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Jacques Arnaud ∗, Laurent Chusseau †, Fabrice Philippe ‡

January 23, 2012

Abstract

The air density on earth decays exponentially as a function of altitude. To derive this
law one usually invokes the Boltzmann factor, itself derived from statistical considerations.
We show that this (barometric) law may be derived solely from the democritian concept of
corpuscles moving in vacuum. We employ a principle of simplicity, namely that this law is
independent of the laws of physics, aside from the law of conservation of energy. This view-
point puts aside restrictive assumptions that are source of confusion. Similar observations
apply to the ideal-gas law. It is usually derived under the assumption that the temperature
is proportional to the corpuscle average kinetic energy, or else, from a form of the quantum
theory. In contradistinction, we show that it follows solely from the postulate that the
ideal-gas law is independent of the law of corpuscle motion. On the physical side we employ
only the concept of potential energy. Most of the end results are known, but the method
appears to be novel. The mathematics being elementary (no integration is needed), the
present paper should facilitate the understanding of the physical meaning of the barometric
and ideal-gas laws, even though not-usually-taught concepts are being introduced.

The reasons for rejection of this paper by American Journal of Physics are commented
upon in the last appendix of this V2.

∗Mas Liron, F30440 Saint Martial, France
†Institut d’Électronique du Sud, UMR n◦5214 au CNRS, Université Montpellier II, F34095 Montpellier, France
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1 Introduction

The purpose of this paper is to show that the barometric and ideal-gas laws may be obtained on
the sole basis of the democritian model according to which nature consists of corpuscles moving
in a vacuum, plus a principle of simplicity: namely that these fundamental laws are independent
of the law of corpuscle motion (non-relativistic, relativistic, or otherwise: see Appendix A). The
temperature θ enters solely for dimensional reasons. We show from the general expressions of
the gas internal energy and of the force (or pressure) that the heat delivered by the gas is θ dS,
an expression of the entropy S being given. This result enables us to prove that the formally-
introduced temperature θ is a thermodynamic temperature. Indeed, we recover for ideal gases
the general Carnot result asserting that the maximum efficiency of thermal engines is: 1− θl/θh,
where θl denotes the cold bath temperature and θh the hot bath temperature. An alternative
derivation of the Carnot result, also solely based on the concept of potential energy, is in [1, 2].

The reader may feel that our statement that the above invariance principle implies the baro-
metric and ideal-gas laws, without anything else, is surprising. Yet, we hope that we can convince
him/her that this is indeed the case. On the other hand, a quick reading of standard books on
Thermodynamics may lead other readers to believe that this is a well-known fact. For example,
Callen [3] states correctly that: “The essence of the ideal-gas law is that molecules of the gas
do not interact. This simple fact implies that PV ∝ N T ”. However, in order to reach this
conclusion, the author needs postulate the Newtonian law of motion, quantum theory, and the
Boltzmann factor. The claim that corpuscle independence entails the ideal-gas law (without
anything else) therefore does not appear to have been justified before.

Let us emphasize that our goal is to derive the barometric1 and ideal-gas laws from first
principles, only conservation of potential energy being assumed. We do not use the concept of
kinetic energy, nor do we postulate any particular law of corpuscle motion. Accordingly, a given
potential φ(z) = w z for a weight w does not imply any specific law of motion z(t). Because the
presence of corpuscles affects negligibly the gravitational potential, one may consider the latter
to be an external potential.

To our knowledge, the concept presented in this paper has not been considered before. How-
ever, the final expressions relating to the ideal-gas law in the presence of gravity are known, see
for example [4, 5].

Pedagogical usefulness: Admittedly, the present paper departs much from usually-taught
concepts in Thermodynamics [6]. We indeed ignore the concepts of kinetic energy, of micro-
states, and the laws of Physics that would provide the motion z = z(t) (to within arbitrary t and
z translations) of corpuscles of given energy. The temperature θ (to within a constant factor)
follows from dimensional considerations and not as usual from the derivative of the average
energy U(S, h) with respect to the entropy S at constant volume (here denoted h). Quite to
the contrary, an explicit expression of the (classical ideal-gas) entropy function S(θ, h) is derived
from the average force 〈F 〉 (or pressure) and average energy U introducing, for convenience only,
an intermediate quantity: the free-energy A (not to be confused with the fractional time denoted
by A).

This change of perspective suggests that one should first emphasize, in teaching the subject to
students, the Democritian concept of corpuscles moving in vacuum, and the concept of potential
energy (e.g., from cords and pulleys experiments). Next one may draw on the blackboard the
up and down motion of a corpuscle thrown upward from z = 0 in the earth gravitational fied
(supposed to be static and independent of the vertical z coordinate), the particular function

1Our model cannot describe directly the so-called “adiabatic atmospheres” that are in mechanical but not
thermal equilibrium.
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z(t) being left undefined. One may at that point recall the experimental result obtained by
Galileo: for small speeds, the corpuscle round-trip time τ (from z = 0 and back) is proportional
to the square root of zm, where zm denotes the maximum corpuscle altitude2. But one should
emphasize that the barometric and ideal-gas laws, to be derived next, do not depend on the
Galileo observation. For example, had Galileo incorrectly stated that τ ∝ z2m, the barometric
and ideal-gas laws derived from this erroneous observation would be unaffected. At that point,
it should be obvious to the students, looking at Fig. 1, that the fraction of time during which
the corpuscle is located above some altitude z ≤ zm is: τ(zm − z)/τ(zm), see (2).

Next, it should be pointed out that, as a result of weak thermal contact with a bath (that
needs not be specified further), the maximum altitude zm varies slowly in the course of time. This
variation is described statistically by some probability law ω(zm). The question at that point is:
what should be that probability law in order for the average time spent by the corpuscle above
some level to be independent of the τ(zm)-function introduced above. The answer is very simple,
as shown in Section 2. The end result is the barometric law: The probability that the corpuscle
be above z decays exponentially.

It should be explained (or demonstrated) next that a weight measured by a high-inertia
balance does not depend on possible up and down motions of the weight. Accordingly, for a unit
weight, the weight impact is equal to the motion period. This observation enables us to express
the force F in terms of round-trip times when a rigid plate is present at z = h. Again, it is
the condition that the average force be independent of the τ(zm)-function introduced above that
provides the ideal-gas law.

Students having followed the reasoning so far should be able to appreciate subsequent deriva-
tions of the ideal-gas law (generalized here to account for a uniform gravity), of the average
energy U , and of the concept of entropy, since only straightforward mathematics is then being
employed. We have considered above a single corpuscle; but the results obviously hold for any
fixed number N of non-interacting identical classical corpuscles, the average force, energy and
entropy being then multiplied by N .

To conclude, the approach advocated in this paper enables us to recover classical results in
Thermodynamics in a considerably generalized form (but only for independent classical corpus-
cles, and laws of Physics that are independent of time and altitude translations). Admittedly,
our presentation goes against the order in which basic concepts are usually taught. But once the
students are used to it they should be able to appreciate the greater simplicity.

Concepts relating to heat since the antiquity: From Boyle’s time (circa 1660) to Carnot’s
time (circa 1824), the most popular theory, usually referred to as the “caloric theory of heat”,
considered heat as a kind of fluid consisting of weightless mutually repelling particles, attracted by
matter. This fluid could flow from hotter to colder matter, see Levermore [7]. This hypothesis,
however, did not explain Rumford’s experiments showing that friction alone generates heat.
Doubts about the validity of the caloric theory were expressed in Carnot’s notes, published after
his early death. As a matter of fact, the alternative model of heat as a form of matter motion
(without any additional fluid) had already been enunciated in the antiquity.

Democritus, who lived about 300 years B.C., described nature as a collection of corpuscles
that cannot be split, moving in vacuum. These corpuscles differ from one-another in form,
position and weight. In the case of a gas, interaction between corpuscles may often be neglected,
but they collide with the container’s walls. Platon [8] ascribed heat to corpuscular motion: “Heat
and fire are generated by impact and friction, but that’s motion”. Much later, Francis Bacon

2Galileo observed further that the constant of proportionality does not depend on the corpuscle weight. This
second observation is here unimportant as long as only corpuscles of equal weights, for example nitrogen molecules,
are considered.
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(1561-1626) wrote: “The very nature of heat is motion, and nothing else”. This view-point is
more explicit in Daniel Bernoulli writing (1738): “Gas atoms are moving randomly, and pressure
is nothing else but the impact of the atoms on their container walls”. Lastly, Carnot introduced
energy considerations circa 1830: “Heat is nothing but motive power, or rather another form of
motion. When motive power is destroyed, heat is generated precisely in proportion of the motive
power destroyed. Likewise, when heat is destroyed, motive power is generated ”.

In the present paper, we employ the law of conservation of potential energy, well known since
the antiquity from cords and pulleys experiments, rather than the concept of kinetic energy
introduced by Leibniz. The Leibniz form is now recognized as being valid at small temperatures
only (θ ≡ kBT ≪ mc2, where mc2 denotes the corpuscle rest energy). It should be recalled that
the thermodynamic temperature is generally not proportional to the average kinetic energy.

Experimental results relating to air: The first accurate experiments relating to gases relied
on the invention of the thermometer by Galileo and of the barometer by his assistant Torricelli.
Then, to Pascal experiments on atmospheric pressure. Pascal ascribed the diminution of the
height of a mercury column as a function of altitude to the reduction of the weight of the air
above the barometer. It was later shown that the pressure decays exponentially (or more precisely
as the sum of two exponentials, one relating to nitrogen, and one relating to oxygen).

Let us recall the crucial experiments performed in the seventeenth century concerning the
properties of air. Air, consisting mostly of di-atomic nitrogen, may be viewed as an ideal gas.
When a tight box contains some amount of air, the volume-pressure product is a constant at room
temperature, a law enunciated for the first time by Boyle in 1660: “Pressure and expansion are in
reciprocal proportions”. Boyle employed a J-shaped glass tube, with the sealed small side full of
air, and the other full of mercury. The J left-side height was a measure of volume and the right-
side height a measure of pressure. Subsequent experiments have shown that this law is applicable
at any constant temperature, for example at various liquid boiling temperatures, within some
experimental range. We call “generalized Boyle law” the expression: V(P, θ) = f(θ)/P, where P

represents pressure, V volume, and f(θ) some temperature measure.
From an experimental standpoint we could define temperature as the pressure relating to some

given amount of matter contained within some fixed volume. As the temperature gets higher
the pressure increases. This pressure may be used to define θ. Of course, different temperature
scales would be obtained for different substances, but such thermometers may be calibrated one
against another because temperatures tend to equalize in equilibrium. Rarefied helium may be
described with great accuracy as a collection of independent corpuscles, except perhaps at very
low temperatures when quantum effects become significant and at very high temperatures when
the helium atoms may get ionized. The theory presented in this paper shows on the basis of the
corpuscular model that θ, initially introduced formally from dimensional considerations, coincides
with the thermodynamic temperature. This is the temperature that enters in the expression of
thermal-engine efficiencies.

Gay-Lussac has shown in 1802 that, at atmospheric pressure, the volume increment of various
gases from freezing to boiling water temperatures is 37.5 %. The empirical Gay-Lussac law
makes sense only if one specifies which thermometer is being employed. One may employ a gas
thermometer from a selected gas such as helium in two ways. One method consists of defining the
temperature as the cylinder height (or volume) at a fixed pressure, for example at the standard
atmospheric pressure. In the following, we assume that a second method is being employed
instead: the temperature is defined as the force that must be exerted on the piston to maintain
the height at a fixed value, for example one meter. If the Gay-Lussac experiment were applied
to a gas identical to the gas employed in the thermometer (helium in our example) the fact
that pressure is proportional to temperature would be obvious. The importance of the Gay-
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Lussac experiment is that the proportionality law is found to be approximately valid for any
gas. It was subsequently discovered that the Gay-Lussac law is reasonably accurate only at very
small pressures. The theoretical reason that explains this observation is that, at low pressures,
the molecules of the tested gas and those of the thermometer gas may both be considered as
independent non-interacting corpuscles.

In 1803, Dalton, on the basis of his studies of chemical compounds and gaseous mixtures
suggested that matter consists of atoms of different masses that combine in simple ratios. He
discovered the partial-pressure law according to which the total pressure exerted by a gas mixture
is equal to the sum of the pressure that each one of the gases would exert if it occupied the full
volume alone. Finally, in 1811, Avogadro concluded that equal volumes of gases at the same
temperature and pressure contain the same number of molecules (or corpuscles). This entails
that PV/θ is proportional to N , now interpreted as the number of corpuscles. On empirical
grounds, the ideal-gas law may therefore be written as:

PV = N θ (1)

where V denotes the volume, P the pressure, N the number of corpuscules, and θ ≡ kBT the
temperature.

The ideal-gas law has been partly explained on the basis of a kinetic theory by Waterston [9]
in 1843, the kinetic theory being based itself on non-relativistic mechanics. Let us now recall the
basic assumptions on which rest the usual proofs of the barometric and ideal-gas laws, and then
present our model.

Usual kinetic and statistical theories A recent reference by Miller [10] lists the assump-
tions on which the gas kinetic theory is supposed to rest. Some of them express the democritian
hypothesis and are indeed essential. The usefulness of the others3 may be questioned. As we
shall show, none are needed. It suffices that the (perhaps unique) corpuscle be in thermal con-
tact with the ground. Besides, the condition that the average kinetic energy depends only on the
system temperature (see the footnote) is insufficient to establish the ideal-gas law because the
temperature remains undefined. In the non-relativistic approximation the appropriate assump-
tion should read: “The average kinetic energy is proportional to the system temperature”. But
at arbitrary temperatures this assumption is false.

Let us sketch the most usual derivations of the barometric and ideal-gas laws to remind the
readers of the underlying assumptions. Note that the barometric law may be obtained from
the ideal-gas law, and conversely, if one postulates that weightless infinitely-thin plates may be
introduced or removed at will in the gas at various altitudes. However, this postulate is at best
plausible. Norton [11] derived the ideal-gas law from the barometric equation. But the latter
involves the Boltzmann factor that requires other physical considerations (see below), while in
the present paper this factor comes in naturally, that is, for purely mathematical reasons4.

3We quote: Gases consist in corpuscles having non-zero mass. The corpuscles are quickly moving. They are
perfectly spherical and elastic. The average kinetic energy depends only on the system temperature. Relativistic
effects are negligible. Motion laws are time reversible. The number of molecules is so large that a statistical
treatment is appropriate.

4The derivation of the Boltzmann factor is usually based on a quantization of the energy and the postulated
equi-probability of the micro-states. Let the discrete (non-degenerate) energy levels be denoted by ε1, ε2, .... If
distinguishable corpuscles are distributed among the energy levels, with n1 corpuscles in level 1, n2 corpuscles in
level 2, and so on, the number of ways of doing that is inversely proportional to: n1!n2!.... It is postulated that
this number reaches its maximum value at equilibrium under the constraint that n1 + n2 + ... = N , the total
number of corpuscles, and n1ε1 + n2ε2 + ... = E, the total energy. In the limit of large N values, one finds that:
ni ∝ exp(−εi/θ), for some θ-value that depends on N and E. Even though physicists are now-a-day very familiar
with that procedure, it is not so easy to explain it to students. Besides, it rests on a number of assumptions.
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The traditional derivation of the ideal-gas law, on the other hand, is based on non-relativistic
mechanics. For a one-dimensional model, one considers a corpuscle moving back and forth
between two plates separated by a distance h, one of them playing the role of a piston. If v
denotes the speed of a corpuscle, an impact on a plate delivers to it an impulse 2mv where
m denotes the corpuscle mass, and this occurs every 2h/v time units. It is concluded that the
force F exerted on the piston is: 2mv/(2h/v) = mv2/h, that is: F h = 2K, where K = 1

2mv2

denotes the kinetic energy. It is recognised that there may be a distribution of kinetic energies.
Postulating that the temperature θ is proportional to the average kinetic energy one obtains for
the average force the ideal-gas law: 〈F 〉h ∝ θ. Alternatively, one may quantize the corpuscle
wave-function and employ the Boltzmann factor.

The procedure described above has been generalized to relativistic motion (kBT ∼ mc2),
where mc2 denotes the corpuscle rest energy, but the relation of v to p is different, and averaging
requires a generalized Boltzmann factor. The same ideal-gas law is valid at any temperature
(within the corpuscular model). Our thesis is that the ideal-gas law has simply nothing to do
with the law of corpuscle motion, and that it is therefore not surprising that it holds for the
Galileo, Einstein, and many other laws of motion. These are the reasons why we feel that the
traditional proofs are unsatisfactory. An alternative is offered below. We consider in succession
the barometric law, the ideal-gas law, and the internal energy. We finally show that the formally
introduced temperature θ is the thermodynamic temperature. Expressions for the round-trip
time of a corpuscle from and back to the ground z=0 level, denoted by τ , is derived in Appendix
A. The case of potentials not proportional to z (z-dependent weights) was treated by the same
method in [12].

2 The barometric law

We are considering an unit-area cylinder with vertical axis in uniform gravity, resting on the
ground (z = 0) at some temperature. We consider the motion along the vertical z-axis of a
single corpuscle, denoted in general by z = z(t;E), where t denotes time. The corpuscle energy
is defined as: E ≡ w zm where w is the corpuscle weight and zm the maximum altitude reached.
To make the following expressions more concise we set initially w = 1, so that the corpuscle
energy E coincides with zm. With this convention, the dimension of the temperature θ that we
shall introduce is that of an energy divided by a force, that is, a length. (The reader is advised
to write the following expressions in full, that is, restoring w, to clarify the dimensions). In
the following, some regularity of the z(t)-function is assumed, but no specific law is presumed,
except in examples. We set for convenience t = 0 at the top of the trajectory, that is: z(0) = zm,
z′(0) = 0, where a prime denotes a derivative with respect to t.

Consider a single period of corpuscle motion as shown in Fig. 1. Let the corpuscle distance
from the top of its trajectory be denoted by Z ≡ zm − z ≥ 0, at times t1 and t2 ≥ t1. We call5:
“round-trip time” τ(Z) ≡ t2 − t1. Because gravity is static and uniform (that is, independent

5We do not assume that z(t) = z(−t) or t2 + t1 = 0. Asymmetric laws of motion occur if one employs clock
synchronisation rules different from the one proposed by Einstein. For example, if a light pulse emitted from
z = 0 at t = 0 propagating upward is employed to synchronise clocks located at different altitudes, the apparent
upward speed of light is, by this convention, infinite. The downward speed of light is then c/2 if c denotes the
Einstein speed of light, so that the two-way speed of light remains equal to c, in agreement with very precise
experiments. The anisotropy mentioned in the present note refers to a change of formalism, not of physics. It
is of some importance that the laws discussed in this paper do not depend on such conventional changes. On
the historical side note that in his crucial experiment Galileo could have chosen to throw corpuscles upward,
measuring the round-trip time τ as a function of the altitude zm reached, in which case a single clock at z = 0 is
needed. The problem of clock synchronization at two different altitudes was not important at the time of Galileo
but it proved to be crucial later on.
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Figure 1: Space-time (z, t) trajectory of a corpuscule of unit weight (w = 1) bouncing off the
ground (z = 0). The maximum altitude reached by the corpuscle is zm = E, where E denotes the
energy. The motion is periodic with period τ(zm), where τ(Z) denotes the corpuscle round-trip
time at a distance Z from the top of the trajectory. When the altitude is restricted to h by
a plate (dashed horizontal line) the motion remains periodic with a period evidently equal to:
τ(zm)− τ(zm − h). Note that this expression holds even if the motion is not symmetric in time.

of time and altitude, respectively) this τ -function depends only on Z. As an example, for non-
relativistic motion: Z(t) = 1

2g t
2. As said earlier the corpuscle weight w ≡ mg, where m denotes

the corpuscle mass and g the gravitational acceleration, is set equal to unity for brevity. In that
example: τ(Z) = 2

√

2Z/g ∝
√
Z, g being a constant.

The period of motion of a corpuscle bouncing off the ground (z = 0) without any loss of
energy (rigid walls and negligible gas friction), and having energy zm, is according to the above
definitions: τ(zm). The time spent by the corpuscle above some z-level is obviously zero if
z > zm. The fraction of time during which the corpuscle is above z is:

fraction of time above z =
τ(zm − z)

τ(zm)
, (2)

if z ≤ zm, as suggested on Fig. 1, and zero otherwise.
We now suppose that the ground on which the corpuscle is bouncing off is in contact with

a heat bath6. This means that the ground level (z=0) is not perfectly static as assumed above,
but instead is quivering. Concretely, the ground level could be moving up and down according
to some zero-mean fluctuation of small amplitude so that, upon impacting on the ground, the
corpuscle may loose energy (when the ground level is moving downward), or gain energy (when
the ground level is moving upward). We will not need the explicit form of this fluctuation. We
only assume that the amplitude of that fluctuation is so small that the corpuscle energy does not
vary significantly over many periods. Yet it may evolve slowly. The energy distribution ω(zm)
refers to averages over arbitrarily long times, and is presently unknown; it will be determined by
enforcing the condition that the law of interest (presently the barometric law) does not depend
on the laws of physics (except of the law of conservation of energy, which follows from the
time-translation invariance of the system).

6We are implicitly considering the so-called “canonical ensemble”: the ground plate does not allow corpuscles
to go through, but it moves slightly so that a transfer of energy between the bath and the corpuscle is allowed.
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On the average, the fraction of time A during which the corpuscle is above some z-level is,
according to (2):

A(z) =

∫

∞

z
dzm ω(zm) τ(zm − z)/τ(zm)

∫

∞

0
dzm ω(zm)

. (3)

The lower limit of the integral in the numerator is z since the fractional time is equal to zero
when zm ≤ z. Note that the dimension of ω is arbitrary since it appears both in the numerator
and the denominator of that expression. We shall give it the dimension of a time.

We now argue that ω(zm) must be: exp(−w zm/θ)τ(zm), where θ is a constant having the
dimension of an energy, as is required by the fact that the argument of an exponential is dimen-
sionless7. First, let us introduce this distribution law in (3). We obtain (setting w = 1):

A(z) =

∫

∞

z
dzm exp(−zm/θ)τ(zm − z)

∫

∞

0
dzm exp(−zm/θ)τ(zm)

=
exp(−z/θ)

∫

∞

z
dzm exp(−(zm − z)/θ)τ(zm − z)

∫

∞

0 dzm exp(−zm/θ)τ(zm)

=
exp(−z/θ)

∫

∞

0 dz′m exp(−z′m/θ)τ(z′m)
∫

∞

0 dzm exp(−zm/θ)τ(zm)

= exp(−z/θ). (4)

On the third line, we have used as an integration variable z′m ≡ zm − z instead of zm. The last
line follows from the fact that zm, z′m are dummy variables, so that we may replace z′m by zm.
Note that, even though we have introduced integral signs, no integration has been performed.

The distribution ω(zm) introduced above is the only one that leads to a result (last line of
(4)) independent of the particular form of the τ(Z)-function, and therefore of the law of motion.
For a purely mathematical reason, the term: τ(zm) must be there to cancel a similar term in
the denominator of the expression of the fractional time. On the other hand, the only function
of u ≡ zm/θ that may cause the integral in the numerator to go from 0 to infinity and cancel
out with the integral in the denominator is: exp(−u), the argument being defined only to within
a constant factor (the formal proof is omitted for brevity). In order to obtain the distribution
ω(zm), one would need to know the function τ(Z). But, remarkably, this distribution is not
needed.

The gas density, defined as the probability that the corpuscle be located between z and z+dz,
divided by dz, is, restoring w: ρ(z) = −dA(z)/dz = (w/θ) exp(−w z/θ). This is the barometric
law. Since w and θ are constants the density decays exponentially as a function of altitude z. In
the earth atmosphere the density of di-atomic oxygen decays faster than the density of di-atomic
nitrogen because the weight of an oxygen atom exceeds that of a nitrogen atom in the ratio ≈
16/14.

7The exponential term in the expression of ω(zm) corresponds to the so-called “Boltzmann factor”, while the
second term accounts for the fact that the quantum-theory level energies are not evenly spaced. Let us emphasize
that the main-text theory is strictly classical. The present note purpose is only aimed at establishing a connection
with the perhaps better-known quantum theory. Put another way, the energy distribution may be written as
exp(−E(f)/θ), where f denotes the action, equal to the z(t) motion area for one period, and df/dE = τ(E/w).
In quantum mechanics the action f is set equal to an integer (1,2..., ignoring a small constant) times the reduced
Planck constant ~. The term exp(−E/θ), usually referred to as the “Boltzmann factor”, enters here solely by
mathematical necessity [2].
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3 Average force exerted by a corpuscle on a piston

We now treat the ideal-gas law by similar methods. We are considering again a unit-area cylinder
with vertical axis in uniform gravity, resting on the ground (z = 0) at some temperature. A tight
piston can move in the vertical z direction. The cylinder height is denoted by h and contains
a single corpuscle of weight w = 1. In our one-dimensional model, the pressure P corresponds
to the average force 〈F 〉, the volume V to the height h, and N = 1. Our result provides the
ideal-gas law in a generalized form, taking into account gravity. In that case, the pressure varies
as a function of altitude. More precisely, the force exerted by the corpuscle on the lower end of
the cylinder exceeds the force exerted on the upper end (or piston) by the corpuscle weight. But
in the absence of gravity, the forces exerted on both ends would be the same.

We are introducing (static and uniform as stated earlier) gravity mainly because this helps
clarify the concept of corpuscle energy: the corpuscle energy E is the maximum altitude zm that
the corpuscle would reach in the absence of the piston when the corpuscle weight is unity. The
corpuscle bounces elastically off the ground, that is, without any loss or gain of energy.

Consider first the case where h is infinite, that is, in the absence of a piston. The time period
is denoted as before by τ(Z) with Z = zm. The average force exerted on the ground, equal to
the corpuscle weight w = 1, is the product of the impulse i and the number of impulses per unit
time. Thus 1 = i/τ(zm) or i = τ(zm). In other words, the impulse transmitted to a piston when
the corpuscle impacts on it is equal to the motion period.

If the plate is located at z = h the impulse is: ih = τ(zm −h). When the corpuscle is moving
back and forth between the planes at z = 0 and z = h (instead of being located above h) the
impulse is just opposite to ih. It is therefore in absolute value equal to τ(zm − h).

Next, we introduce a rigid thin plate at z = h, viewed as a piston, and consider a corpuscle
bouncing on the z = 0 and z = h plates alternately. The time period becomes: τ(zm)−τ(zm −h),
as one can see from inspection of the figure. We call F the force exerted on the z = h plate,
averaged over a time period. It follows from the previous expressions that:

{

F = 0 zm ≤ h,

F = ih
τ(zm)−τ(zm−h) =

τ(zm−h)
τ(zm)−τ(zm−h) zm > h.

(5)

Because the cylinder lower end is supposed to be in contact with a bath, there is a slight
quivering (thermal motion), and the corpuscle energy zm slowly varies in the course of time.
The force F just defined must be weighed by some energy distribution ω(zm) in such a way
that the average force 〈F 〉 be independent of the corpuscle equation of motion, and thus of the
τ(.)-function. In the limit where h ≪ θ, a condition that amounts to ignoring gravity, we obtain
the ideal-gas law in the form: 〈F 〉 = θ/h. We later on prove that θ is the thermodynamic
temperature.

The above condition obtains from (5) if one selects the following energy distribution:

{

ω(zm) = exp(−zm/θ)τ(zm) zm ≤ h,

ω(zm) = exp(−zm/θ)
(

τ(zm)− τ(zm − h)
)

zm > h,
(6)

where θ has the dimension of an energy when non-unity weights w are considered. When zm ≤ h,
the ω(zm)-distribution is of course the same as in Section 2. The average force becomes, using
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(5) and (6):

〈F 〉 =
∫

∞

h
dzm exp(−zm/θ)τ(zm − h)

∫ h

0 dzm exp(−zm/θ)τ(zm) +
∫

∞

h dzm exp(−zm/θ)
(

τ(zm)− τ(zm − h)
)

=
w

exp(w h/θ)− 1
(7)

if we restore w. In the above integrals going from h to ∞ we have replaced exp(−zm/θ) by
exp(−h/θ) exp(−(zm − h)/θ) and introduced the variable z′m ≡ zm − h, so that all the integrals
go from zero to infinity and cancel out. Note that no integration has been performed.

For a collection of N independent corpuscles having weights wi, i = 1, ...N respectively, the
force is a sum of N terms of the form given in (7). In the case of zero gravity (w=0 or more
precisely: w h ≪ θ), the above expression gives: 〈F 〉h = θ. Thus we have obtained the ideal-gas
law: 〈F 〉h = N θ.

The average force may be obtained alternatively from the barometric law established in
Section 2: ρ(z) = C exp(−w z/θ), where C is a constant, if one uses the concept that plates may
be added or removed at some altitude z = h.

Average force for a three-dimensional space: We suppose that the cylinder radius is very
large compared with h, and we do not consider the force exerted by the corpuscle on the cylinder
wall. Motion of the corpuscle along directions perpendicular to z (say, x and y) does affect
the round-trip time function τ(Z). However, since the average force does not depend on this
function, the ideal-gas law is unaffected. This is so for any physical system involving a single
corpuscle provided the physical laws are invariant under a z-translation (besides being static).

The internal energy, to be discussed in the following section, though, is incremented. One
can prove that in the non-relativistic approximation and in the absence of gravity the internal
energy is multiplied by 3. It would be incremented further by corpuscle rotation or vibration, not
considered here. Using conventional methods, Landsberg [4] in Eq. (2.6), and Louis-Martinez [13]
in Eq. (68), obtain exactly the same result as given above (except for the factor 3 in the expression
of the internal energy, relating to the number of space dimensions considered).

4 Internal energy

The gas internal energy U is the average value of E, the gravitational energy being accounted for.
Note that only corpuscule motion along the z-axis is being considered. In the present section
a non-unity (but constant) weight w is considered to clarify the dimensions of the quantities
introduced. The expression of U is, using the energy distribution given in (6):

U =

∫ wh

0 dE E exp(−E/θ)τ(E/w) +
∫

∞

wh dE E exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

∫ wh

0
dE exp(−E/θ)τ(E/w) +

∫

∞

wh
dE exp(−E/θ)

(

τ(E/w) − τ(E/w − h)
)

=

∫

∞

0
dE E exp(−E/θ)τ(E/w)

∫

∞

0
dE exp(−E/θ)τ(E/w)

− w h

exp(w h/θ)− 1
. (8)

The internal energy divided by the temperature: U(θ, h)/θ, thus is the sum of two terms.
The second one is an explicit function of the dimensionless quantity w h/θ, which tends to -1
when h → 0. The first term is a function of θ but not of h. To evaluate this first term we need to
know the round-trip time τ(Z) to within an arbitrary proportionality factor, and an integration
must be performed in that case.
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In order to write the above expression in terms of dimensionless quantities, we must introduce
a universal constant, c, having the dimension of speed. Defining: x ≡ E/θ, θ′ ≡ θ/mc2, h′ ≡
h/(c2/g), (8) becomes, remembering that w = mg:

U

θ
=

∫

∞

0 dxx exp(−x)f(θ′x)
∫

∞

0 dx exp(−x)f(θ′x)
− h′/θ′

exp(h′/θ′)− 1
, (9)

where the function f(y) depends on the round-trip time.
In the special case of non-relativistic motion y ≪ 1, we have f(y) ∝ √

y, see the appendix. The
first term in (9) is then equal to 3/2 (note that: 2

∫

∞

0
dxx exp(−x)

√
x = 3

∫

∞

0
dx exp(−x)

√
x),

so that in the absence of gravity the internal energy U is equal to 3θ/2− θ = θ/2, a well-known
result8.

5 The energy θ is the thermodynamic temperature

We prove in this section that θ, introduced in previous sections on dimensional grounds only, is
the thermodynamic temperature (to within an arbitrary constant). We do this by showing that
the maximum efficiency of a thermal cycle employing ideal gases is: 1 − θl/θh, where θl is the
cold-bath temperature and θh the hot bath temperature: this is the accepted Kelvin definition
of absolute temperatures.

The expressions given earlier for the average force 〈F 〉 in (7) and the internal energy U in
(8) may be written, setting β ≡ 1/θ, as:

〈F 〉 = ∂ ln(Z)

β ∂h
U = −∂ ln(Z)

∂β

Z(β, h) =
(

exp(−β w h)− 1
)

∫

∞

0

dE exp(−β E)τ(E/w). (10)

Z is essentially the quantity called in statistical mechanics the partition function. It becomes
dimensionless if it is divided by the reduced Planck constant ~, which however plays here no
physical role. The continuous energy E in the integral may be replaced by closely-spaced discrete
energies εi, i = 1, 2..., the spacing between adjacent energies accounting for the τ -function. This
procedure is the one employed in the numerical evaluation of integrals; it does not in itself imply
quantization. The factor preceding the integral in (10) entails that the energies εi, i = 1, 2... are
multiplied by some function of h.

If we introduce the Helmholtz free-energy (the letter A is from the German “Arbeit” or work):
A(θ, h) ≡ −θ ln(Z(θ, h)) the expressions in (10) are conveniently written9:

〈F 〉 = −∂A

∂h
U = A− θ

∂A

∂θ
. (11)

From (11) we obtain:

−δQ ≡ dU + 〈F 〉 dh = dA− ∂A

∂θ
dθ − ∂A

∂h
dh− θ d

(∂A

∂θ

)

= θ dS S ≡ −∂A

∂θ
, (12)

8A plot of U from low to high temperatures in the case of an external force much larger than gravity (e.g.,
an electrical force) can be seen in [1, 2]. A three-dimensional expression of U in terms of Bessel functions can be
found, for example, in Greiner, p. 234. [14].

9Note incidentally that: ∂U

∂h
= θ ∂〈F 〉

∂θ
−〈F 〉. It follows that, given 〈F 〉, we may obtain U(θ, h) by an integration

over h, provided an unknown function of θ be added. This relation is in fact applicable to any working medium,
as one can show by considering a Carnot cycle with small temperature differences (see for example Kubo [15], p.
81).
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where δQ represents the heat released by the gas, from the law of conservation of energy. For any
function f(θ, h) such as U, A, S: df ≡ ∂f

∂θ dθ+
∂f
∂hdh. Note that we employ only two independent

variables, namely θ and h, so-that partial derivatives are un-ambigous. If the gas is in contact
with a thermal bath (θ=constant), δQ is the heat gained by the bath. The quantity S defined
above is called the “entropy”. In particular, if heat cannot go through the gas container wall
(adiabatic transformation) we have δQ = 0 that is, according to the above result: dS = 0. Thus
adiabatic transformations are isentropic.

The Carnot cycle: A Carnot cycle consists of two isothermal transformations at temperatures
θl and θh, and two intermediate adiabatic transformations (dS = 0). After a complete cycle, the
entropy recovers its original value and therefore dSl+dSh = 0. According to (12): −δQl = θl dSl,
−δQh = θh dSh and therefore δQl/θl + δQh/θh = 0. Energy conservation gives the work δW
performed over a cycle from: δW + δQl + δQh = 0. The cycle efficiency is defined as the ratio of
δW and the heating −δQh supplied by the hot bath. We have therefore: η ≡ δW

−δQh

= δQh+δQl

δQh

=

1− θl
θh
, from which we conclude that θ is the “thermodynamic temperature”.

We have implicitly assumed in the above discussion that the working medium (presently an
ideal gas) has reached the bath temperature before being contacted with it. Otherwise, there
would be at that time a jump in entropy, and the cycle would no longer be reversible. Given initial
θ, h values, the temperature change dθ for an increment dh in the isentropic regime (dS = 0)

follows from the relation: dθ = −
(∂S/∂h
∂S/∂θ

)

dh, where S(θ, h) may be expressed in terms of Z(θ, h),

(10), from the above expressions. The details will be omitted. It suffices to know that θ may be
varied by varying h, in a calculable manner, in an adiabatic transformation.

Practical units: The energy θ = 〈F 〉 h has been defined so far only to within a multiplicative
factor, from dimensional considerations. This factor is fixed by agreeing that θ = 273.16 kB
exactly when the cylinder is in thermal equilibrium with water at its triple point. Here kB =
1.38066... 10−23 joules, is considered as an energy unit (akin to the calorie = 4.182... joules).
This manner of defining θ is equivalent to the usual one, though expressed differently. The
dimensionless quantity T ≡ θ/kB is the usual unit of thermodynamic temperature, expressed in
kelvin.

Next, measurements have shown that the number of atoms in 0.012 kg of carbon 12 is:
NA ≈ 6.0221367 1023. For this quantity of matter (called a mole), the ideal-gas law therefore
reads: 〈F 〉h = NAθ, or: PV = RT , with the ideal-gas constant: R ≡ NAkB ≈ 8.31451 joules
per kelvin per mole.

6 Conclusion

Let us briefly recall the concepts introduced in the present paper. One can imagine that after
having introduced the corpuscular concept, Democritus observed the elastic bounces of a unit
weight on a balance and defined the weight “impulse” from the motion period. Not knowing
the nature of the motion (parabolic? hyperbolic?), he may have thought of introducing a weight
factor such that the average force 〈F 〉 does not depend on the law of motion. This, as we have
seen, may be done. This weight factor involves for dimensional reasons a quantity θ having the
dimension of energy. Considering a thermal engine operating between two baths at temperatures
θl, θh one finds on the basis of the principles just stated that the maximum efficiency is: 1−θl/θh.
This allows us to call θ the thermodynamic temperature.

The present paper provides explicit expressions of gases internal energy provided the round-
trip time function τ(Z) is known. It does provide a first-principle proof of the ideal-gas law,
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including a possible effect of uniform gravity, and of the barometric equation with no knowledge
of the τ(Z) function required. We have recovered the usual thermodynamical and semi-classical
statistical-mechanical expressions for the special case of ideal gases submitted to gravity. The
theory presented is strictly classical. As such, it does not depend on the numerical values of the
universal constants ~ and c. However, the introduction of these quantities is needed to make the
results dimensionless. Generalisation to two (or more) colliding corpuscles seems to be possible,
perhaps with the help of numerical methods.

William of Ockham (1287-1347) set as a matter of principle that one should not employ more
concepts than those that are strictly necessary to explain the observed phenomenas. (Some
authors consider that the Ockham philosophy predates the advent of modern science by insist-
ing on facts and the kind of reasoning employed rather than on speculations about essences).
Accordingly, it seems important to elucidate the assumptions on which rest, in particular, the
barometric and ideal-gas laws that play an essential role in theoretical physics and many appli-
cations. Our thesis is that these laws may be obtain on the sole basis of the Democritus model
of corpuscles and vacuum. It is indeed unnecessary to specify the laws of motion. One can
further show that the ideal-gas internal energy depends only on temperature (in the absence
of gravity). To evaluate explicitly this energy it is, however, necessary to know the round-trip
corpuscule time. From a pedagogical standpoint and in application of Ockham’s concept one
should not postulate principles which, without being erroneous, are unnecessary. In a text-book
presentation of Physics, it seems to us that it would be appropriate to give first considerations
similar to those presented in this paper, since the explicit laws of motion are not needed.

A General equations of motion

Laws of motion are conveniently written in the Hamiltonian form. IfH(z, p) denotes the Hamilton
function of coordinate z and momentum p, we have:

v(t) ≡ dz(t)

dt
=

∂H(z, p)

∂p

dp(t)

dt
= −∂H(z, p)

∂z
. (13)

Because the Hamilton function does not depend explicitly on t, the energy of a corpuscle is the
constant: E = H(z, p) for some initial z, p values.

Non-relativistic approximation for a constant weight: In that approximation, H(z, p) =
p2

2m + w z for a weight (or force) w ≡ mg. It follows that v = p/m and dp/dt = −w. With the
initial conditions: z(0) = 0 and p(0) = 0, the corpuscle motion is described by: z(t) = − 1

2g t
2.

Hence, τ(Z) ≡ 2t(−z) = 2
√

2Z/g ∝
√
Z. For consistency with subsequent expressions one may

add to H(z, p) the constant mc2.

Relativistic expression for constant electrical forces: We presently have for a weightless
corpuscle with electrical charge e and submitted to a constant electrical field E , setting w ≡ e E ,
(see Landau [16], p.115, for the relativistic form without gravity in three dimensions):

H(z, p) = mc2
√

1 + (p/mc)2 + w z → p = −w t,

dz(t)

dt
=

∂H(z, p)

∂p
= c

p̃
√

1 + p̃2
p̃ ≡ p

mc
. (14)

From these expressions we may obtain the equation of motion with z(0) = zm, and the round-trip
time as a function of zm − z.
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The traditional methods of calculating 〈F 〉 and U in the absence of gravity consist instead
in calculating the average values of p v and H(p), respectively, using as a weight the Boltzmann
factor: exp(−H(p)/θ).

Uniform acceleration g: The Hamilton equations of motion in one space dimension (z) derive
from a hamiltonian function of z and p (see Louis-Martinez [13], Eq(5) with N = 1):

H(z, p) = (mc2 +mg z)
√

1 + (p/mc)2 (15)

v(t) ≡ dz(t)

dt
=

∂H(z, p)

∂p
= c(1 +

z

zg
)

p̃
√

1 + p̃2
p̃ ≡ p

mc
zg ≡ c2

g
(16)

dp(t)

dt
= −∂H(z, p)

∂z
= −mg

√

1 + p̃2 → dp̃(t)

dt
= −g

c

√

1 + p̃2. (17)

We take the time origin such that: p(0) = 0. Note that the term mc2+mg zm ≡ mc2(1+zm/zg),
where the maximum altitude zm represents the corpuscle energy. The round-trip time is now
a function of ζm − ζ, where ζ = ln(1 + z/zg). The non-relativistic expressions are recovered
when z, c t ≪ zg. An Hamiltonian function that would account for Quantum Gravity has been
proposed by Chandra [17].

B Reasons for the rejection of this paper by the AJP

This paper (see the initial version: in arXiv: v1) was rejected without appeal by the American

Journal of Physics on the basis of three reports. We cite in full below report 3, and explain why
the criticisms expressed in reports 1 and 2 are unfounded.

REPORT 3:
“The authors propose to establish the barometric formula in particular, or the ideal gas law

in general, straight from atomistic principles (a la Democrit), independent of any particular
laws of motion. True, in most text-books this follows as an afterthought, after the derivation of
Boltzmann, which may be overkill. (A minor exception to this, which I always found cute, is the
derivation of the Maxwell distribution in O’Hanian’s book on modern physics, which is based
only on the isotropy of space but relies on a purely classical notion of velocity and I don’t know
whether it can be generalized.)

Assuming only that the time spent in a region is related to the potential against which
a particle would have to climb, which follows from the energy-work theorem, an exponential
distribution is obtained as a function of height, independent of whether the motion is relativistic
or not.

The presentation is clear and insightful, which will greatly benefit the reader, and inspire
similar thought on other taken-for-granted assumptions. I can not judge, though, how original
these ideas are. I am almost certain that there are many insiders for whom this would be obvi-
ous, but I am not sure whether anybody would have written it down in such a pedagogical and
thoughtful manner.”

OUR COMMENT: none.

REPORTS 2 and 1 assert that our paper is erroneous for the following reasons:

1-“There may be some confusion with the units of ω(E). ω has units of 1/energy, and τ has
units of time. The units do not match in the statement that ω(E) must be exp(−E/θ)τ(E/w).
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The authors probably mean proportional to, with the constant having the correct units.”

OUR COMMENT: The referee apparently believes that when a dimensionless quantity is
written as A/B, then A and B must be dimensionless. This of course is not the case. In our
paper, omega does not have the dimension of an energy reciprocal. It does not need to.

2-“The expression for ω does not have the energy dependence of the Boltzmann factor,
exp(−E/θ). There is an additional factor of τ(E/θ)”

OUR COMMENT: The referee does not seem to realize that the Boltzmann factor applies
to discrete energy levels. When one goes from the quantum mechanical treatment to the semi-
classical treatment (through the Bohr-Sommerfeld approximation) one must take into account
the fact that the energy levels are not evenly spaced; this fact is expressed by the tau function
in the continuous limit.

3-“A(z) should only decrease exponentially in a constant graviational field. Using the above
derivation, A(z) decreases exponentially for a gravitational field of any form. I am not convinced
that the physics is correct in obtaining the final line in Eq. 4.”

OUR COMMENT: The referee did not notice that in our formulation it is essential that that
different laws of motion differ from one another only by z and t translations. This is indeed the
case for the case of uniform gravity considered though-out our paper, but this is not so for non-
uniform gravity. This is why, in the general case, the gas density needs not decay exponentially.

4-“I do not recommend this paper for publication in AJP. The argument that ω(E) must be
exp(−E/θ) for dimensional reasons cannot be correct. To see this simply note that the state-
ment is false for real atmospheres, which are not in equilibrium, and where the temperature
is changing with altitude. The isothermal formula is then a fairly crude approximation. The
adiabatic atmosphere perhaps yields a more physically correct picture. The barometric formula
assumes thermodynamics equilibrium. We must then somehow define this concept. If we take it
to mean equiprobability of micro-states the entropy concept is a natural consequence. The next
step is then to define the temperature as the partial derivative of the entropy with respect to the
energy, from which the Boltzmann factor follows straightforwardly from considering a system in
contact with a heat bath. The barometric formula then follows trivially. If one wishes to reassure
students that with an equilibrium velocity distribution the barometric formula implies that the
number of particles going up equals the number going down, that’s fine? I don’t however see how
the way this is presented in the present paper would be helpful in introducing students to the
concepts. The author claims that they can use this method to show that the barometric law is
independent of the law of motion, but this ignores the fact that in the relativistic case the grav-
itational interaction will be velocity dependent (as follows from the Einstein formula E = mc2).
Similarly for the ideal gas law; eg, the introductory text of Schroeder, starts out by deriving
the ideal gas law by looking at non-relativistic particles hitting a piston and showing that the
pressure is proportional to the mean kinetic energy. By assuming this quantity in equilibrium
is proportional to the temperature the ideal gas law follows. The present authors derivation of
the ideal gas law from the barometric formula again suffers from the fact that the gravitational
interaction is velocity dependent. There is thus a good reason Schroeder and others then go on
to define equilibrium in more general terms and the equation of state becomes partial derivatives
of the appropriate (free) energy with respect to one of the thermodynamics variables. It is now
easy to understand how modifying the expression for the (free) energy leads to modifications of
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the gas law. So we have a general principle and a simple example, and I feel that this is the
pedagogical sound way to proceed. Pseudo-rigorous extensions, stretching the assumptions in
a single example only confuse the students and obscure the basic logical structure of modern
thermodynamics and statistical mechanics. The same holds for the Carnot cycle. The maximum
efficiency of a heat engine is a consequence of the second law. To reverse the logic only confuses
the student since not all engines are heat engines, and it becomes more difficult to understand
eg, fuel cells or metabolism in an organism.”

OUR COMMENT: This referee in our opinion missed entirely the spirit and purpose of our
paper, which or course implies thermal equilibrium. An adiabatic atmosphere is not in thermal
equilibrium and is not, accordingly, considered.

When the referee introduces the Einstein formula he implies that the Einstein theory of
gravitation should be considered. Such (so-called Tolman) effects are on the order of 10−12 on
earth, and are entirely negligible (see our appendix). He seems to confuse special and general
relativity effects.

The referee seems to ignore that, since Kelvin’s time, thermodynamics temperatures are
strictly based on Carnot’s engines efficiency. The fact that the temperature concept may be used
in other circumstances is utterly irrelevant.

More importantly, the referee takes for granted many postulates such as the equiprobability
of micro-states. Our presentation instead enables one to introduce from first principles and in a
simple manner basic thermodynamic concepts, and in particular the concept of entropy.

Finally, it should be emphasized that since we are dealing with a single particle we need work
in the so-called canonical ensemble. If there were no slight quivering of the gas container no
energy could be exchanged between the gas and the heat bath. In contradistinction, the paper
by: F. L. Roman: “Microcanonical single-particle distributions for an ideal gas in a gravitational
field,” European Journal of Physics, cited, is valuable because it establishes the gas law in the
micro-canonical ensemble (with the effect of gravity taken into account as we do in our paper)
in the limit of a very large number of corpuscles. In that case, no energy exchange with the
outside is needed. However, that paper is extremely complicated, both from the mathematical
and physical viewpoints. We wish that the reader will compare this micro-canonical paper with
our canonical single-particle paper in terms of simplicity and pedagogical value.
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