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Abstract

The Expectation Maximization (EM) algorithm is a versatile tool for
model parameter estimation in latent data models. When processing large
data sets or data stream however, EM becomes intractable since it requires
the whole data set to be available at each iteration of the algorithm. In this
contribution, a new generic online EM algorithm for model parameter in-
ference in general Hidden Markov Model is proposed. This new algorithm
updates the parameter estimate after a block of observations is processed
(online). The convergence of this new algorithm is established, and the
rate of convergence is studied showing the impact of the block size. An
averaging procedure is also proposed to improve the rate of convergence.
Finally, practical illustrations are presented as well as extensions to some
online stochastic EM when Sequential Monte Carlo methods have to be
used in combination, in order to make the E-step tractable.

1 Introduction

The Expectation Maximization (EM) algorithm is a well-known iterative algo-
rithm to solve maximum likelihood estimation in incomplete data models [11].
In this context, model parameter estimates are obtained by maximizing the
log-likelihood of the observations Y0:T . Despite in incomplete data models the
log-likelihood is not explicit, EM algorithm is generally simple to implement
since it relies on complete data computations: each iteration consists in a E-
step where the expectation of the complete log-likelihood under the conditional
distribution of the latent data given the observations is computed; and a M-step,
which updates the parameter estimate based on this conditional expectation.

In many situations of interest, the complete data likelihood belongs to the
exponential family. In this case, the E-step consists in the computation of
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the expectation of the complete data sufficient statistic under the conditional
distribution. In such case, the EM algorithm can be considered equivalently
as an iterative algorithm in the space of the complete data sufficient statistics
(instead of in the parameter space).

The EM algorithm has been successfully applied for maximum likelihood
inference in general state-space models. Except for simple models the E-step is
intractable and has to be approximated e.g. by Monte Carlo methods such as
Markov Chain Monte Carlo methods or Sequential Monte Carlo methods (see
resp. [5, 16]) depending on the complexity of the model.

When processing large data sets or data streams however, the EM algorithm
might become impractical. Online variants of the EM algorithm have been
first proposed for independent and identically distributed (i.i.d.) observations.
The first online procedure for parameter estimation was introduced in [29] by
Titterington. This algorithm relies on a stochastic gradient approach which aims
at incorporating the newly available observation. In Cappé and Moulines [4],
the proposed algorithm is more closely related to the original EM recursion: in
the case of an exponential complete-data likelihood, the E-step is replaced by a
stochastic approximation step while the M-step remains unchanged.

More complex incomplete data models such as Hidden Markov Models (HMM)
are of common use to represent time series in many fields such as statistics, infor-
mation engineering and financial econometrics, see [14, 31]. An online version of
the EM algorithm for inference in Hidden Markov Model when both the obser-
vations and the states take a finite number of values (resp. when the states take
a finite number of values) was recently proposed by Mongillo and Denève [23]
(resp. Cappé [3]). In Cappé [3], the algorithm relies on the ability to compute
approximations of the filtering distribution and on an intermediate quantity
based on the sufficient statistics. In order to update these computations re-
cursively, stochastic approximation procedures are introduced. This algorithm
has been extended to the case of general state-space models by substituting de-
terministic approximation of the smoothing probabilities by Sequential Monte
Carlo algorithms (see Cappé [2], Del Moral et al. [8] and Le Corff et al. [21]).

Despite the encouraging first results when applying these online EM algo-
rithms, the convergence of these algorithms and the characterization of the
limit points (when the number of observations tends to infinity) remain an open
question. The convergence of the online variants of the EM algorithm for i.i.d.
observations is addressed by Cappé and Moulines [4]: the limit points are the
stationary points of the Kullback-Leibler divergence between the marginal dis-
tribution of the observation and the model distribution. There do not exist
convergence results for the online EM algorithms for general state-space models
(some insights on the asymptotic behavior are nevertheless given in Cappé [3]):
the introduction of many approximations at different steps of the algorithms
makes the analysis quite challenging.

In this contribution, a new online EM algorithm is proposed for HMM with
exponential complete-data likelihood. It sticks more closely to the principles
of the original batch-mode EM algorithm. The M-step (and thus, the update
of the parameter) occurs at some deterministic times {Tk}k≥1 i.e. we propose
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to keep a fixed parameter estimate for blocks of observations of increasing size.
More precisely, let {Tk}k≥0 be an increasing sequence of integers (T0 = 0).
For each k ≥ 0, the parameter’s value is kept fixed while accumulating the
information brought by the observations YTk+1:Tk+1

. Then, the parameter is
updated at the end of the block. This algorithm is an online algorithm since the
sufficient statistics of the k-th block can be computed on the fly by updating
an intermediate quantity when a new observation Yt, t ∈ {Tk + 1, . . . , Tk+1} is
available. Such recursions are provided in recent works on online estimation in
HMM, see [2, equation (1)], [3, Section 2.2] and [8, Proposition 2.1].

This new algorithm, called Block Online EM algorithm (BOEM) is derived
in Section 2 together with an averaged version. Section 3 is devoted to practical
applications: BOEM is used to perform parameter inference in HMM where
the forward recursions mentioned above are available explicitly (this occurs e.g.
for finite state-space HMM and linear Gaussian models). In the case of finite
state-space HMM, BOEM is compared to a gradient-type recursive maximum
likelihood procedure. The new algorithm is also extended to models where the
E-step is intractable and has to be approximated by Sequential Monte Carlo al-
gorithms; in this context, it is compared to online EM-type algorithms existing
in the literature when applied to a stochastic volatility model. The conver-
gence of BOEM is addressed in Section 4. BOEM is seen as a perturbation of a
deterministic limiting EM algorithm, the limiting behavior of which is studied
through a Lyapunov-function technique. The perturbation is shown to van-
ish (in some sense) as the number of observations increases thus implying that
BOEM inherits the asymptotic behavior of the limiting-EM. Finally, in Sec-
tion 5, we prove that the rate of convergence of BOEM strongly depends upon
the block size sequence: this rate is optimal when the block size increases expo-
nentially which is, quite unfortunately, of poor practical interest. Nevertheless,
we prove that the averaged BOEM reaches this optimal rate of convergence for
slowly increasing block size sequence. The proofs are postponed in Section 6;
supplementary materials are provided in the supplement paper [20].

2 The Block Online EM algorithms

2.1 Notations and Model assumptions

For any r ≤ t, xr:t is a shorthand notation for the sequence (xr, · · · , xt).
Let Y = {Yt}t∈Z be the observation process defined on (Ω,P⋆,F) and taking

values in Y
Z where Y is a general space endowed with a countably generated

σ-field B(Y).
A HMM model parameterized by θ, for θ in a set Θ ⊆ R

dθ , is fitted to
the observations: consider a family of transition kernels {mθ(x, x

′)dλ(x′)}θ∈Θ

onto X × B(X) where X is a general state-space equipped with a countably
generated σ-field B(X), and λ is a bounded non-negative measure on (X,B(X)).
Let {gθ(x, y)dν(y)}θ∈Θ be a family of transition kernels on (X × B(Y)), where
ν is a measure on (Y,B(Y)).
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For any initial distribution χ on (X,B(X)), any θ ∈ Θ, any r < s ≤ t and
any sequence y ∈ Y

Z, define the probability measure Φχ,r
θ,s,t(·,y) by

Φχ,r
θ,s,t(h,y)

def
=

∫
χ(dxr){

∏t−1
i=r mθ(xi, xi+1)gθ(xi+1, yi+1)}h(xs−1, xs, ys) dλ(xr+1:t)∫

χ(dxr){
∏t−1

i=r mθ(xi, xi+1)gθ(xi+1, yi+1)} dλ(xr+1:t)
, (1)

for any bounded function h. Note that if {(Xt, Yt)}t∈Z is a HMM with transition
kernels mθ and gθ, Φ

χ,r
θ,s,t(h, Y ) is the conditional expectation of h(Xs−1, Xs, Ys)

given Yr+1:t when Xr ∼ χ.
It is assumed that the HMM is exponential i.e.

A1 (a) There exist continuous functions φ : Θ → R, ψ : Θ → R
d and

S : X× X× Y
Z → R

d s.t.

logmθ(x, x
′) + log gθ(x

′, y) = φ(θ) + 〈S(x, x,′ , y), ψ(θ)〉 ,

where 〈·, ·〉 denotes the scalar product on R
d.

(b) There exists an open subset S of Rd that contains the convex hull of
S(X× X× Y

Z).

(c) There exists a continuous function θ̄ : S → Θ s.t. for any s ∈ S,

θ̄(s) = argmaxθ∈Θ {φ(θ) + 〈s, ψ(θ)〉} .

2.2 Block Online EM (BOEM)

Define

S̄χ,T
τ (θ,Y)

def
=

1

τ

T+τ∑

t=T+1

Φχ,T
θ,t,T+τ (S,Y) . (2)

Once again, note that if {(Xt, Yt)}t∈Z is a HMM with transition kernels mθ

and gθ, S̄
χ,T
τ (θ, Y ) is the conditional expectation of the additive functional∑T+τ

t=T+1 S(Xt−1, Xt, Yt) given YT+1:T+τ when XT ∼ χ. BOEM updates the
parameter estimates by using such integrals computed on non-overlapping block
of observations; the expectation is with respect to (w.r.t.) a conditional distri-
bution given the (random) observations YT , · · · ,YT+τ . Consequently, it is a
stochastic iterative algorithm.

Let {τn}n≥1 be a sequence of positive integers and set

Tn
def
=

n∑

k=1

τk and T0
def
= 0 ; (3)

τn denotes the length of the block n. To ensure the stability of this stochastic
iterative algorithm, we use a reprojection scheme adapted from [6]. Let {Θn}n≥0

be a sequence of compact subsets of Θ s.t.

∀n ≥ 0, Θn ⊂ Θn+1 and Θ =
⋃

n≥0

Θn .
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Given an initial value θ0 ∈ Θ0 and starting with p0 = 0, the BOEM algorithm
defines a sequence {θn}n≥1 by

θn−1/2
def
= θ̄

[
S̄χ,Tn−1
τn (θn−1,Y)

]
,

θn =

{
θn−1/2 if θn−1/2 ∈ Θpn

θ0 otherwise and set pn = pn−1 + 1 .
(4)

pn counts the number of truncations; it is proved in Theorem 4.4 that {pn}n≥0

is finite w.p.1. i.e. w.p.1., θn = θn−1/2 for all n large enough.
For ease of notation, it is assumed in this recursion that the initial distri-

bution χ is the same for all blocks even though it will be clear in Section 4
that the initial distribution can change over blocks. limτ→∞ S̄χ,T

τ (θ,Y) exists
P⋆−a.s (see Theorem 4.1 below): it is thus expected that BOEM applied with a
sequence {τn}n≥1 increasing to infinity will have the same asymptotic behavior

as the iterative procedure in which S̄
χ,Tn−1
τn (θn−1,Y) is replaced by its limit. We

will give a rigorous proof of this intuition in section 4, as well as assumptions
on {τn}n≥1 in order to prove such a result.

2.3 Averaged Block Online EM

When τn is large, S̄χ,T
τn (θ,Y) may be seen as an estimator of the a.s. limit

limτ→∞ S̄χ,T
τ (θ,Y). By analogy to the regression problem, an estimator with

reduced variance can be obtained by averaging and weighting the successive
estimates (see [25, 26, 18] for a discussion on the averaging procedures). Define

Σ0
def
= 0 and for n ≥ 1,

Σn
def
=

1

Tn

n∑

j=1

τj S̄
χ,Tj−1
τj (θj−1,Y) ; (5)

note that this quantity can be computed iteratively and does not require to

store the past statistics S̄
χ,Tj−1
τj . Given an initial value θ̃0, the averaged BOEM

algorithm defines a sequence {θ̃n}n≥1 by

θ̃n
def
= θ̄ (Σn) . (6)

3 Applications to inverse problems in Hidden Markov

Models

3.1 Linear Gaussian Model

Consider the Linear Gaussian model (LGM):

Xt+1 = φXt + σuUt , Yt = Xt + σvVt ,
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where X0 ∼ N
(
0, σ2

u(1− φ2)−1
)
, {Ut}t≥0, {Vt}t≥0 are i.i.d. standard Gaussian

r.v., independent from X0. Data are sampled using φ = 0.9, σ2
u = 0.6 and

σ2
v = 1. All runs are started with φ = 0.1, σ2

u = 1 and σ2
v = 2.

We illustrate the convergence of the BOEM algorithms. We choose τn =
a(n+1). We display in Figure 1 the box and whisker plots for the estimation of
φ obtained with 100 independent Monte Carlo experiments; different values of a
are also considered. Both the BOEM algorithm and the averaged one converge
to the true value φ = 0.9; and the averaging procedure clearly improves the
variance of the estimation. In Figure 2, the estimates of the three parameters
(φ, σ2

u, σ
2
v) are given as a function of the number of blocks when a = 10, illus-

trating the performance of the BOEM algorithms (the first 10 iterations are not
shown for a better clarity). Figures 1 and 2 show that the averaged procedure
needs a few more iterations to converge but when compared to the non averaged
one, the variance is much smaller.

We now discuss the role of the initial distribution χ. The convergence results
(see Section 4) show that our algorithms converge whatever χ. Figure 3 displays
the estimation of φ by the averaged BOEM algorithm with τn ∼ (n+99)1.2, over
100 independent Monte Carlo runs as a function of the number of blocks. We
consider first the case when χ is the stationary distribution of the hidden process
i.e. χ ≡ N (0, (1 − φ2)−1σ2

u), and the case when χ is the filtering distribution
obtained at the end of the previous block, computed with the Kalman filter. In
terms of the error of the estimation, the two strategies are similar. We observe
the same phenomenon for different values of φ (see [20, section 5]). Therefore,
it is advocated to choose χ as the filtering distribution obtained at the end of
the previous block.

We now discuss the role of {τn}n≥0. Figure 4 displays the empirical vari-
ance, when estimating φ, computed with 100 independent Monte Carlo runs,
for different numbers of observations and, for both the BOEM and its averaged
version. We consider four polynomial rates τn ∼ nb, b ∈ {1.2, 1.8, 2, 2.5}. Fig-
ure 4a shows that the choice of {τn}n≥0 has a great impact on the empirical
variance of the (non averaged) BOEM path {θn}n≥0. To reduce this variability,
a solution could consist in increasing the block sizes τn at a larger rate although
this implies practical difficulties: when τn ∼ n2, many observations are needed
for each update of the parameter sequence. Then, the estimation process is
highly dependent on the initialization of the algorithm, as illustrated by Fig-
ure 5. This phenomenon is all the more important than τn increases rapidly;
therefore, geometrically increasing sequence τn is not at all advocated, at least
in the first iterations of the algorithm. The influence of the block size sequence
τn is greatly reduced with the averaging procedure as shown in Figure 4b. We
will show in Section 5 that averaging really improves the rate of convergence of
BOEM.

As a conclusion, it is advocated to use the averaged BOEM algorithm. In
practice, one could use slowly increasing sequences τn for the first iterations,
and then, use more rapidly increasing sequences after the burn-in period.
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0.88
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Number of blocks

(a) BOEM without averaging, when τn = a(n+ 1).

50 100 150 200 250
0.84

0.86

0.88

0.9

0.92

0.94

Number of blocks

(b) BOEM with averaging, when τn = a(n+ 1).

Figure 1: Estimation of φ for a = 10 (left), a = 100 (middle) and a = 300
(right) after 50, 100, 150, 200 and 250 blocks.

3.2 Finite state-space HMM

We consider models where the unobservable states take a finite number of values.
Mixture processes with Markov dependence, switching processes with Markov
regime, communication channels driven by Hidden Markov processes, compos-
ite sources with switch controlled by a Markov chain are examples of finite
state-space HMM found useful in many fields including biostatistics, genomics,
information theory, speech processing, . . . (see [15] for a review). In the numer-
ical applications below, we consider a Gaussian mixture process with Markov
dependence of the form: Yt = Xt + Vt where {Xt}t≥0 is a Markov chain taking
values in {µ(1), . . . , µ(d)}, with initial distribution ν and a d× d transition ma-
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(a) Estimation of φ. The true value is φ = 0.9.
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0.9
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20 40 60 80 100 120 140 160 180 200

0.9

1

1.1

1.2

1.3

1.4

Number of blocks

(b) Estimation of σ2
u

(left) and σ2
v

(right). The true value is (σ2
u
, σ2

v
) = (0.6, 1).

Figure 2: Estimation of the three parameters without averaging (bold line) and
with averaging (dotted line), a = 10.
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Figure 3: Estimation of φ after 5, 10, 25, 50, 100 and 150 blocks, with two dif-
ferent initialization schemes: the stationary distribution (left) and the filtering
distribution at the end of the previous block (right). The boxplots are computed
with 100 Monte Carlo runs.
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(a) BOEM, without averaging
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(b) BOEM, with averaging

Figure 4: BOEM: Empirical variance of the estimation of φ after n = 0.5ℓ 105

observations (ℓ ∈ {1, · · · , 7}) for different block size schemes τn ∼ n1.2 (stars),
τn ∼ n1.8 (dots), τn ∼ n2 (crosses) and τn ∼ n2.5 (squares).
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Figure 5: BOEM with averaging: Empirical variance of the estimation of φ
after n = 1000, 1500, 2500 and 3000 observations for different block size schemes
τn ∼ n1.2 (stars), τn ∼ n1.8 (dots), τn ∼ n2 (crosses) and τn ∼ n2.5 (squares).

trix m. {Vt}t≥0 are i.i.d. N (0, v) r.v., independent from {Xt}t≥0. Observations
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are sampled using d = 6, v = 0.5, µ(i) = i , ∀i ∈ {1, . . . , d} and

m =




0.5 0.05 0.1 0.15 0.15 0.05
0.2 0.35 0.1 0.15 0.05 0.15
0.1 0.1 0.6 0.05 0.05 0.1
0.02 0.03 0.1 0.7 0.1 0.05
0.1 0.05 0.13 0.02 0.6 0.1
0.1 0.1 0.13 0.12 0.1 0.45




.

We want to estimate the variance v and the transition matrix m. All the runs
are started from v = 2 and from a matrix m with each entry equal to 1/d. The
averaged BOEM is compared to a Polyak-Ruppert averaged (see [25]) recursive
maximum likelihood (RML) procedure (see [22, 28]). RML follows a stochastic
approximation update and depends on a step-size sequence {γn}n≥0. In the
case of the RML, it is expected that the rate of convergence in L2 after n

observations is γ
1/2
n (and 1/

√
n for its averaged version) - this assertion relies

on classical results for stochastic approximation. We prove in Section 5 that the
rate of convergence of BOEM is n−b/(2(b+1)) (and 1/

√
n for its averaged version)

when τn ∝ nb. Therefore, for a fair comparison, RML (resp. BOEM) is run with
γn ∝ n−0.6 (resp. τn ∝ n3/2). Figure 6 displays boxplots of the estimations of v
and m(1, 1) after different numbers of observations n; the boxplots are over 100
independent Monte Carlo runs. For both algorithms, the bias and the variance
of the estimation decrease as n increases. Nevertheless, the bias and/or the
variance of the averaged BOEM decrease faster than those of the averaged RML
(similar graphs have been obtained for the estimation of the other entries of the
matrix m; some supplementary graphs can be found in [20, Section 5]). As a
conclusion, it is advocated to use the averaged BOEM instead of the averaged
RML.

3.3 Stochastic Block Online EM algorithms

Consider the following stochastic volatility model (SVM):

Xt+1 = φXt + σUt , Yt = βe
Xt
2 Vt ,

where X0 ∼ N
(
0, (1− φ2)−1σ2

)
and (Ut)t≥0 and (Vt)t≥0 are two sequences of

i.i.d. standard Gaussian r.v., independent from X0. Data are sampled using
φ = 0.8, σ2 = 0.2 and β2 = 1. All runs are started with φ = 0.1, σ2 = 0.6 and
β2 = 2.

In this model, the smoothed sufficient statistics {S̄χ,Tn−1
τn (θn−1,Y)}n≥1 can

not be computed explicitly. We thus propose to replace the exact computation
by a Monte Carlo approximation based on particle filtering. The performance of
the Stochastic BOEM is compared to the online EM algorithm given in [3] (see
also [8]). To our best knowledge, there do not exist results on the asymptotic
behavior of the algorithms by [3, 8]; these algorithms rely on many approxi-
mations that make the proof quite difficult (some insights on the asymptotic
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(a) Estimation of v.
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(b) Estimation of m(1, 1).

Figure 6: Estimation of v and m(1, 1) using the averaged RML algorithm (left)
and the averaged BOEM algorithm (right), based on n = {10k, 25k, 50k, 100k}
observations.

behavior are given in [3]). Despite there are no results in the literature on the
rate of convergence of the Online EM algorithm by [3] we choose the step size
γn in [3] and the block size τn s.t. γn = n−0.6 and τn ∝ n3/2 (see section 3.2 for
a discussion on this choice). 50 particles are used for the approximation of the
filtering distribution by Particle filtering. We report in Figure 7, the boxplots
for the estimation of the three parameters (β, φ, σ2) for the Polyak-Ruppert [25]
averaged Online EM and the averaged BOEM. Both average versions are started
after 20000 observations. Figure 7 displays the estimation of φ. The estimation
of σ2 and β2 are given in the supplement paper [20]. This figure shows that both
algorithms have the same behavior. Similar conclusions are obtained by con-
sidering other true values for φ (such as φ = 0.95); these analyzes are provided
in [20, Section 5]). Therefore, the intuition is that online EM and Stochastic
BOEM have the same asymptotic behavior. The main advantage of the second
approach is that it relies on approximations which can be controlled in such a
way that we are able to show that the limiting points of the particle version of
the Stochastic BOEM algorithms are the stationary points of the limiting nor-
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Figure 7: Estimation of φ using the averaged online EM algorithm (left) and
the averaged BOEM algorithm (right), after n = {1000, 10k, 50k, 100k} obser-
vations.

malized log-likelihood of the observations. The convergence of this stochastic
BOEM is out of the scope of this paper and is addressed in the paper [19].

4 Convergence of the Block Online EM algorithms

In this section, it is shown that for any T > 0 and any initial distribution χ,
the quantity S̄χ,T

τ (θ,Y) converges P⋆ − a.s when τ → +∞, to a deterministic
quantity S̄(θ) that does not depend on T and χ (see Theorem 4.1). Therefore,
the BOEM algorithm can be seen as a perturbation of the so-called limiting EM
algorithm, defined as a deterministic iterative algorithm θ̌n = R(θ̌n−1) where

R(θ)
def
= θ̄

(
S̄(θ)

)
. (7)

We identify the limiting points of the limiting EM algorithm (see section 4.3) and
show that BOEM inherits this limiting behavior provided the perturbation can
be set small enough (see section 4.4). We start with introducing the assumptions
to address such a convergence result.

4.1 Assumptions

Consider the following assumptions

A2 There exist σ− and σ+ s.t. for any (x, x′) ∈ X
2 and any θ ∈ Θ, 0 < σ− ≤

mθ(x, x
′) ≤ σ+. Set ρ

def
= 1− (σ−/σ+) .

This assumption is known in the literature as the strong mixing condition. It
is commonly used to prove the forgetting property of the initial condition of
the filter, see e.g. [9, 10]. This assumption holds for example in X is finite and
for any (x, x′) ∈ X

2, 0 < infθmθ(x, x
′) ≤ supθmθ(x, x

′) < +∞. Under regu-
larity conditions on the kernels {mθ; θ ∈ Θ}, it also holds when X is compact.
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Nevertheless, it fails to hold in standard situations s.t. linear and Gaussian
state-space models. It has been weakened in recent works: in [12], the exponen-
tial forgetting of the initial condition of the filter is proved with a local Doeblin
property; [30] gives an uniform time average convergence of some particle fil-
ters. The approach in [12] could be adapted to the present paper but at a quite
technical cost. For pedagogical purposes, we think that weakening A2 is out of
the scope of this paper.

We now introduce assumptions on the observation process. Define the shift
operator ϑ onto Y

Z by (ϑ ◦ y)k = yk+1 for any k ∈ Z; and by induction, define
the s-iterated shift operator

ϑs+1 ◦ y = ϑ ◦ (ϑs ◦ y) , ∀s ≥ 0 , (8)

with the convention that ϑ0 is the identity operator. The shift operator is said to
be ergodic for P⋆ if for each set A in {A ∈ B(Y)⊗Z;A = ϑ−1(A)}, P⋆(A) ∈ {0, 1}
(see [1, p.314]).

A3-(γ) E⋆

[
supx,x′∈X2 |S(x, x′,Y0)|γ

]
< +∞.

A4 (a) Under P⋆, Y is a stationary sequence.

(b) The shift operator is ergodic with respect to P⋆.

(c) E⋆ [| log b−(Y0)|+ | log b+(Y0)|] < +∞ where

b−(y)
def
= inf

θ∈Θ

∫
gθ(x, y)λ(dx) , b+(y)

def
= sup

θ∈Θ

∫
gθ(x, y)λ(dx) .

(9)

Finally, assumptions on the forgetting properties of the observations Y are

required. For any sequence of r.v. Z
def
= {Zt}t∈Z on (Ω, P̃,F), let

FZ
k

def
= σ ({Zu}u≤k) and GZ

k
def
= σ ({Zu}u≥k) (10)

be σ-fields associated to Z. We also define the mixing coefficients by, see [7],

βZ(n) = sup
u∈Z

sup
B∈GZ

u+n

|P̃(B|FZ
u )− P̃(B)| , ∀ n ≥ 0 . (11)

A5 There exist C ∈ [0, 1) and β ∈ (0, 1) s.t. for any n ≥ 0, βY(n) ≤ Cβn,
where βY is defined in (11).

Under A4(a), the shift operator preserves the measure P⋆ on
(
Y

Z,B(Y)⊗Z
)
.

A5 is used to control the Lp-mean error between the deterministic map R(θ)

and a BOEM iteration θ̄
(
S
χ,Tn−1
τn (θ,Y)

)
both started from the same point θ.

Examples of observation processes satisfying A4(b) and A5 include geometrically
ergodic Markov chains as discussed in [20, Section 2.1].

We conclude this set of assumptions by a condition on the block size se-
quence.

A6 -(γ) The block size sequence {τn}n≥1 satisfies
∑

k≥0 τ
−γ/2
k <∞.
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4.2 Block Online EM and Limiting EM algorithms

Theorem 4.1. Assume A2 and A4(a-b). Let S : X2×Y → R
d be a measurable

function s.t. A3-(1) holds. For any θ ∈ Θ, there exists a P⋆-integrable r.v.
Eθ [S(X−1, X0,Y0)|Y] s.t. for any probability distribution χ on (X,B(X)),

sup
θ∈Θ

∣∣∣Φχ,−n
θ,0,n (S,Y)− Eθ [S(X−1, X0,Y0)|Y]

∣∣∣

≤ 2
(
ρn + ρn−1

)
sup

(x,x′)∈X2

|S(x, x′,Y0)| P⋆ − a.s . (12)

Define for all θ ∈ Θ,

S̄(θ)
def
= E⋆ [Eθ [S(X−1, X0,Y0)|Y]] . (13)

θ 7→ S̄(θ) is continuous on Θ and for any T > 0,

S̄χ,T
τ (θ,Y) −→

τ→+∞
S̄(θ) P⋆ − a.s . (14)

The proof of Theorem 4.1 is given in Section 6.1. Eqs (1) and (12) show that
when {(Xt, Yt)}t∈Z is a HMM with transition kernels mθ and gθ, the limiting
statistic Eθ [S(X−1, X0, Y0)|YZ] is the a.s. limit of the conditional expectation
of S(X−1, X0, Y0) given Y−n+1:n when X−n ∼ χ, whatever χ is.

As a consequence of (14), when τ is large, the quantity S̄χ,T
τ (θ,Y) is an

approximation of S̄(θ). Therefore, the BOEM algorithm (4) is a perturbation
of the Limiting EM algorithm defined by (7). This remark will be central to
address the convergence of BOEM in Section 4.4. We thus start by addressing
the convergence of the limiting EM algorithm.

4.3 Asymptotic behavior of the Limiting EM

The convergence of the limiting EM is addressed following the same approach
as in [32] for the convergence of the EM algorithm. It relies on a Lyapunov
function W w.r.t. to the map R and a set L. The existence of such a Lyapunov
function is the key ingredient to identify the limiting points of the algorithm (7).

It is well known that for the EM algorithm, a natural Lyapunov function is
based on the (normalized) log-likelihood of the observations. We prove a similar
result for the limiting EM: we show that the limiting normalized log-likelihood is
related to a Lyapunov function. [13, Lemma 2 and Proposition 1] shows that the
normalized log-likelihood converges and this limit, hereafter denoted by c⋆(θ),
is deterministic and does not depend on the initial distribution χ of the Hidden
chain. θ → c⋆(θ) will be referred to as the contrast function. Proposition 4.2
states that the function θ 7→ exp(c⋆(θ)) is a Lyapunov function for the map R

and the set L def
= {θ ∈ Θ; R(θ) = θ}.

Proposition 4.2. Assume A1-2, A3-(1) and A4. Then R given by (7) and
W : θ 7→ exp(c⋆(θ)) are continuous on Θ and satisfy

14



(i) For all θ ∈ Θ, W ◦ R(θ)−W(θ) ≥ 0 .

(ii) For all compact set K ⊂ Θ \ L, infθ∈K {W ◦ R(θ)−W(θ)} > 0 .

The proof of Proposition 4.2 is given in Section 6.2. It can be proved that
under regularity conditions on the HMM, the set L is the set of the station-
ary points of the contrast function c⋆; this discussion is detailed in [20, Theo-
rem 4.11]. The following proposition gives a set of sufficient conditions for the
convergence of the limiting EM algorithm θ̌n = R(θ̌n−1) to the set L (see [16,
Proposition 9] for the proof).

Proposition 4.3. Assume A1-2, A3-(1) and A4. Assume in addition that for

any M > 0, the set KM
def
= {θ ∈ Θ; W(θ) ≥ M} is a compact subset of Θ.

Then, for any initial value θ̌0,

(i) {W(θ̌k)}k≥0 converges to a connected component of W(KW(θ̌0)
∩ L).

(ii) If W(KW(θ̌0)
∩L) has an empty interior, there exists w⋆ such that {W(θ̌k)}k≥0

converges to w⋆ and {θ̌k}k≥0 converges to KW(θ̌0)
∩ {θ ∈ L; W(θ) = w⋆}.

4.4 Asymptotic behavior of the Block Online EM algo-
rithms

Theorem 4.4 establishes the convergence of BOEM. Let Cl(A) be the closure of
the set A.

Theorem 4.4. Assume A1-2, A3-(p̄2), A4-5 and A6-(p̄1) for some 2 < p̄1 < p̄2.
Assume in addition that W(L) is compact and, for any M > 0, the level set
{θ ∈ Θ;W(θ) ≥M} is compact. Then,

(a) lim supn pn < +∞ P⋆ − a.s where pn is defined in (4).

(b) {W(θn)}n≥0 converges to a connected component of W(L).

(c) If W(L∩Cl({θn}n≥0)) has an empty interior, there exists w⋆ s.t. {W(θn)}n≥0

converges almost surely to w⋆ and {θn}n≥0 converges to {θ ∈ L;W(θ) =
w⋆}.
Theorem 4.4 implies that the number of truncations pn in (4) is almost surely

finite so that for a (random) sufficently large n, θn = θn−1/2. It shows that the
BOEM algorithm and the limiting EM have the same asymptotic behavior un-
der the assumptions of Theorem 4.4. The proof is detailed in Section 6.3: it
consists in applying the results of [16] on the convergence of a sequence gen-
erated by iterated random maps, which are perturbations of a point-to-point
map associated to a Lyapunov function. The key ingredient is to prove that
the perturbation vanishes when the number of iterations tends to infinity; in
our case, this is done through the control of the Lp-mean error when replac-

ing the limiting quantity S̄(θn−1) by S̄
χ,Tn−1
τn (θn−1,Y) (see Proposition 6.5 in

Section 6.3).
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A convergence result for the averaged BOEM algorithm can be obtained
following the same lines as in the proof of Theorem 4.4. The main ingredient for
this proof is the control of the Lp-mean error when replacing S̄(θn−1) by Σn (see
Lemma 6.7 below). It can be proved that, along any converging BOEM path,
the averaged BOEM algorithm and the limiting EM have the same asymptotic
behavior. Details are omitted for brevity.

5 Rate of convergence of the Block Online EM

algorithm

We now address the rate of convergence of the BOEM algorithm. To that
goal, we consider a converging path {θn}n≥0 with limiting point θ⋆ ∈ L. First,
observe that BOEM can equivalently be defined by recursions on the space of
sufficient statistics. Let G : S → S be the limiting EM map defined on the
space of sufficient statistics by

G(s)
def
= S̄(θ̄(s)) , ∀s ∈ S , (15)

where θ̄ and S̄ are given by A1(c) and (13). The following proposition shows
that the convergence of the sequence {θn}n≥0 is equivalent to the convergence
of the sufficient statistics {S̄χ,Tn

τn+1
(θn,Y)}n≥0.

Proposition 5.1. Assume A1, A2, A3-(p̄2), A4(a-b), A5 and A6-(p̄1) for some
2 < p̄1 < p̄2.

(i) Let θ⋆ ∈ L. Set s⋆
def
= S̄(θ⋆) = G(s⋆). Then P⋆ − a.s,

lim
n→+∞

∣∣S̄χ,Tn−1
τn (θn−1,Y)− s⋆

∣∣1limn θn=θ⋆ = 0 .

(ii) Let s⋆ ∈ S s.t. G(s⋆) = s⋆. Set θ⋆
def
= θ̄(s⋆) = R(θ⋆). Then P⋆ − a.s,

lim
n→+∞

|θn − θ⋆|1limn S̄
χ,Tn−1
τn (θn−1,Y)=s⋆

= 0 .

The proof of Proposition 5.1 is given in Section 6.4. We thus address equiv-
alently the rate of convergence of the statistics {S̄χ,Tn

τn+1
(θn,Y)}n≥0 to some fixed

point of G. Define

S0
def
= S̄χ,0

τ1 (θ0,Y) and Sn
def
= S̄χ,Tn

τn+1
(θn,Y) , ∀n ≥ 0 . (16)

It is assumed that

A7 (a) G is twice continuously differentiable on S.

(b) s⋆ = G(s⋆) and there exists 0 < γ < 1 s.t. sp(Γ) ≤ γ where sp
denotes the spectral norm.
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A8 (a) {τn+1/τn}n≥0 converges to q and γq < 1.

(b) lim supn
∑n

k=1{
∣∣∣ τk+1

τk
− q
∣∣∣√τk + log τk}/

√
Tn <∞.

Under A6, limn τn = +∞. A8 strengthens A6. A8(a) is satisfied for geometric
rates of the form τn ∼ aτn with τ ∈ (1, γ−1), for polynomial rates τn ∼ cnb with
b > 0 and sub-exponential rates log τn ∼ cnb with c > 0, b ∈ (0, 1), and more
generally with sub-geometric rates. A8(b) is satisfied for geometric rates of the
form τn ∼ aτn with τ > 1, for polynomial rates of the form τn ∼ cnb with b ≥ 1
and with any sub-exponential rates.

Hereafter, for any sequence of random variables {Zn}n≥0, write Zn = OLp
(1)

if lim supn E⋆ [|Zn|p] < ∞; Zn = Oa.s(1) if supn |Zn| < +∞ P⋆ − a.s and Zn =
oa.s(1) if lim

n→+∞
|Zn| = 0 P⋆ − a.s.

Theorem 5.2. Assume A2, A3-(p̄2), A4-5, A6-(p̄1), A7 and A8(a) for some
2 < p̄1 < p̄2. Then, for any p ∈ (2, p̄2),

√
τn [Sn − s⋆]1limn Sn=s⋆ = OLp(1) +

√
τn

−1OLp/2
(1)Oa.s (1) . (17)

If in addition A8(b) holds, then for any p ∈ (2, p̄2),

√
Tn [Σn − s⋆]1limn Sn=s⋆ = OLp

(1) +
n√
Tn

OLp/2
(1)Oa.s (1) . (18)

The proof of Theorem 5.2 is given in Section 6.4. Eq. (17) shows that the
error Sn − s⋆ is decomposed into two terms and the Lp-norm of the leading

term is inversely proportional to τ
1/2
n . Hence, the rate of the BOEM algorithm

is closely related to the choice of the number of observations per block. The first
column of Table 1 gives explicit rates of convergence for different block-sizes.

In (17), the rate is a function of the number of updates (i.e. the number of
iteration of the algorithm). This rate could also be interpreted as a function of
the total number of observations up to iteration n. To that goal, let φ(n)+1 be
the index of the block the n-th observation belongs to, i.e. φ(n) is the largest
integer s.t.

φ(n)∑

k=0

τk < n ≤
φ(n)+1∑

k=0

τk , (by convention,

−1∑

k=0

τk = 0) .

The interpolated sequence {θin}n≥0 deduced from {θn}n≥0 is thus defined by
θin = θφ(n) (the value of the interpolated sequence is kept fixed within each
block). The second column of Table 1 gives the rate of convergence of this
interpolated sequence (deduced from the square root of τφ(n)) up to a multi-

plicative constant. This rate of convergence is slower than n−1/2, except in the
geometric case. Note however that the geometric case is of weak practical in-
terest, since the parameter is hardly ever updated thus yielding to algorithms
which are really sensible to the initial value θ0 (see Section 3).
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Eq. (18) addresses the rate of convergence of the averaged BOEM algo-
rithm. It shows that when the condition A8 is strengthened in such a way that
limn n/

√
Tn = 0, averaging reduces the influence of the block-size schedule: the

error Σn− s⋆ has a rate of convergence proportional to T
−1/2
n i.e. to the inverse

of the square root of the total number of observations up to iteration n. The
last column of Table 1 shows that this averaging procedure gives an optimal
rate of convergence, whatever the block-size sequence.

τn τ
1/2
n τ

1/2
φ(n) T

1/2
n T

1/2
φ(n)

c nb , (b > 1) nb/2 nb/(2(b+1)) n(b+1)/2 n1/2

exp(cnb) , (b ∈ (0, 1)) exp(0.5c nb) n1/2(lnn)(b−1)/(2b) n(1−b)/2 exp(0.5cnb) n1/2

cτn , (τ ∈ (1, γ−1)) τn/2 n1/2 τn/2 n1/2

Table 1: Rate of convergence of both algorithms for different block sizes (up to
a multiplicative constant)

As a conclusion, the averaged BOEM algorithm reaches the optimal rate of
convergence even when the block size sequence {τn}n≥0 slowly increases, thus
allowing polynomially increasing size of blocks.

6 Proofs

For p > 0 and Z a random variable measurable w.r.t. the σ-algebra σ (Yn, n ∈ Z),

set ‖Z‖⋆,p
def
= (E⋆ [|Z|p])1/p.

6.1 Proof of Theorem 4.1

The proof of Theorem 4.1 relies on auxiliary results about the forgetting proper-
ties of HMM. Most of them are really close to published results and their proof
is provided in the supplementary material [20, Section 4]. The main novelty is
the forgetting property of the bivariate smoothing distribution, and the proof
is given in Appendix A.

Lemma 6.1. Assume A1-2. Let y ∈ Y
Z s.t. supx,x′ |S(x, x′,yi)| < +∞ for any

i ∈ Z. Then for any r > 0 and any distribution χ on (X,B(X)), θ 7→ Φχ,−r
θ,0,r (S,y)

is continuous on Θ.

Proof. Set Kθ(x, x
′, y)

def
= mθ(x, x

′)gθ(x
′, y). Let r > 0 and χ be a distribution

on (X,B(X)). By definition of Φχ,−r
θ,0,r (S,y) (see (1)) we have to prove that

θ 7→
∫
χ(dx−r)

(
r−1∏

i=−r

Kθ(xi, xi+1,yi+1)

)
h(x−1, x0,y0) dλ(x−r+1:r)
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is continuous for h(x, x′, y) = 1 and h(x, x′, y) = S(x, x′, y). By A1(a), the

function θ 7→∏r−1
i=−rKθ(xi, xi+1,yi+1)h(x−1, x0,y0) is continuous. In addition,

under A1, for any θ ∈ Θ,

∣∣∣∣∣

r−1∏

i=−r

Kθ(xi, xi+1,yi+1)h(x−1, x0,y0)

∣∣∣∣∣

= |h(x−1, x0,y0)| exp
(
2rφ(θ) +

〈
ψ(θ),

r−1∑

i=−r

S(xi, xi+1,yi+1)

〉)
.

Let K be a compact subset of Θ. By A1, there exist constants C1 and C2 s.t.

sup
θ∈K

∣∣∣∣∣

r−1∏

i=−r

Kθ(xi, xi+1,yi+1)h(x−1, x0,y0)

∣∣∣∣∣

≤ C1 sup
x,x′

|h(x, x′,y0)| exp
(
C2

r−1∑

i=−r

sup
x,x′

|S(x, x,′ ,yi+1)|
)
.

Since χ is a distribution and λ is a finite measure, the continuity follows from
the dominated convergence theorem.

Let us introduce the following shorthand Ss(x, x
′)

def
= S(x, x′,Ys). For a

function h, define osc(h)
def
= supz,z′ |h(z) − h(z′)|. Note that under A3-(1),

E⋆ [osc(S0)] < +∞. Under A2, Proposition A.1(ii) implies that for any θ ∈ Θ,
there exists a r.v. Φθ (S,Y) s.t. for any r < s ≤ T ,

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,T (S,Y)− Φθ (S, ϑ

s ◦Y)
∣∣∣ ≤

(
ρT−s + ρs−r−1

)
osc(Ss) . (19)

This concludes the proof of (12). For the proof of (14), we introduce the fol-
lowing decomposition: for all T > 0,

S̄χ,T
τ (θ,Y) =

1

τ

τ∑

t=1

Φθ

(
S, ϑt+T ◦Y

)

+
1

τ

τ∑

t=1

(
Φχ,0

θ,t,τ

(
S, ϑT ◦Y

)
− Φθ

(
S, ϑt+T ◦Y

))
,

upon noting that by (2), S̄χ,T
τ (θ,Y) = τ−1

∑τ
t=1 Φ

χ,0
θ,t,τ

(
S, ϑT ◦Y

)
. By (1), (19)

and A3-(1) E⋆ [|Φθ (S,Y)|] < +∞ . Under A4(a-b), the ergodic theorem (see
e.g. [1, Theorem 24.1, p.314]) states that

lim
τ→∞

1

τ

τ∑

t=1

Φθ

(
S, ϑt+T ◦Y

)
= E⋆ [Φθ(S,Y)] P⋆ − a.s
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for any fixed T . By (19),

1

τ

τ∑

t=1

∣∣∣Φχ,0
θ,t,τ

(
S, ϑT ◦Y

)
− Φθ

(
S, ϑt+T ◦Y

)∣∣∣

≤ 1

τ

τ∑

t=1

(
ρτ−t + ρt−1

)
osc(St+T ) . (20)

Set Zt
def
= 1

t

∑t
s=1 osc(Ss+T ) and Z0

def
= 0. Then, by an Abel transform,

1

τ

τ∑

t=1

ρt−1osc(St+T ) = ρτ−1Zτ +
1− ρ

τ

τ−1∑

t=1

tρt−1Zt . (21)

Under A4(a-b) and A3-(1), the ergodic theorem implies that limτ→∞ Zτ =
E⋆ [osc(S0)] P⋆ − a.s. Therefore, lim supτ Zτ <∞ P⋆ − a.s. Since

∑
t≥1 tρ

t−1 <

∞, this implies that τ−1
∑τ

t=1 ρ
t−1osc(St+T ) −→

τ→+∞
0 P⋆ − a.s. Similarly,

1

τ

τ∑

t=1

ρτ−tosc(St+T ) = Zτ − (1− ρ)

τ−1∑

t=1

ρτ−t−1Zt +
1− ρ

τ

τ−1∑

t=1

tρt−1Zτ−t .

We have limτ→∞ τ−1
∑τ−1

t=1 tρ
t−1Zτ−t = 0, P⋆−a.s by using the same arguments

as for the second term in (21). Furthermore,

∣∣∣∣∣(1− ρ)
τ−1∑

t=1

ρτ−t−1Zt − E⋆ [osc(S0)]

∣∣∣∣∣ ≤ (1− ρ)
τ−1∑

t=1

ρτ−t−1 |Zt − E⋆ [osc(S0)]|

+ E⋆ [osc(S0)] ρ
τ−1 .

Since Zτ −→
τ→+∞

E⋆ [osc(S0)] P⋆ − a.s, the RHS converges P⋆ − a.s to 0 and

lim
τ→+∞

∣∣∣∣∣Zτ − (1− ρ)
τ−1∑

t=1

ρτ−t−1Zt

∣∣∣∣∣ = 0 P⋆ − a.s .

Hence, the RHS in (20) converges P⋆ − a.s to 0 and this concludes the proof
of (14). We now prove that the function θ 7→ E⋆ [Φθ (S,Y)] is continuous by
application of the dominated convergence theorem. From Proposition A.1(ii),
for any y s.t. osc(S(·, ·,y0)) <∞,

lim
r→+∞

sup
θ∈Θ

∣∣∣Φχ,−r
θ,0,r (S,y)− Φθ (S,y)

∣∣∣ = 0 .

Then, by Lemma 6.1, θ 7→ Φθ (S,y) is continuous for any y such that osc(S(·, ·,y0)) <
+∞. In addition, supθ∈Θ |Φθ (S,Y)| ≤ supx,x′ |S(x, x′,Y0)|. We then conclude
by A3-(1).
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6.2 Proof of Proposition 4.2

Set

ℓχ,0θ,T (Y)
def
= log

(∫
χ(dx0)

{
T∏

t=1

mθ(xt−1, xt)gθ(xt,Yt)

}
λ(dx1) · · ·λ(dxT )

)
.

(Continuity of R and W) By A1(c) and Theorem 4.1, the function R is con-
tinuous. Under A1-2 and A4, there exists a continuous function c⋆ on Θ s.t.
limT T

−1ℓχ,0θ,T (Y) = c⋆(θ) P⋆ − a.s for any distribution χ on (X,B(X) and any
θ ∈ Θ, (see [13, Lemma 2 and Proposition 1], see also [20, Theorem 4.6]).
Therefore, W is continuous.

Proof of Proposition 4.2 (i) For all T > 0 and all θ ∈ Θ, define

pθ(x0:T ,Y1:T )
def
=

T∏

i=1

mθ(xi−1, xi)gθ(xi,Yi) . (22)

It holds, P⋆ − a.s,

ℓχ,0R(θ),T (Y)− ℓχ,0θ,T (Y) = log

∫
pR(θ)(x0:T ,Y1:T )λ(dx1:T )χ(dx0)∫
pθ(x0:T ,Y1:T )λ(dx1:T )χ(dx0)

≥
∫

log
[
pR(θ)(x0:T ,Y1:T )

] pθ(x0:T ,Y1:T )∫
pθ(z0:T ,Y1:T )λ(dz1:T )χ(dz0)

λ(dx1:T )χ(dx0)

−
∫

log [pθ(x0:T ,Y1:T )]
pθ(x0:T ,Y1:T )∫

pθ(z0:T ,Y1:T )λ(dz1:T )χ(dz0)
λ(dx1:T )χ(dx0) ,

where we used the Jensen inequality. Under Assumption A1(a)

1

T
log pθ(x0:T ,Y1:T ) = φ(θ) +

〈{
1

T

T∑

t=1

S(xt−1, xt,Yt)

}
, ψ(θ)

〉
.

Upon noting that
∫
S(xt−1, xt,Yt)

pθ(x0:T ,Y1:T )∫
pθ(z0:T ,Y1:T )λ(dz1:T )χ(dz0)

λ(dx1:T )χ(dx0) = Φχ,0
θ,t,T (S,Y) ,

this yields

1

T
ℓχ,0R(θ),T (Y)− 1

T
ℓχ,0θ,T (Y) ≥ φ(R(θ)) +

〈
1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y), ψ(R(θ))

〉

− φ(θ)−
〈

1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y), ψ(θ)

〉
. (23)

Under A1-4, it holds by Theorem 4.1 and [13, Lemma 2 and Proposition 1] (see
also [20, Theorem 4.6(ii)]) that for all θ ∈ Θ, P⋆ − a.s,

1

T

T∑

t=1

Φχ,0
θ,t,T (S,Y) −→

T→+∞
S̄(θ) ,

1

T
ℓχ,0θ,T (Y) −→

T→+∞
lnW(θ) .
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Therefore, when T → +∞, (23) implies

ln (W(R(θ))/W(θ)) ≥ φ(R(θ)) +
〈
S̄(θ), ψ(R(θ))

〉
− φ(θ)−

〈
S̄(θ), ψ(θ)

〉
. (24)

By definition of θ̄ and R (see A1(c) and (7)), the RHS is non negative. This
concludes the proof of Proposition 4.2(i).

Proof of Proposition 4.2 (ii) We prove that W◦R(θ)−W(θ) = 0 if and only if
θ ∈ L. Since W◦R−W is continuous, this implies that inf

θ∈K
W◦R(θ)−W(θ) > 0

for all compact set K ⊂ Θ \ L. Let θ ∈ Θ be s.t. W ◦ R(θ)−W(θ) = 0. Then,
the RHS in (24) is equal to zero. By definition of θ̄, R(θ) = θ and thus θ ∈ L.
The converse implication is immediate from the definition of L.

6.3 Proof of Theorem 4.4

The proof of Theorem 4.4 follows the same lines as the proof of [16, Theorem
3]. The key ingredient for this proof is the control of the Lp-mean error be-
tween the Block Online EM algorithm and the limiting EM. This is the crucial
difference with [16]. The proof of this bound is derived in Proposition 6.5 and
relies on preliminary lemmas; the detailed proof of Theorem 4.4 is given in [20,
Section 3.1].

In the sequel, for all function Ξ on Θ × Y
Z and all θ⋆ ∈ Θ, we denote by

E⋆ [Ξ(θ,Y)]θ=θ⋆
the function θ 7→ E⋆ [Ξ(θ,Y)] evaluated at θ = θ⋆. Finally, for

any L ≥ 1, m ≥ 1 and any distribution χ on (X,B(X)), define

κχL,m(θ,Y)
def
= Φχ,L−m

θ,L,L+m(S,Y)− E⋆

[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

. (25)

Lemma 6.2. Assume A2, A3-(p̄), A4(a) and A5 for some p̄ > 2. Let p ∈ (2, p̄).
There exists a constant C s.t. for any distribution χ on (X,B(X)), any m ≥ 1,
k, ℓ ≥ 0 and any Θ-valued FY

0 -measurable r.v. θ,

∥∥∥∥∥

k∑

u=1

κχ2um+ℓ,m(θ,Y)

∥∥∥∥∥
⋆,p

≤ C

[√
k

m
+ kβm∆p

]
,

where ∆p
def
= p̄−p

pp̄ and β is given by A5.

Proof. For ease of notation χ is dropped from the notation κχ2um,m. By the
Berbee Lemma (see [27, Chapter 5]), for any m ≥ 1, there exists a Θ-valued r.v.
θ
⋆ on (Ω,F ,P⋆) independent from GY

m (see Eq.(10)) s.t.

P⋆ {θ 6= θ
⋆} = sup

B∈GY
m

|P⋆(B|σ(θ))− P⋆(B)| . (26)
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Set Lu
def
= 2um+ ℓ. We write

k∑

u=1

κLu,m(θ,Y) =

k∑

u=1

{
Φχ,Lu−m

θ,Lu,Lu+m(S,Y)− Φχ,Lu−m
θ⋆,Lu,Lu+m(S,Y)

}

+

k∑

u=1

κLu,m(θ⋆,Y) + k
{
E⋆

[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ⋆ − E⋆

[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

}
.

(27)

By the Holder’s inequality with a
def
= p̄/p and b−1 def

= 1− a−1,

∥∥∥Φχ,L−m
θ,L,L+m(S,Y)− Φχ,L−m

θ⋆,L,L+m(S,Y)
∥∥∥
⋆,p

=
∥∥∥
(
Φχ,L−m

θ,L,L+m(S,Y)− Φχ,L−m
θ⋆,L,L+m(S,Y)

)
1θ 6=θ⋆

∥∥∥
⋆,p

≤
∥∥∥Φχ,L−m

θ,L,L+m(S, ϑT ◦Y)− Φχ,L−m
θ⋆,L,L+m(S,Y)

∥∥∥
⋆,p̄

P⋆ {θ 6= θ
⋆}∆p

.

By A4(a), A3-(p̄), A5, (1), (26) and (11), there exists a constant C1 s.t. for any
m,L ≥ 1, any distribution χ and any Θ-valued FY

0 -measurable r.v. θ,
∥∥∥Φχ,L−m

θ,L,L+m(S,Y)− Φχ,L−m
θ⋆,L,L+m(S,Y)

∥∥∥
⋆,p

≤ C1β
m∆p .

Similarly, there exists a constant C2 s.t. for any m ≥ 1, any distribution χ and
any Θ-valued FY

0 -measurable r.v. θ,
∥∥∥E⋆

[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ⋆ − E⋆

[
Φχ,−m

υ,0,m(S,Y)
]
υ=θ

∥∥∥
⋆,p

≤ C2β
m∆p .

Let us consider the second term in (27). For any u ≥ 1 and any υ ∈ Θ, the r.v.
κLu,m(υ,Y) is a measurable function of Yi for all Lu −m + 1 ≤ i ≤ Lu +m.

Since Lu ≥ 2um, for any υ ∈ Θ,
∑k

u=1 κLu,m(υ,Y) is GY

m -measurable. θ
⋆ is

independent from GY

m so that:

∥∥∥∥∥

k∑

u=1

κLu,m(θ⋆,Y)

∥∥∥∥∥
⋆,p

= E⋆

[
E⋆

[∣∣∣∣∣

k∑

u=1

κLu,m(υ,Y)

∣∣∣∣∣

p]

υ=θ⋆

]1/p
.

Define the strong mixing coefficient (see [7])

αY(r)
def
= sup

u∈Z

sup
(A,B)∈FY

u ×GY

u+r

|P⋆(A ∩B)− P⋆(A)P⋆(B)| , r ≥ 0 .

Then, [7, Theorem 14.1, p.210] implies that for any m ≥ 1, the strong mix-

ing coefficients of the sequence κ(m)
def
= {κLu,m(υ,Y)}u≥1 satisfies ακ(m)(i) ≤

αY(2(i− 1)m+ 1). Furthermore, by [27, Theorem 2.5],
∥∥∥∥∥

k∑

u=1

κLu,m(υ,Y)

∥∥∥∥∥
⋆,p

≤ (2kp)1/2
(∫ 1

0

[
N(m)(t) ∧ k

]p/2 Qp
υ,m(t)dt

)1/p

,
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where N(m)(t)
def
=
∑

i≥1 1α
κ(m) (i)>t and Qυ,m denotes the inverse of the tail

function t 7→ P⋆(|κLu,m(υ,Y)| ≥ t). The sequence Y being stationary, this
inverse function does not depend on u. By A5 and the inequality αY(r) ≤ βY(r)
(see e.g. [7, Chapter 13]), there exist β ∈ [0, 1) and C ∈ (0, 1) s.t. for any
u,m ≥ 1,

N(m)(u) ≤
∑

i≥1

1αY(2(i−1)m+1)>u ≤
∑

i≥1

1Cβ2(i−1)m>u ≤
(
log u− logC

2m log β

)
∨ 0 .

Let U be a uniform r.v. on [0, 1]. Observe that Cβ2mb < 1. Then, by the Holder

inequality applied with a
def
= p̄/p and b−1 def

= 1− a−1,

∥∥∥
[
N(m)(U) ∧ k

]1/2 Qυ,m(U)
∥∥∥
p

def
=

(∫ 1

0

[
N(m)(u) ∧ k

]p/2 Qp
υ,m(u)du

)1/p

≤ k1/2
∥∥Qυ,m(U)1U≤Cβ2mk

∥∥
p
+

[ −1

2m log β

]1/2 ∥∥∥∥∥Qυ,m(U)

(
− log

U

C

)1/2
∥∥∥∥∥
p

≤



(Cβ2mk)∆pk1/2 +

[ −1

2m log β

]1/2 ∥∥∥∥∥

(
− log

U

C

)1/2
∥∥∥∥∥
pb



 ‖Qυ,m(U)‖p̄ .

Since U is uniform on [0, 1], Qυ,m(U) and |κLu,m(υ,Y)| have the same distri-
bution, see [27]. Then, by Lemma A.3 and A3-(p̄), there exists a constant C
s.t. for any υ ∈ Θ, any m ≥ 1,

sup
υ∈Θ

‖Qυ,m(U)‖p̄ ≤ C

∥∥∥∥∥ sup
x,x′∈X2

|S(x, x′,Y0)

∥∥∥∥∥
⋆,p̄

,

which concludes the proof.

Lemma 6.3. Assume A2, A3-(p̄), A4(a) and A5 for some p̄ > 2. Let p ∈ (2, p̄).
There exists a constant C s.t. for any n ≥ 1, any 1 ≤ mn ≤ τn+1 and any
distribution χ on (X,B(X)),

∥∥∥∥∥
1

τn+1

2vnmn∑

t=2mn

κχt,mn
(θn, ϑ

Tn ◦Y)

∥∥∥∥∥
⋆,p

≤ C

[
1√
τn+1

+ βmn∆p

]
,

where κχL,m and β are defined by (25) and A5, vn
def
=
⌊
τn+1

2mn

⌋
and ∆p

def
= p̄−p

pp̄ .

Proof. We write,

∥∥∥∥∥

2vnmn∑

t=2mn

κχt,mn
(θn, ϑ

Tn ◦Y)

∥∥∥∥∥
⋆,p

≤
2mn−1∑

ℓ=0

∥∥∥∥∥

vn−1∑

u=1

κχ2umn+ℓ,mn
(θn, ϑ

Tn ◦Y)

∥∥∥∥∥
⋆,p

.
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Observe that by definition θn ∈ FY

Tn
. Then, by Lemma 6.2, there exists a

constant C s.t. for any mn ≥ 1 and any ℓ ≥ 0,

∥∥∥∥∥

vn−1∑

u=1

κχ2umn+ℓ,mn
(θn, ϑ

Tn ◦Y)

∥∥∥∥∥
⋆,p

≤ C

[√
vn
mn

+ vnβ
mn∆p

]
.

The proof is concluded upon noting that τn+1 ≥ 2mnvn.

Lemma 6.4. Assume A2, A3-(p̄) and A4(a) for some p̄ > 2. For any p ∈ (2, p̄],
there exists a constant C s.t. for any n ≥ 1, any 1 ≤ mn ≤ qn ≤ τn+1 and any
distribution χ on (X,B(X)),
∥∥∥S̄χ,Tn

τn+1
(θn,Y)− S̄(θn)− ρ̃n

∥∥∥
⋆,p

≤ C

[
ρmn∧(τn+1−mn) +

mn

τn+1
+
τn+1 − qn
τn+1

]
,

where

ρ̃n
def
=

1

τn+1

qn∑

t=2mn

κχt,mn
(θn, ϑ

TnY) , (28)

and κχL,m is defined by (25).

Proof. By (1) and (2), S̄χ,Tn
τn+1

(θn,Y)− S̄(θn)− ρ̃n =
∑4

i=1 gi,n where

g1,n
def
=

1

τn+1

τn+1∑

t=1

Φχ,0
θn,t,τn+1

(S, ϑTn ◦Y)− 1

τn+1

τn+1∑

t=1

Φχ,t−mn

θn,t,t+mn
(S, ϑTn ◦Y) ,

g2,n
def
=

1

τn+1

2mn−1∑

t=1

(
Φχ,t−mn

θn,t,t+mn
(S, ϑTn ◦Y)− E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

)
,

g3,n
def
=

1

τn+1

τn+1∑

t=qn+1

(
Φχ,t−mn

θn,t,t+mn
(S, ϑTn ◦Y)− E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

)
,

g4,n
def
= E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn
− S̄(θn) .

In the case τn+1 > 2mn, it holds

τn+1 |g1,n| ≤
τn+1∑

t=τn+1−mn+1

(
ρmn−1 + ρτn+1−t

)
osc{S(·, ·,Yt+Tn)}

+

mn∑

t=1

(
ρmn + ρt−1

)
osc{S(·, ·,Yt+Tn

)}+ 2ρmn−1

τn+1−mn∑

t=mn+1

osc{S(·, ·,Yt+Tn
)} ,

where we used Proposition A.1(i) and Remark A.2 in the last inequality. By A3-
(p̄) and A4(a), there exists C s.t. ‖g1,n‖⋆,p ≤ C

(
ρmn + τ−1

n+1

)
In the case τn+1 ≤

2mn, it can be proved along the same lines that ‖g1,n‖⋆,p ≤ C
(
ρτn+1−mn + τ−1

n+1

)
.

For g2,n and g3,n, we use the bounds
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∣∣∣∣Φ
χ,t−mn

θn,t,t+mn
(S, ϑTn ◦Y)− E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

∣∣∣∣

≤ sup
(x,x′)∈X2

|S(x, x′,YTn+t)|+ E⋆

[
sup

(x,x′)∈X2

|S(x, x′,Y0)|
]
.

Then, by A4(a),

∥∥∥∥Φ
χ,t−mn

θn,t,t+mn
(S, ϑTn ◦Y)− E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)

]

θ=θn

∥∥∥∥
⋆,p

≤ 2

∥∥∥∥∥ sup
(x,x′)∈X2

|S(x, x′,Y0)|
∥∥∥∥∥
⋆,p

,

and the RHS is finite under A3-(p̄). Finally,

|g4,n| ≤ sup
θ∈Θ

∣∣∣E⋆

[
Φχ,−mn

θ,0,mn
(S,Y)− Eθ [S(X−1, X0,Y0)|Y]

]∣∣∣

≤ 2ρmn−1
E⋆ [osc{S(·, ·,Y0)}] ,

where we used Theorem 4.1 in the last inequality. This concludes the proof.

Proposition 6.5. Assume A2, A3-(p̄), A4(a) and A5 for some p̄ > 2. Let
p ∈ (2, p̄). There exists a constant C s.t. for any n ≥ 1 and any distribution χ
on (X,B(X)), ∥∥∥S̄χ,Tn

τn+1
(θn,Y)− S̄(θn)

∥∥∥
⋆,p

≤ C√
τn+1

.

Proof. Let mn, vn be positive integers s.t. 1 ≤ mn ≤ τn+1 and τn+1 = 2vnmn+

rn, where 0 ≤ rn < 2mn. Set ∆p
def
= 1/p − 1/p̄. By the Minkowski inequal-

ity combined with Lemmas 6.3, 6.4 applied with qn
def
= 2vnmn, there exists a

constant C s.t.

∥∥∥S̄χ,Tn
τn+1

(θn,Y)− S̄(θn)
∥∥∥
⋆,p

≤ C

[
ρmn +

mn

τn+1
+ βmn∆p +

1√
τn+1

]
.

The proof is concluded by choosing mn = ⌊− log τn+1/ (log ρ ∨∆p log β)⌋.

6.4 Proof of Section 5

6.4.1 Proof of Proposition 5.1

Let S̄ be given by (13). By Proposition 6.5 and A6-(p̄1), limn

(
S̄χ,Tn
τn+1

(θn,Y)− S̄(θn)
)
=

0 P⋆−a.s. By Theorem 4.1, S̄ is continuous. Hence, limn

∣∣∣S̄χ,Tn
τn+1

(θn,Y)− S̄(θ⋆)
∣∣∣1limn θn=θ⋆ =

0 P⋆ − a.s and the proof of (i) follows. Since θ̄ is continuous, (ii) follows.
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6.4.2 Proof of Theorem 5.2, Eq. (17)

Since G(s⋆) = s⋆, we write

Sn − s⋆ = Γ (Sn−1 − s⋆) + Sn −G(Sn−1) + G(Sn−1)−G(s⋆)− Γ (Sn−1 − s⋆) .

Define {µn}n≥0 and {ρn}n≥0 s.t. µ0 = 0, ρ0 = S0 − s⋆ and

µn
def
= Γµn−1 + en , ρn

def
= Sn − s⋆ − µn , n ≥ 1 , (29)

where,

en
def
= Sn − S̄(θn) , n ≥ 1 . (30)

Proposition 6.6. Assume A2, A3-(p̄2), A4-5, A6-(p̄1), A7 and A8(a) for some
2 < p̄1 < p̄2. Then for any p ∈ (2, p̄2),

√
τnµn = OLp

(1) and τkρk1limn Sn=s⋆ =
OLp/2

(1)Oa.s(1).

The proof of Proposition 6.6 is on the same lines as the proof of [16, Theorem
6]. The main ingredient is the control of ‖µn‖⋆,p which is a consequence of [24,
Result 178, p. 39] and Proposition 6.5. The detailed proof is thus omitted and
postponed to the supplementary material [20, Section 3.2].

6.4.3 Proof of Theorem 5.2, Eq.(18)

We preface the proof by the following lemma.

Lemma 6.7. Assume A2, A3-(p̄2), A4-5, A7, A8(b) for some p̄2 > 2. For any
p ∈ (2, p̄2),

lim sup
n→+∞

1√
Tn+1

∥∥∥∥∥

n∑

k=1

τk+1ek

∥∥∥∥∥
⋆,p

<∞ ,

where en is given by (30).

Proof. Let p ∈ (2, p̄2). In the sequel, C is a constant independent on n and
whose value may change upon each appearance. Let 1 ≤ mn ≤ τn+1 and set

vn
def
=
⌊
τn+1

2mn

⌋
. By Lemma 6.4 applied with qk

def
= 2vkmk, we have,

∥∥∥∥∥

n∑

k=1

τk+1ek

∥∥∥∥∥
⋆,p

≤ C




n∑

k=1

{τk+1ρ
mk∧(τk+1−mk) +mk}+

∥∥∥∥∥

n∑

k=1

{δk + ζk}
∥∥∥∥∥
⋆,p


 ,

where δk and ζk are defined by

Ft,k(θk,Y)
def
= Φχ,t−mk

θk,t,t+mk
(S, ϑTk ◦Y) ,

δk
def
=

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E⋆

[
Ft,k(θk,Y)

∣∣FY

Tk

]}
,

ζk
def
=

2vkmk∑

t=2mk

{
E⋆

[
Ft,k(θk,Y)

∣∣FY

Tk

]
− E⋆

[
Φχ,−mk

θ,0,mk
(S,Y)

]

θ=θk

}
,
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and FY

Tk
is given by (10). We will prove below that there exists C s.t.

‖ζk‖⋆,p ≤ C βmk/pbτk+1 , ∀k ≥ 1 (31)
∥∥∥∥∥

n∑

k=1

δk

∥∥∥∥∥
⋆,p

≤ C
√
Tn+1 + C

n∑

k=1

τk+1β
mk/pb , ∀n ≥ 1 (32)

so that the proof is concluded by choosing mk = ⌊η log τk+1⌋, η def
= (−1/ log ρ)∨

(−pb/ log β).
We turn to the proof of (31). By the Berbee Lemma (see [27, Chapter 5])

and A5, there exist C ∈ [0, 1) and β ∈ (0, 1) s.t. for all k ≥ 1, there exists a

random variable Y
⋆,(k)
Tk+mk:Tk+1+mk

on (Ω,F ,P⋆) independent from FY

Tk
with the

same distribution as YTk+mk:Tk+1+mk
and

P⋆

{
Y

⋆,(k)
Tk+mk:Tk+1+mk

6= YTk+mk:Tk+1+mk

}
≤ Cβmk . (33)

Upon noting that E⋆

[
Ft,k(θk,Y

⋆,(k))
∣∣FY

Tk

]
= E⋆ [Ft,k(θ,Y)]θ=θk

, we have

ζk =

2vkmk∑

t=2mk

{
E⋆

[
Ft,k(θk,Y)

∣∣FY

Tk

]
− E⋆

[
Ft,k(θk,Y

⋆,(k))
∣∣∣FY

Tk

]}
. (34)

Therefore, by setting Ak
def
= {Y⋆,(k)

Tk+mk:Tk+1+mk
6= YTk+mk:Tk+1+mk

},

|ζk| ≤
2vkmk∑

t=2mk

E⋆

[
sup
θ∈Θ

∣∣∣Ft,k(θ,Y)− Ft,k(θ,Y
⋆,(k))

∣∣∣1Ak

∣∣∣∣FY

Tk

]
.

The Minkowski inequality followed by the Holder inequality with a
def
= p̄2/p

and b−1 def
= 1− a−1, combined with (33), A4(a), Lemma A.3 and A3-(p̄2) yield

(31). We now prove (32). Upon noting that δk is FY

Tk+1
-measurable and δk is

a martingale increment, the Rosenthal inequality (see [17, Theorem 2.12, p.23])

states that ‖∑n
k=1 δk‖⋆,p ≤ C

(∑n
k=1 I

(1)
k

)1/p
+ CI

(2)
n where

I
(1)
k

def
= E⋆

[∣∣∣∣∣

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E⋆

[
Ft,k(θk,Y)

∣∣FY

Tk

]}
∣∣∣∣∣

p]

I(2)n
def
=

∥∥∥∥∥∥∥




n∑

k=1

E⋆



∣∣∣∣∣

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E⋆

[
Ft,k(θk,Y)

∣∣FY

Tk

]}
∣∣∣∣∣

2
∣∣∣∣∣∣
FY

Tk






1/2
∥∥∥∥∥∥∥
⋆,p

.

Using again E⋆

[
Ft,k(θk,Y

⋆,(k))
∣∣FY

Tk

]
= E⋆ [Ft,k(θ,Y)]θ=θk

and (34)

I
(1)
k ≤ C

∥∥∥∥∥

2vkmk∑

t=2mk

{
Ft,k(θk,Y)− E⋆ [Ft,k(θ,Y)]θ=θk

}∥∥∥∥∥

p

⋆,p

+ C ‖ζk‖p⋆,p .
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By Lemma 6.3 and (31), there exists C s.t. for any k ≥ 1

I
(1)
k ≤ C

(
τ
p/2
k+1 + τpk+1β

mk/b
)
, (35)

and since 2/p < 1, convex inequalities yield
(∑n

k=1 I
(1)
k

)1/p
≤ C

√
Tn+1 +

C
∑n

k=1 τk+1β
mk/pb. By the Minkowski and Jensen inequalities, it holds I

(2)
n ≤(∑n

k=1{I
(1)
k }2/p

)1/2
. Hence, by (35), I

(2)
n ≤ C

√
Tn+1 + C

∑n
k=1 τk+1β

mk/pb.

This concludes the proof of (32).

We write Σn − s⋆ = µ̄n + ρ̄n with

µ̄n
def
=

1

Tn

n∑

k=1

τkµk−1 and ρ̄n
def
=

1

Tn

n∑

k=1

τkρk−1 . (36)

Proposition 6.8. Assume A2, A3-(p̄2), A4-5, A6-(p̄1), A7 and A8 for some
2 < p̄1 < p̄2. For any p ∈ (2, p̄2),

√
Tnµ̄n = OLp(1) ,

Tn
n
ρ̄n1limn Sn=s⋆ = OLp/2

(1)Oa.s(1) .

Proof. Set A
def
= (I − qΓ). Under A7, A−1 exists. By (29) and (36),

A
√
Tnµ̄n = −τn+1µn√

Tn
+

1√
Tn

n∑

k=1

τk+1ek +
1√
Tn

n∑

k=1

τk

(
τk+1

τk
− q

)
Γµk−1 .

The result now follows from Proposition 6.6, Lemma 6.7 and A8. The proof of
the second assertion follows from (36) and Proposition 6.6.

A Bivariate smoothing distribution

For a function g : X2 → R, set osc(g)
def
= supz,z′∈X2 |g(z)− g(z′)| .

Proposition A.1. Assume A2. Let χ, χ̃ be two distributions on (X,B(X)). For
any measurable function h : X2×Y → R

d and any y ∈ Y
Z s.t. supx,x′ |h|(x, x′,ys) <

+∞ for any s ∈ Z

(i) For any r < s ≤ t and any ℓ1, ℓ2 ≥ 1,

sup
θ∈Θ

∣∣∣Φχ̃,r
θ,s,t (h,y)− Φχ,r−ℓ1

θ,s,t+ℓ2
(h,y)

∣∣∣ ≤
(
ρs−1−r + ρt−s

)
osc(h(·, ·, ys)) .

(37)

(ii) For any θ ∈ Θ, there exists a function y 7→ Φθ(h,y) s.t. for any distribu-
tion χ on (X,B(X)) and any r < s ≤ t

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,t (h,y)− Φθ (h, ϑ

s ◦ y)
∣∣∣ ≤

(
ρs−r−1 + ρt−s

)
osc(h(·, ·, ys)) . (38)
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Remark A.2. (a) If χ = χ̃, ℓ1 = 0 and ℓ2 ≥ 1, (37) becomes

sup
θ∈Θ

∣∣∣Φχ,r
θ,s,t (h,y)− Φχ,r

θ,s,t+ℓ2
(h,y)

∣∣∣ ≤ ρt−sosc(hs) .

(b) if ℓ2 = 0 and ℓ1 ≥ 1, (37) becomes

sup
θ∈Θ

∣∣∣Φχ̃,r
θ,s,t (h,y)− Φχ,r−ℓ1

θ,s,t (h,y)
∣∣∣ ≤ ρs−1−rosc(hs) .

Proof. We will use the shorthand hs for hs(x, x
′)

def
= h(x, x′, ys).

(i) Let r, s, t such that r < s ≤ t, ℓ1, ℓ2 ≥ 1, and θ ∈ Θ. Define the
distribution χθ,r−ℓ1:r on (X,B(X)) by

χθ,r−ℓ1:r(A)
def
=

∫
χ(dxr−ℓ1)Lθ,r−ℓ1:r−1(xr−ℓ1 , dxr)1A(xr)∫

χ(dxr−ℓ1)Lθ,r−ℓ1:r−1(xr−ℓ1 ,X)
, ∀A ∈ B(X) .

We write
∣∣∣Φχ̃,r

θ,s,t (h,y)− Φχ,r−ℓ1
θ,s,t+ℓ2

(h,y)
∣∣∣ ≤ T̃1 + T̃2 where, by using (1),

T̃1
def
=

∣∣∣∣

∫
χ̃r(dxr)Lθ,r:s−2(xr, dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1, dxs)Lθ,s:t−1(xs,X)∫

χ̃r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−ℓ1:p(dxr)Lθ,r:s−2(xr, dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1, dxs)Lθ,s:t−1(xs,X)∫

χθ,r−ℓ1:r(dxr)Lθ,r:t−1(xr,X)

∣∣∣∣ ,

and

T̃2
def
=

∣∣∣∣

∫
χθ,r−ℓ1:r(dxr)Lθ,r:s−2(xr, dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1, dxs)Lθ,s:t−1(xs,X)∫

χθ,r−ℓ1:r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−ℓ1:r(dxr)Lθ,r:s−2(xr, dxs−1)hs(xs−1, xs)Lθ,s−1(xs−1, dxs)Lθ,s:t+ℓ2−1(xs,X)∫

χθ,r−ℓ1:r(dxr)Lθ,r:t+ℓ2−1(xr,X)

∣∣∣∣ .

Set h̄s,t : x 7→
∫
Fθ,s−1,t(x, dxs)hs(x, xs) where Fθ,s−1,t is the forward smoothing

kernel (see e.g. [20, Eq.(24)]). Then,

T̃1 =

∣∣∣∣

∫
χ̃r(dxr)Lθ,r:s−2(xr, dxs−1)h̄s,t(xs−1)Lθ,s−1:t−1(xs−1,X)∫

χ̃r(dxr)Lθ,r:t−1(xr,X)

−
∫
χθ,r−ℓ1:r(dxr)Lθ,r:s−2(xr, dxs−1)h̄s,t(xs−1)Lθ,s−1:t−1(xs−1,X)∫

χθ,r−ℓ1:r(dxr)Lθ,r:t−1(xr,X)

∣∣∣∣ .

By [20, Lemma 4.2(i)],

T̃1 ≤ ρs−1−rosc(h̄s,t) ≤ 2ρs−1−r sup
x∈X

|h̄s,t(x)| ≤ 2ρs−1−r sup
(x,x′)∈X2

|hs(x, x′)| .
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Set h̃s : x 7→
∫
B

χθ,r−ℓ1:s−1,s−1

θ,s−1 (x, dxs−1)hs(xs−1, x) , where B
χθ,r−ℓ1:s−1,s−1

θ,s−1 is
the backward smoothing kernel (see e.g. [20, Eq.(25)]). Then,

T̃2 =

∣∣∣∣∣

∫
χθ,r−ℓ1:s(dxs)h̃s(xs)Lθ,s:t−1(xs, dxt)Lθ,t:t+ℓ2−1(xt,X)∫

χθ,r−ℓ1:s(dxs)Lθ,s:t−1(xs, dxt)Lθ,t:t+ℓ2−1(xt,X)

−
∫
χθ,r−ℓ1:s(dxs)h̃s(xs)Lθ,s:t−1(xs,X)∫

χθ,r−ℓ1:s(dxs)Lθ,s:t−1(xs,X)

∣∣∣∣∣ .

Then, by [20, Lemma 4.2(ii)],

T̃2 ≤ ρt−sosc(h̃s) ≤ 2ρt−s sup
x∈X

|h̃s(x)| ≤ 2ρt−s sup
(x,x′)∈X2

|hs(x, x′)| .

Hence, for any constant c ∈ R,
∣∣∣Φχ̃,r

θ,s,t (h,y)− Φχ,r−ℓ1
θ,s,t+ℓ2

(h,y)
∣∣∣ =

∣∣∣Φχ̃,r
θ,s,t (h− c,y)− Φχ,r−ℓ1

θ,s,t+ℓ2
(h− c,y)

∣∣∣

≤ 2
(
ρs−1−r + ρt−s

)
sup

(x,x′)∈X2

|hs(x, x′)− c| .

Since osc(h) = 2inf
c∈R

{
sup(x,x′)∈X2 |hs(x, x′)− c|

}
, this concludes the proof.

(ii) By (37), for any increasing sequence of non negative integers (rℓ)ℓ≥0,
(tℓ)ℓ≥0 s.t. lim rℓ = lim tℓ = +∞, the sequence {Φχ,−rℓ

θ,0,tℓ
(h,y)}ℓ≥0 is a Cauchy

sequence uniformly in θ and χ. Then, there exists a limit Φθ (h,y) s.t.

lim
ℓ→+∞

sup
χ

sup
θ∈Θ

∣∣∣Φχ,−rℓ
θ,0,tℓ

(h,y)− Φθ (h,y)
∣∣∣ = 0 . (39)

We write, for any r < s ≤ t and any ℓ ≥ 1

∣∣∣Φχ,r
θ,s,t (h,y)− Φθ (h, ϑ

s ◦ y)
∣∣∣

≤
∣∣∣Φχ,r

θ,s,t (h,y)− Φχ,r−ℓ
θ,s,t+ℓ (h,y)

∣∣∣+
∣∣∣Φχ,r−ℓ

θ,s,t+ℓ (h,y)− Φθ (h, ϑ
s ◦ y)

∣∣∣ .

Since Φχ,r−ℓ
θ,s,t+ℓ (h,y) = Φχ,r−ℓ−s

θ,0,t+ℓ−s (h, ϑ
s ◦ y), Proposition A.1(i) yields

∣∣∣Φχ,r
θ,s,t (h,y)− Φθ (h, ϑ

s ◦ y)
∣∣∣ ≤

(
ρs−r−1 + ρt−s

)
osc(hs)

+
∣∣∣Φχ,r−ℓ−s

θ,0,t+ℓ−s (h, ϑ
s ◦ y)− Φθ (h, ϑ

s ◦ y)
∣∣∣ .

The proof is concluded by (39).

Lemma A.3 is a consequence resp. of Eq. (1) and Proposition A.1(ii).

Lemma A.3. Assume A2. Let r < s ≤ t be integers, θ ∈ Θ and y ∈ Y
Z, and

h : X2 × Y → R
d s.t. for any s ∈ Z, supx,x′ |h|(x, x′, ys) <∞. Then

∣∣∣Φχ,r
θ,s,t (h,y)

∣∣∣ ≤ sup
(x,x′)∈X2

|h(x, x′, ys)| , |Φθ (h, ϑ
s ◦ y)| ≤ sup

(x,x′)∈X2

|h(x, x′, ys)| .
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