm in [START_REF] Cappé | Online EM algorithm for Hidden Markov Models[END_REF] follows a stochastic approximation update and depends on a step-size sequence {γ n } n≥0 . It is expected that the rate of convergence in L 2 after n observations is γ 1/2 n (and n -1/2 for its averaged version) -this assertion relies on classical results for stochastic approximation. We prove in Section 5 that the rate of convergence of the BOEM algorithm is n -b/(2(b+1)) (and n -1/2 for its averaged version) when τ n ∝ n b . Therefore, we set τ n = n 1.1 and γ n = n -0.53 . Figure 3 displays the empirical median and first and last quartiles for the estimation of v with both algorithms and their averaged versions as a function of the number of observations. These estimates are obtained over 100 independent Monte Carlo runs. Both the BOEM and the OEM algorithms converge to the true value of v and the averaged versions reduce the variability of the estimation. Figure 4 shows the similar behavior of both averaged algorithms for the estimation of x 1 in the same experiment. Some supplementary graphs on the estimation of the states can be found in [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]Section 4]).

We now compare the averaged BOEM algorithm to a recursive maximum likelihood (RML) procedure (see [START_REF] Gland | Recursive estimation in HMMs[END_REF][START_REF] Tadić | Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models[END_REF]) combined with Polyak-Ruppert averaging (see [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF]). We want to estimate the variance v and the transition matrix m. All the runs are started from v = 2 and from a matrix m with each entry equal to 1/d. The RML algorithm follows a stochastic approximation update and depends on a step-size sequence {γ n } n≥0 which is chosen in the same way as above. Therefore, for a fair comparison, the RML algorithm (resp. the BOEM algorithm) is run with γ n = n -0.53 (resp. τ n = n 1.1 ). Figure 5 Monte Carlo runs. For both algorithms, the bias and the variance of the estimation decrease as n increases. Nevertheless, the bias and/or the variance of the averaged BOEM algorithm decrease faster than those of the averaged RML algorithm (similar graphs have been obtained for the estimation of the other entries of the matrix m and for the estimation of v; see [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]Section 4]). As a conclusion, it is advocated to use the averaged BOEM algorithm instead of the averaged RML algorithm. (c) There exists a continuous function θ : S → Θ s.t. for any s ∈ S,

θ(s) = argmax θ∈Θ {φ(θ) + s, ψ(θ) } .
A2 There exist σ -and σ + s.t. for any (x, x ) ∈ X 2 and any θ ∈ Θ, 0 < σ -≤

m θ (x, x ) ≤ σ + . Set ρ def = 1 -(σ -/σ + ) .
A2, often referred to as the strong mixing condition, is commonly used to prove the forgetting property of the initial condition of the filter, see e.g. [START_REF] Del Moral | Large deviations for interacting particle systems: applications to non-linear filtering[END_REF][START_REF] Del Moral | On contraction properties of Markov kernels[END_REF]. This assumption holds for example if X is finite or for linear state-spaces with truncated gaussian state and measurement noises. More generally, this condition holds when X is compact. Note in addition that by [25, Theorem 16.0.2], A2 implies that the Markov kernel M θ has a unique invariant distribution which guarantees the existence of the unique invariant distribution π θ for K θ .

We now introduce assumptions on the observation process

Y def = {Y k } k∈Z .
It is defined on some probability space (Ω, F, P). We stress that this process is not necessarily the observation of an HMM. Let

F Y k def = σ ({Y u } u≤k ) and G Y k def = σ ({Y u } u≥k ) (10) 
be σ-fields associated to Y. We also define the β-mixing coefficients by, see [START_REF] Davidson | Stochastic Limit Theory: An Introduction for Econometricians[END_REF],

β Y (n) = sup u∈Z sup B∈G Y u+n E |P(B|F Y u ) -P(B)| , ∀ n ≥ 0 . ( 11 
) A3-(p) E sup x,x ∈X 2 |S(x, x , Y 0 )| p < +∞.
A4 (a) Y is a β-mixing stationary sequence such that there exist C ∈ [0, 1) and β ∈ (0, 1) satisfying, for any n ≥ 0, β Y (n) ≤ Cβ n , where β Y is defined in [START_REF] Del Moral | On contraction properties of Markov kernels[END_REF]. A5 There exists c > 0 and a > 1 such that for all n ≥ 1, τ n = cn a .

(b) E [| log b -(Y 0 )| + | log b + (Y 0 )|] < +∞
For p > 0 and Z a random variable measurable w.r.t. the σ-algebra σ (Y n , n ∈ Z),

set Z p def = (E [|Z| p ]) 1/p .

A6 -(p)

There exists b ≥ (a + 1)/2a (where a is defined in A5) such that, for any n ≥ 0,

S n -S n p = O(τ -b n+1 ) ,
where S n is the Monte Carlo approximation of S n which is defined by [START_REF] Carlin | A Monte Carlo approach to nonnormal and nonlinear state space modeling[END_REF].

A6 gives a L p control of the Monte Carlo error on each block. In [15, Theorem 1], such bounds are given for Sequential Monte Carlo algorithms. Practical conditions to ensure A6 are given in [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF] in the case of Sequential Monte Carlo methods.

The limiting EM algorithm

In the sequel, M(X) denotes the set of all probability distributions on (X, X ). 

E χ,-τ -1 θ [S(X -1 , X 0 , Y 0 )|Y -τ :τ ] -S(θ, Y) ≤ Cρ τ sup (x,x )∈X 2 |S(x, x , Y 0 )| , P-a.s. , ( 12 
)
where C is a finite constant. Define for all θ ∈ Θ, S(θ)

def = E [S(θ, Y)] . (13) 
ii) θ → S(θ) is continuous on Θ and for any T > 0,

Sχ,T τ (θ, Y) -→ τ →+∞ S(θ) , P-a.s. , (14) 
where Sχ,T τ (θ, Y) is defined by (4).

iii) Assume in addition that A6-(p) holds. For any p ∈ (2, p), there exists a constant C s.t. for any n ≥ 1,

S n -S(θ n ) p ≤ C √ τ n+1 ,
where S n is the Monte Carlo approximation of S n defined by (6).

Theorem 4.1 allows to introduce the limiting EM algorithm, defined as the deterministic iterative algorithm θn = R( θn-1 ) where

R(θ) def = θ S(θ) . (15) 
The limiting EM can be seen as an EM algorithm applied as if the whole trajectory Y was observed instead of Y 0:T . For this limiting EM, the so-called sufficient statistics depend on the observations only through the mean

E [S(θ, Y)].
The stationary points of the limiting EM are defined as

L def = {θ ∈ Θ; R(θ) = θ} . ( 16 
)
We show that there exists a Lyapunov function W w.r.t. to the map R and the set L i.e., a continuous function W satisfying the two conditions:

(i) for all θ ∈ Θ, W • R(θ) -W(θ) ≥ 0 , (ii) for all compact set K ⊂ Θ \ L, inf θ∈K {W • R(θ) -W(θ)} > 0 .
For such a function, the sequence {W( θk )} k≥0 is nondecreasing and { θk } k≥0 converges to L. Define, for any m ≥ 0, θ ∈ Θ and probability distribution χ on (X, X ),

p χ θ (Y 1 |Y -m:0 ) def = χ(dx -m )g θ (x -m , Y m ) 1 i=-m+1 {m θ (x i-1 , x i )g θ (x i , Y i )} λ(dx -m+1:1 ) χ(dx -m )g θ (x -m , Y m ) 0 i=-m+1 {m θ (x i-1 , x i )g θ (x i , Y i )} λ(dx -m+1:0 )
. By [13, Lemma 2 and Proposition 1], under A1-4, for any θ ∈ Θ, there exists a random variable log p θ (Y 1 |Y -∞:0 ), such that for any probability distribution χ on (X, X ), log

p θ (Y 1 |Y -∞:0 ) is the a.s. limit of log p χ θ (Y 1 |Y -m:0 ) as m → +∞ and T -1 χ θ,T (Y) -→ T →+∞ (θ) def = E [log p θ (Y 1 |Y -∞:0 )] , P-a.s. , (17) 
where χ θ,T (Y) is the log-likelihood defined by (3). The function θ → (θ) may be interpreted as the limiting log-likelihood. We consider the function W , given, for all θ ∈ Θ, by

W(θ) def = exp { (θ)} . (18) 
To identify the stationary points of the limiting EM algorithm as the stationary points of , we introduce an additional assumption. Proposition 4.2. Assume that A1-2, A3-(1) and A4 hold. Then, the function W given by (18) is a Lyapunov function for (R, L). Assume in addition that A7 holds. Then, θ → (θ) is continuously differentiable and

L = {θ ∈ Θ; R(θ) = θ} = {θ ∈ Θ; ∇ (θ) = 0} .
Proposition 4.2 is proved in Section 6.2.

Remark 4.3. In the case where {Y k } k≥0 is the observation process of the stationary HMM {(X k , Y k )} k≥0 parameterized by θ ∈ Θ, we can build a twosided stationary extension of this process to obtain a sequence of observations {Y k } k∈Z . Following [13, Proposition 3], the quantity (θ) can be written as

(θ) = E θ lim m→+∞ log p θ (Y 1 |Y -m:0 ) = lim m→+∞ E θ [log p θ (Y 1 |Y -m:0 )] = lim m→+∞ E θ [E θ [log p θ (Y 1 |Y -m:0 )|Y -m:0 ]] ,
where p θ (Y 1 |Y -m:0 ) is the conditional distribution under the stationary distribution. Since

E θ [log p θ (Y 1 |Y -m:0 )|Y -m:0 ] -E θ [log p θ (Y 1 |Y -m:0 )|Y -m:0 ]
is the Kullback-Leibler divergence between p θ (Y 1 |Y -m:0 ) and p θ (Y 1 |Y -m:0 ), for any θ ∈ Θ, (θ ) -(θ) ≥ 0 and θ is a maximizer of θ → (θ). If in addition θ lies in the interior of Θ, then θ ∈ L.

The following proposition gives sufficient conditions for the convergence of the limiting EM algorithm and the Monte Carlo BOEM algorithm to the set L. Theorem 4.4 is a direct application of Proposition A.1 for the limiting EM algorithm. The proof for the Monte Carlo BOEM algorithm is detailed in Section 6.3. By Sard's theorem if W is at least d θ (where Θ ⊂ R d θ ) continuously differentiable, then W(L) has Lebesgue measure 0 and hence has an empty interior.

Rate of convergence of the Block Online EM algorithms

We address the rate of convergence of the Monte Carlo BOEM algorithms to a point θ ∈ L. It is assumed that A8 (a) S and θ are twice continuously differentiable on Θ and S.

(b) There exists 0 < γ < 1 s.t. the spectral radius of ∇ s ( S • θ) s= S(θ ) is lower than γ.

Hereafter, for any sequence of random variables {Z n } n≥0 , write 

Z n = O Lp (1) if sup n E [|Z n | p ] < ∞ and Z n = O a.s (1) if sup n |Z n | < +∞ P-a.s.
√ τ n [θ n -θ ] 1 limn θn=θ = O Lp (1) + 1 √ τ n O L p/2 (1)O a.s (1) . (19) 
In [START_REF] Kushner | Stochastic Approximation Algorithms and Applications[END_REF], the rate is a function of the number of updates (i.e. the number of iterations of the algorithm). Theorem 5.2 shows that the averaging procedure reduces the influence of the block-size schedule: the rate of convergence is proportional to T 1/2 n i.e. to the inverse of the square root of the total number of observations up to iteration n. Theorem 5.2. Let p > 2. Assume that A2, A3-(p), A4-5, A6-(p) and A8 hold. Then, for any p ∈ (2, p),

T n θ n -θ 1 limn θn=θ = O Lp (1) + n √ T n O L p/2 (1)O a.s (1) . (20) 
Theorems 5.1 and 5.2 give the rates of convergence as a function of the number of updates but they can also be studied as a function of the number of observations. Let {θ int k } k≥0 (resp. { θ int k } k≥0 ) be such that, for any k ≥ 0,

θ int k (resp. θ int k ) is the value θ n (resp. θ n ),
where n is the only integer such that k ∈ [T n + 1, T n+1 ]. The sequences {θ int k } k≥0 and { θ int k } k≥0 are piecewise constant and their values are updated at times {T n } n≥1 .

By Theorem 5.1, the rate of convergence of {θ int k } k≥0 is given (up to a multiplicative constant) by k -a/(2(a+1)) , where a is given by A5. This rates is slower than k -1/2 and depends on the block-size sequence (through a). On the contrary, by Theorem 5.2, the rate of convergence of { θ int k } k≥0 is given (up to a multiplicative constant) by k -1/2 , for any value of a. Therefore, this rate of convergence does not depend on the block-size sequence.

Proofs

Define, for any initial density χ on (X, X ), any θ ∈ Θ, any y ∈ Y Z and any r < s ≤ t, Φ χ,r θ,s,t (h, y)

def = χ(x r ){ t-1 i=r m θ (x i , x i+1 )g θ (x i+1 , y i+1 )} h(x s-1 , x s , y s ) λ(dx r:t ) χ(x r ){ t-1 i=r m θ (x i , x i+1 )g θ (x i+1 , y i+1 )} λ(dx r:t )
, [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF] for any bounded function h on X 2 × Y. Then, the intermediate quantity of the Block online EM algorithm is (see ( 4)),

Sχ,T τ (θ, Y) def = 1 τ T +τ t=T +1 Φ χ,T θ,t,T +τ (S, Y) . ( 22 
) Lemma 6.1. Assume A1-2. Let y ∈ Y Z s.t. sup x,x |S(x, x , y i )| < +∞ for any i ∈ Z.
Then for any r > 0 and any distribution χ on (X, X ), θ → Φ χ,-r θ,0,r (S, y) is continuous on Θ.

Proof. Set K θ (x, x , y) def = m θ (x, x )g θ (x , y). Let r > 0 and χ be a distribution on (X, X ). By definition of Φ χ,-r θ,0,r (S, y) (see [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF]) we have to prove that

θ → χ(dx -r ) r-1 i=-r K θ (x i , x i+1 , y i+1 ) h(x -1 , x 0 , y 0 ) dλ(x -r+1:r )
is continuous for h(x, x , y) = 1 and h(x, x , y) = S(x, x , y). By A1(a), the function θ → r-1 i=-r K θ (x i , x i+1 , y i+1 ) h(x -1 , x 0 , y 0 ) is continuous. In addition, under A1, for any θ ∈ Θ,

r-1 i=-r K θ (x i , x i+1 , y i+1 ) h(x -1 , x 0 , y 0 ) = |h(x -1 , x 0 , y 0 )| exp 2rφ(θ) + ψ(θ), r-1 i=-r S(x i , x i+1 , y i+1 )
.

Since Θ is compact, by A1, there exist constants C 1 and C 2 s.t. the supremum in θ ∈ Θ of this expression is bounded above by

C 1 sup x,x |h(x, x , y 0 )| exp C 2 r-1 i=-r sup x,x |S(x, x , y i+1 )| .
Since χ is a distribution and λ is a finite measure, the continuity follows from the dominated convergence theorem.

Let us introduce the following shorthand S s (x, x ) def = S(x, x , Y s ). Define the shift operator ϑ onto Y Z by (ϑy) k = y k+1 for any k ∈ Z; and by induction, define the s-iterated shift operator ϑ s+1 y = ϑ(ϑ s y), with the convention that ϑ 0 is the identity operator. For a function h, define osc(h) def = sup z,z |h(z) -h(z )|.

Proof of Theorem 4.1

The proof of Theorem 4.1 relies on auxiliary results about the forgetting properties of HMM. Most of them are really close to published results and their proof is provided in the supplementary material [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]Section 3]. The main novelty is the forgetting property of the bivariate smoothing distribution.

Proof of i) Note that under A3-( 1), E [osc(S 0 )] < +∞. Under A2, Proposition A.2(ii) implies that for any θ ∈ Θ, there exists a r.v. S(θ, Y) s.t. for any r < s ≤ T ,

sup θ∈Θ Φ χ,r θ,s,T (S, Y) -S(θ, ϑ s Y) ≤ ρ T -s + ρ s-r-1 osc(S s ) . ( 23 
)
This concludes the proof of [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Proof of ii) We introduce the following decomposition: for all T > 0,

Sχ,T τ (θ, Y) = 1 τ τ t=1 S(θ, ϑ t+T Y) + Φ χ,0 θ,t,τ S, ϑ T Y -S(θ, ϑ t+T Y) ,
upon noting that by [START_REF] Le Corff | Online EM algorithm to solve the SLAM problem[END_REF], Sχ,T By [START_REF] Gland | Recursive estimation in HMMs[END_REF],

τ (θ, Y) = τ -1 τ t=1 Φ χ,0 θ,t,τ S, ϑ T Y . By
1 τ τ t=1 Φ χ,0 θ,t,τ S, ϑ T Y -S(θ, ϑ t+T Y) ≤ 1 τ τ t=1 ρ τ -t + ρ t-1 osc(S t+T ) . ( 24 
)
Set Z t def = 1 t t s=1 osc(S s+T ) and Z 0 def = 0. Then, by an Abel transform,

1 τ τ t=1 ρ t-1 osc(S t+T ) = ρ τ -1 Z τ + 1 -ρ τ τ -1 t=1 tρ t-1 Z t . ( 25 
)
By A3-( 1) and A4, the ergodic theorem implies that lim τ →∞ Z τ = E [osc(S 0 )], P-a.s. Therefore, lim sup τ Z τ < ∞, P-a.s. Since t≥1 tρ t-1 < ∞, this implies that τ -1 τ t=1 ρ t-1 osc(S t+T ) -→ τ →+∞ 0, P-a.s. Similarly,

1 τ τ t=1 ρ τ -t osc(S t+T ) = Z τ -(1 -ρ) τ -1 t=1 ρ τ -t-1 Z t + 1 -ρ τ τ -1 t=1 tρ t-1 Z τ -t .
Using the same arguments as for the second term in [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF], we can state that lim τ →∞ τ -1 τ -1 t=1 tρ t-1 Z τ -t = 0, P-a.s. Furthermore,

τ -1 t=1 ρ τ -t-1 1 -ρ Z t -E [osc(S 0 )] ≤ τ -1 t=1 ρ τ -t-1 1 -ρ |Z t -E [osc(S 0 )]| + E [osc(S 0 )] ρ τ -1 .
Since, P-a.s., Z τ -→

τ →+∞ E [osc(S 0 )], the RHS converges P-a.s. to 0 and

lim τ →+∞ Z τ -(1 -ρ) τ -1 t=1 ρ τ -t-1 Z t = 0 , P-a.s.
Hence, the RHS in ( 24) converges P-a.s. to 0 and this concludes the proof of [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF]. We now prove that the function θ → E [S(θ, Y)] is continuous by application of the dominated convergence theorem. By Proposition A.2(ii), for any y s.t. osc(S 0 ) < ∞,

lim r→+∞ sup θ∈Θ Φ χ,-r θ,0,r (S, y) -S(θ, y) = 0 .
Then, by Lemma 6.1, θ → S(θ, y) is continuous for any y such that osc(S 0 ) < +∞. In addition,

sup θ∈Θ |S(θ, Y)| ≤ sup x,x |S(x, x , Y 0 )|.
We then conclude by A3- [START_REF] Billingsley | Probability and Measure[END_REF].

Proof of iii) Let m n , v n be positive integers s.t. 1 ≤ m n ≤ τ n+1 and τ n+1 = 2v n m n + r n , where 0 ≤ r n < 2m n . Set ∆p def = p -1 -p-1 .
By the Minkowski inequality combined with Lemmas A.6, A.7 applied with q n def = 2v n m n , there exists a constant C s.t.

S n -S(θ n ) p ≤ C ρ mn + m n τ n+1 + β mn∆p + 1 √ τ n+1 .
The proof is concluded by choosing

m n = -log τ n+1 / (log ρ ∨ ∆p log β) and by A6-(p) (since b in A6-(p) is such that b ≥ 1/2).
6.2 Proof of Proposition 4.2

(Continuity of R and W) By A1(c) and Theorem 4.1, the function R is continuous. Under A1-2 and A4, there exists a continuous function on Θ s.t. lim T T -1 χ θ,T (Y) = (θ) P-a.s. for any distribution χ on (X, X ) and any θ ∈ Θ, (see [13, Lemma 2 and Propositions 1 and 2], see also [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]Theorem 3.8]). Therefore, W is continuous.

Proof of Proposition 4.2 (i) Under Assumption A1(a)

1 T log p θ (x 0:T , Y 1:T ) = φ(θ) + 1 T T t=1 S(x t-1 , x t , Y t ) , ψ(θ) ,
where p θ (x 0:T , Y 1:T ) is defined by [START_REF] Billingsley | Probability and Measure[END_REF]. Upon noting that S(x t-1 , x t , Y t ) p θ (x 0:T , Y 1:T ) p θ (z 0:T , Y 1:T )λ(dz 1:T )χ(dz 0 ) λ(dx 1:T )χ(dx 0 ) = Φ χ,0 θ,t,T (S, Y) , the Jensen inequality gives, P-a.s.,

1 T χ R(θ),T (Y) - 1 T χ θ,T (Y) ≥ φ(R(θ)) + 1 T T t=1 Φ χ,0 θ,t,T (S, Y), ψ(R(θ)) -φ(θ) - 1 T T t=1 Φ χ,0 θ,t,T (S, Y), ψ(θ) . (26) 
Under A1-4, it holds by Theorem 4.1 and [13, Lemma 2 and Proposition 1] (see also [START_REF] Corff | Supplementary to "Online Expectation Maximization based algorithms for inference in Hidden Markov Models[END_REF]Theorem 3.8]) that for all θ ∈ Θ, P-a.s.,

1 T T t=1 Φ χ,0 θ,t,T (S, Y) -→ T →+∞ S(θ) , 1 T χ θ,T (Y) -→ T →+∞ ln W(θ) .
Therefore, when T → +∞, (26) implies

ln (W(R(θ))/W(θ)) ≥ φ(R(θ)) + S(θ), ψ(R(θ)) -φ(θ) -S(θ), ψ(θ) . (27) 
By definition of θ and R (see A1(c) and ( 15)), the RHS is non negative. This concludes the proof of Proposition 4.2(i).

Proof of Proposition 4.2 (ii) We prove that 27) is equal to zero. By definition of θ, R(θ) = θ and thus θ ∈ L. The converse implication is immediate from the definition of L.

W•R(θ)-W(θ) = 0 if and only if θ ∈ L. Since W • R -W is continuous, this implies that inf θ∈K W • R(θ) -W(θ) > 0 for all compact set K ⊂ Θ \ L. Let θ ∈ Θ be s.t. W • R(θ) -W(θ) = 0. Then, the RHS in (
Stationary points If in addition A7 holds, [20, Theorem 3.12] proves that, for any initial distribution χ on (X, X ),

1 T ∇ θ χ θ,T (Y) -→ T →+∞ ∇ θ (θ) P-a.s.
Therefore,

1 T ∇ θ χ θ,T (Y) = ∇ θ φ(θ) + ∇ θ ψ (θ) 1 T T t=1 Φ χ,0 θ,t,T (S, Y) ,
where A is the transpose matrix of A. Theorem 4.1 yield, P-a.s.,

∇ θ (θ) = ∇ θ φ(θ) + ∇ θ ψ (θ) S(θ) .
The proof follows upon noting that by definition of θ, the unique solution to the equation ∇ θ φ(τ ) + ∇ θ ψ (τ ) S(θ) = 0 is τ = R(θ).

Proof of Theorem 4.4

The proof of Theorem 4.4 relies on Proposition A.1 applied with T (θ) def = R(θ) and with θ n+1 = θ S χn,Tn τn+1 (θ n , Y) . The key ingredient for this proof is the control of the L p -mean error between the Monte Carlo Block Online EM algorithm and the limiting EM. The proof of this bound is derived in Theorem 4.1 and relies on preliminary lemmas given in Appendix A. The proof of (37) is now close to the proof of [START_REF] Fort | Convergence of the Monte Carlo Expectation Maximization for curved exponential families[END_REF]Proposition 11] and is postponed to the supplement paper [20, Section 2.1].

Proof of Theorem 5.1

Define s def = S(θ ) and write

θ( S n ) -θ(s ) = Υ( S n -s ) + θ( S n ) -θ(s ) -Υ( S n -s ) , (28) 
where Υ def = ∇ θ(s ). We now derive the rate of convergence of the quantity

S n -s . Set G(s) def = S • θ(s). Note that under A8(b), ρ(Γ) ≤ γ, where Γ def = ∇G(s ). Since G(s ) = s , we write S n -s = Γ S n-1 -s + S n -G( S n-1 ) + G( S n-1 ) -G(s ) -Γ S n-1 -s .
Define {µ n } n≥0 and {ρ n } n≥0 s.t. µ 0 = 0, ρ 0 = S 0 -s and

µ n def = Γµ n-1 + e n , ρ n def = S n -s -µ n , n ≥ 1 , (29) 
where, By Proposition 6.2, the first term in [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF] gives

e n def = S n -S(θ n ) , n ≥ 1 . ( 30 
)
√ τ n Υ(S n -s )1 limn θn=θ = O Lp (1) + 1 √ τ n O L p/2 (1)O a.s (1) . 
A Taylor expansion with integral remainder term gives the rate of convergence of the second term. This concludes the proof of Theorem 5.1, Eq. ( 19). where e n is given by [START_REF] Tadić | Analyticity, convergence, and convergence rate of recursive maximum-likelihood estimation in hidden Markov models[END_REF].

Proof. By A5 and A6-(p), we have

lim sup n→+∞ 1 T n+1 n k=1 τ k+1 S k -S k p < ∞ .
Then, it is sufficient to prove that

lim sup n→+∞ 1 T n+1 n k=1 τ k+1 S(θ k ) -S k p < ∞ .
Let p ∈ (2, p). In the sequel, C is a constant independent on n and whose value may change upon each appearance. Let 1 ≤ m n ≤ τ n+1 and set v n def = τn+1 2mn . By Lemma A.7 applied with q k def = 2v k m k , we have,

n k=1 τ k+1 S(θ k ) -S k p ≤ C   n k=1 {τ k+1 ρ m k + m k } + n k=1 {δ k + ζ k } p   ,
where δ k and ζ k are defined by

δ k def = 2v k m k t=2m k F t,k (θ k , Y) -E F t,k (θ k , Y) F Y T k , ζ k def = 2v k m k t=2m k E F t,k (θ k , Y) F Y T k -E Φ χ,-m k θ,0,m k (S, Y) θ=θ k
and where

F t,k (θ k , Y) def = Φ χ,t-m k θ k ,t,t+m k (S, ϑ T k Y) and F Y
T k is given by (41). We will prove below that there exists C s.t. We turn to the proof of (31). By the Berbee Lemma (see [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]Chapter 5]) and A4, there exist C ∈ [0, 1) and β ∈ (0, 1) s.t. for all k ≥ 1, there exists a random variable Y ,(k) T k +m k :T k+1 +m k on (Ω, F, P) independent from F Y T k with the same distribution as Y T k +m k :T k+1 +m k and

ζ k p ≤ C β m k /pb τ k+1 , ∀k ≥ 1 (31) 
P Y ,(k) T k +m k :T k+1 +m k = Y T k +m k :T k+1 +m k ≤ Cβ m k . ( 33 
) Upon noting that E F t,k (θ k , Y ,(k) ) F Y T k = E [F t,k (θ, Y)] θ=θ k , we have ζ k = 2v k m k t=2m k E F t,k (θ k , Y) F Y T k -E F t,k (θ k , Y ,(k) ) F Y T k . ( 34 
)
Therefore, by setting

A k def = {Y ,(k) T k +m k :T k+1 +m k = Y T k +m k :T k+1 +m k }, |ζ k | ≤ 2v k m k t=2m k E sup θ∈Θ F t,k (θ, Y) -F t,k (θ, Y ,(k) ) 1 A k F Y T k .
Minkowski and Holder (with a def = p/p and b -1 def = 1-a -1 ) inequalities, combined with (33), A4, Lemma A.4 and A3-(p) yield (31).

We now prove (32). Upon noting that δ k is F Y T k+1 -measurable and δ k is a martingale increment, the Rosenthal inequality (see [START_REF] Hall | Martingale Limit Theory and its Application[END_REF]Theorem 2.12,p.23])

states that n k=1 δ k p ≤ C n k=1 I (1) k 1/p + CI (2)
n where

I (1) k def = E [|δ k | p ] and I (2) n def = n k=1 E |δ k | 2 F Y T k 1/2 p .
Using again

E F t,k (θ k , Y ,(k) ) F Y T k = E [F t,k (θ, Y)]
θ=θ k and (34)

I (1) k ≤ C 2v k m k t=2m k F t,k (θ k , Y) -E [F t,k (θ, Y)] θ=θ k p p + C ζ k p p .
By Lemma A.6 and (31), there exists C s.t. for any k ≥ 1

I (1) k ≤ C τ p/2 k+1 + τ p k+1 β m k /b , (35) 
and since 2/p < 1, convex inequalities yield . Hence, by (35), I

n k=1 I (1) 
≤ C T n+1 + C n k=1 τ k+1 β m k /pb . This concludes the proof of (32).

We write Σ n -s = μn + ρn with

μn def = 1 T n n k=1 τ k µ k-1 and ρn def = 1 T n n k=1 τ k ρ k-1 . (36) 
Proposition 6.4. Assume A2, A3-(p), A4-5, A6-(p) and A8 for some p > 2.

For any p ∈ (2, p),

T n μn = O Lp (1) , T n n ρn 1 limn θn=θ = O L p/2 (1)O a.s (1) . Proof. Set A def = (I -Γ).
Under A8, A -1 exists. By ( 29) and (36),

A T n μn = - τ n+1 µ n √ T n + 1 √ T n n k=1 τ k+1 e k + 1 √ T n n k=1 τ k τ k+1 τ k -1 Γµ k-1 .
The result now follows from Proposition 6. For any L ≥ 1, m ≥ 1 and any distribution χ on (X, X ), define

κ χ L,m (θ, Y) def = Φ χ,L-m θ,L,L+m (S, Y) -E Φ χ,-m υ,0,m (S, Y) υ=θ . (40) 
We introduce the σ-algebra F Tn defined by

F Tn def = σ{F Y Tn , H Tn } , (41) 
where F Tn is given by [START_REF] Del Moral | Large deviations for interacting particle systems: applications to non-linear filtering[END_REF] and where H Tn is independent from Y (the σ-algebra H Tn is generated by the random variables independent from the observations Y used to produce the Monte Carlo approximation of {S k-1 } n k=1 ). Hence, for any positive integer m and any B ∈ G Y Tn+m , since H Tn is independent from B and from F Y Tn , P(B| F Tn ) = P(B|F Y Tn ). Hence, the mixing coefficients defined in [START_REF] Del Moral | On contraction properties of Markov kernels[END_REF] are such that

β(G Y Tn+m , F Tn ) = β(G Y Tn+m , F T Y n ) .
Note that θ n is F Tn -measurable and that S n is F Tn+1 -measurable.

Lemma A.5. Assume A2, A3-(p) and A4 for some p > 2. Let p ∈ (2, p).

There exists a constant C s.t. for any distribution χ on (X, X ), any m ≥ 1, k, ≥ 0 and any Θ-valued

F Y 0 -measurable r.v. θ, k u=1 κ χ 2um+ ,m (θ, Y) p ≤ C k m + kβ m ∆p ,
where ∆p def = p-p p p and β is given by A4.

Proof. For ease of notation χ is dropped from the notation κ χ 2um,m . By the Berbee Lemma (see [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]Chapter 5]), for any m ≥ 1, there exists a Θ-valued r.v. υ on (Ω, F, P) independent from G Y m (see [START_REF] Del Moral | Large deviations for interacting particle systems: applications to non-linear filtering[END_REF]) s.t.

P {θ = υ } = sup B∈G Y m |P(B|σ(θ)) -P(B)| . ( 42 
) Set L u def = 2um + . We write k u=1 κ Lu,m (θ, Y) = k u=1 Φ χ,Lu-m θ,Lu,Lu+m (S, Y) -Φ χ,Lu-m υ ,Lu,Lu+m (S, Y) + k u=1 κ Lu,m (υ , Y) + k E Φ χ,-m υ,0,m (S, Y) υ=υ -E Φ χ,-m υ,0,m (S, Y) υ=θ . (43) 
By the Holder's inequality with a def = p/p and b

-1 def = 1 -a -1 , Φ χ,L-m θ,L,L+m (S, Y) -Φ χ,L-m υ ,L,L+m (S, Y) p ≤ Φ χ,L-m θ,L,L+m (S, ϑ T Y) -Φ χ,L-m υ ,L,L+m (S, Y) p P {θ = υ } ∆p .
By A3-(p), A4, ( 11) and (42), there exists a constant C 1 s.t. for any m, L ≥ 1, any distribution χ and any Θ-valued F Y 0 -measurable r.v. θ,

Φ χ,L-m θ,L,L+m (S, Y) -Φ χ,L-m υ ,L,L+m (S, Y) p ≤ C 1 β m∆p .
Similarly, there exists a constant C 2 s.t. for any m ≥ 1, any distribution χ and any Θ-valued

F Y 0 -measurable r.v. θ, E Φ χ,-m υ,0,m (S, Y) υ=υ -E Φ χ,-m υ,0,m (S, Y) υ=θ p ≤ C 2 β m∆p .
Let us consider the second term in (43). For any u ≥ 1 and any υ ∈ Θ, the r.v.

κ Lu,m (υ, Y) is a measurable function of Y i for all L u -m + 1 ≤ i ≤ L u + m. Since L u ≥ 2um, for any υ ∈ Θ, k u=1 κ Lu,m (υ, Y) is G Y m -measurable. υ is independent from G Y m so that: k u=1 κ Lu,m (υ , Y) p = E E k u=1 κ Lu,m (υ, Y) p υ=υ 1/p .
Define the strong mixing coefficient (see [START_REF] Davidson | Stochastic Limit Theory: An Introduction for Econometricians[END_REF]) where we used Theorem 4.1. This concludes the proof.
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 1 Figure 1: Estimation of φ.
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 2 Figure 2: The BOEM algorithm: empirical variance of the estimation of φ after n = 0.5 • 10 5 observations ( ∈ {1, • • • , 7}) for different block size schemes τ n ∼ n 1.2 (stars), τ n ∼ n 1.8 (dots), τ n ∼ n 2 (crosses) and τ n ∼ n 2.5 (squares).

  displays the empirical median and empirical first and last quartiles of the estimation of m(1, 1) as a function of the number of observations over 100 independent (d) The averaged OEM algorithm.

Figure 3 :

 3 Figure 3: Estimation of v using the online EM and the BOEM algorithms (top) and their averaged versions (bottom). Each plot displays the empirical median (bold line) and the first and last quartiles (dotted lines) over 100 independent Monte Carlo runs with τ n = n 1.1 and γ n = n -0.53 .
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 4 Figure 4: Estimation of x 1 using the averaged OEM and the averaged BOEM algorithms. Each plot displays the empirical median (bold line) and the first and last quartiles (dotted lines) over 100 independent Monte Carlo runs with τ n = n 1.1 and γ n = n -0.53 . The first ten observations are omitted for a better visibility.

  (a) The averaged BOEM algorithm.

  (b) The averaged RML algorithm.
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 5 Figure 5: Empirical median (bold line) and first and last quartiles (dotted line)for the estimation of m(1, 1) using the averaged RML algorithm (right) and the averaged BOEM algorithm (left). The true values is m(1, 1) = 0.5 and the averaging procedure is starter after 10000 observations. The first 10000 observations are not displayed for a better clarity.

  where b -(y) def = inf θ∈Θ g θ (x, y)λ(dx) , b + (y) def = sup θ∈Θ g θ (x, y)λ(dx) .Upon noting that, for all n ≥ 0, β Y (n) ≤ β (X,Y) (n), we can prove that A4(a) holds when Y is the observation process of a an HMM under classical geometric ergodicity conditions[START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF] Chapter 15] and[START_REF] Cappé | Inference in Hidden Markov Models[END_REF] Chapter 14].

Theorem 4 . 1 .

 41 Let p > 2. Assume that A1-2, A3-(p) and A4 hold. i) For any θ ∈ Θ, there exists a r.v. S(θ, Y) s.t. sup θ∈Θ, χ∈M(X)

A7 2 |∇

 2 (a) For any y ∈ Y and for all (x, x ) ∈ X 2 , θ → g θ (x, y) and θ → m θ (x, x ) are continuously differentiable on Θ. (b) E [φ(Y 0 )] < +∞ where φ(y) θ log m θ (x, x ) + ∇ θ log g θ (x , y)| .

Theorem 4 . 4 .

 44 Let p > 2. Assume that A1-2, A3-(p) and A4 hold. Assume in addition that W(L) has an empty interior. For any initial value θ0 ∈ Θ , there exists w s.t. { θk } k≥0 converges to {θ ∈ L; W(θ) = w }. If in addition A5 and A6-(p) hold, then the sequence {θ n } n≥0 converges P-a.s. to the same stationary points.

Theorem 5 . 1 .

 51 Let p > 2. Assume that A2, A3-(p), A4-5, A6-(p) and A8 hold. Then, for any p ∈ (2, p),

  [START_REF] Corff | Convergence of a particle-based approximation of the block online Expectation Maximization algorithm[END_REF],[START_REF] Gland | Recursive estimation in HMMs[END_REF] and A3-(1) E [|S(θ, Y)|] < +∞. Under A4, the ergodic theorem (see e.g. [1, Theorem 24.1, p.314]) states that, for any fixed T , , ϑ t+T Y) = E [S(θ, Y)] , P-a.s.

6. 5

 5 Proof of Theorem 5.2 In the sequel, for all function Ξ on Θ × Y Z and all υ ∈ Θ, we denote by E [Ξ(θ, Y)] θ=υ the function θ → E [Ξ(θ, Y)] evaluated at θ = υ. We preface the proof by the following lemma. Lemma 6.3. Assume A2, A3-(p), A4-5, A6-(p) and A8 for some p > 2. For any p ∈ (2, p),

τ

  k+1 β m k /pb , ∀n ≥ 1 (32) so that the proof is concluded by choosing m k = η log τ k+1 , η def = (-1/ log ρ) ∨ (-pb/ log β) and by using A5.

  β m k /pb . By the Minkowski and Jensen inequalities, it holds I

i≥1 1 1 1 (.≤ C ρ mn + m n τ n+1 + τ n+1 -q n τ n+1 , 4 i=1 g i,n where g 1 ΦΦ=

 1141 B)∈F Y u ×G Y u+r |P(A ∩ B) -P(A)P(B)| , r ≥ 0 . Then, [8, Theorem 14.1, p.210] implies that for any m ≥ 1, the strong mixing coefficients of the sequence κ (m) def = {κ Lu,m (υ, Y)} u≥1 satisfies α κ (m) (i) ≤ α Y (2(i -1)m). Furthermore, by [29, Theorem 2.5], α κ (m) (i)>t and Q υ,m denotes the inverse of the tail function t → P(|κ Lu,m (υ, Y)| ≥ t). The sequence Y being stationary, this inverse function does not depend on u. By A4 and the inequality α Y (r) ≤ β Y (r) (see e.g. [8, Chapter 13]), there exist β ∈ [0, 1) and C ∈ (0, 1) s.t. for any u, m ≥ 1,N (m) (u) ≤ i≥1 1 α Y (2(i-1)m)>u ≤ i≥1 Cβ 2(i-1)m >u ≤ log u -log C 2m log β ∨ 0 .Let U be a uniform r.v. on [0, 1]. Observe that Cβ 2mk < 1. Then, by the Holder inequality applied witha def = p/p and b -1 def = 1 -a -1 , N (m) (U ) ∧ k 1/2 Q υ,m (U ) Cβ Cmk ,C) (U ) p + k 1/2 Q υ,m (U )1 U ≤Cβ 2mk p , υ,m (U ) p . Since U is uniform on [0, 1], Q υ,m(U ) and |κ Lu,m (υ, Y)| have the same distribution, see [29]. Then, by Lemma A.4 and A3-(p), there exists a constant C s.t. for any υ ∈ Θ, any m ≥ 1, sup υ∈Θ Q υ,m (U ) p ≤ C sup x,x ∈X 2 |S(x, x , Y 0 ) p , which concludes the proof. Lemma A.6. Assume A2, A3-(p) and A4 for some p > 2. Let p ∈ (2, p). There exists a constant C s.t. for any n ≥ 1, any 1 ≤ m n ≤ τ n+1 and any distribution χ on (X, (θ n , ϑ Tn Y) p ≤ C 1 √ τ n+1 + β mn∆p , where κ χ L,m and β are defined by (40) and A4, v n (θ n , ϑ Tn Y) p Observe that by definition θ n is F Y Tn -measurable. Then, by Lemma A.5, there exists a constant C s.t. for any m n ≥ 1 and any ≥ 0, vn-1 u=1 κ χ 2umn+ ,mn (θ n , ϑ Tn Y) p ≤ C v n m n + v n β mn∆p . The proof is concluded upon noting that τ n+1 ≥ 2m n v n . Lemma A.7. Assume A2, A3-(p) and A4 for some p > 2. For any p ∈ (2, p], there exists a constant C s.t. for any n ≥ 1, any 1 ≤ m n ≤ q n ≤ τ n+1 and any distribution χ on (X, X ), Sχ,Tn τn+1 (θ n , Y) -S(θ n ) -ρ n p (θ n , ϑ Tn Y) and κ χ L,m is defined by (40).Proof. By (4) and (21), Sχ,Tn τn+1 (θ n , Y) -S(θ n ) -ρ n = ,τn+1 (S, ϑ Tn Y) -Φ χ,t-mn θn,t,t+mn (S, ϑ Tn Y) , χ,t-mn θn,t,t+mn (S, ϑ Tn Y) -E Φ χ,-mn θ,0,mn (S, Y) χ,t-mn θn,t,t+mn (S, ϑ Tn Y) -E Φ χ,-mn θ,0,mn (S, Y) E Φ χ,-mn θ,0,mn (S, Y) θ=θn -S(θ n ) .In the case τ n+1 > 2m n , it holdsτ n+1 |g 1,n | ≤ τn+1 t=τn+1-mn+1 ρ mn-1 + ρ τn+1-t osc(S t+Tn ) + mn t=1 ρ mn + ρ t-1 osc(S t+Tn ) + 2ρ mn-1 τn+1-mn t=mn+1 osc(S t+Tn ) , where we used Proposition A.2(i) and Remark A.3 in the last inequality. By A3-(p) and A4, there exists C s.t. g 1,n p ≤ C ρ mn + τ -1 n+1 . The same bound hold in the case τ n+1 ≤ 2m n . For g 2,n and g 3,n , we use the bounds Φ χ,t-mn θn,t,t+mn (S, ϑ Tn Y) -E Φ χ,-mn θ,0,mn (S, Y) θ=θn ≤ sup (x,x )∈X 2 |S(x, x , Y Tn+t )| + E sup (x,x )∈X 2 |S(x, x , Y 0 )| . Then, by A4, Φ χ,t-mn θn,t,t+mn (S, ϑ Tn Y) -E Φ χ,-mn θ,0,mn (S, Y) θ=θn p ≤ 2 sup (x,x )∈X 2 |S(x, x , Y 0 )| p , and the RHS is finite under A3-(p). Finally, |g 4,n | ≤ 2ρ mn-1 E [osc(S 0 )] ,

  √τ n µ n = O Lp[START_REF] Billingsley | Probability and Measure[END_REF] andτ n ρ n 1 limn θn=θ = O L p/2 (1)O a.s (1) . The proof of Proposition 6.2 is on the same lines as the proof of [16, Theorem 6]. The main ingredient is the control of µ n p which is a consequence of [27, Result 178, p. 39] and Theorem 4.1. The detailed proof is thus omitted and postponed to the supplementary material [20, Section 2.2].

	Proposition 6.2. Assume A2, A3-(p), A4-5, A6-(p) and A8 for some p > 2.
	Then for any p ∈ (2, p),

  2, Lemma 6.3 and A5. The proof of the second assertion follows from (36) and Proposition 6.2. Remark A.3. (a) If χ = χ, 1 = 0 and 2 ≥ 1, (38) becomes Assume A2. Let r < s ≤ t be integers, θ ∈ Θ and y ∈ Y Z , and h : X 2 × Y → R d s.t. for any s ∈ Z, sup x,x |h(x, x , y s )| < ∞. Then

	sup θ∈Θ	Φ χ,r θ,s,t (h, y) -Φ χ,r θ,s,t+ 2 (h, y) ≤ ρ t-s osc(h s ) .
	(b) if 2 = 0 and 1 ≥ 1, (38) becomes	
	sup θ∈Θ	Φ χ,r θ,s,t (h, y) -Φ χ,r-1 θ,s,t	(h, y) ≤ ρ s-1-r osc(h s ) .
	Lemma A.4 is a consequence of (21) and of Proposition A.2(ii).
	Lemma A.4. Φ χ,r θ,s,t (h, y) ≤ sup (x,x )∈X 2	

|h(x, x , y s )| , |Φ θ (h, ϑ s y)| ≤ sup (x,x )∈X 2 |h(x, x , y s )| .
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Upon noting that θ = θ(s ), we may write, for the averaged sequence,

The first term in this decomposition gives

.

By A8(b), as for the non averaged sequence, a Taylor expansion with integral remainder term gives the result for the second term. This concludes the proof of Theorem 5.2, Eq.( 20).
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A Technical results

Proposition A.1 is exactly [16, Proposition 9] applied with a compact set Θ.

Proposition A.1. Let T : Θ → Θ and W be a continuous Lyapunov function relatively to T and to L ⊂ Θ. Assume W(L) has an empty interior and that {θ n } n≥0 is a sequence lying in Θ such that

Then, there exists w such that {θ n } n≥0 converges to {θ ∈ L; W(θ) = w }.

The proof of Proposition A.2 is given in [20, Proposition 3.3]

Proposition A.2. Assume A2. Let χ, χ be two distributions on (X, X ). For any measurable function h : X 2 ×Y → R d and any y ∈ Y Z such that sup x,x |h(x, x , y s )| < +∞ for any s ∈ Z (i) For any r < s ≤ t and any 1 , 2 ≥ 1,

(ii) For any θ ∈ Θ, there exists a function y → Φ θ (h, y) s.t. for any distribution χ on (X, X ) and any r < s ≤ t sup θ∈Θ Φ χ,r θ,s,t (h, y) -Φ θ (h, ϑ s y) ≤ ρ s-1-r + ρ t-s osc(h s ) .

(39)