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On Classical Ideal Gases

Jacques Arnaud ∗, Laurent Chusseau †, Fabrice Philippe ‡

August 18, 2011

Abstract

The air density on earth decays as a function of altitude z approximately according to
an exp(−w z/θ)-law, where w denotes the weight of a nitrogen molecule and θ = kBT where
kB is a constant and T is the thermodynamic temperature. To derive this law one usually
invokes the Boltzmann factor, itself derived from statistical considerations. We show that
this (barometric) law may be derived solely from the democritian concept of corpuscles
moving in vacuum. We employ a principle of simplicity, namely that this law is independent
of the law of corpuscle motion. This view-point puts aside restrictive assumptions that
are source of confusion. Similar observations apply to the ideal-gas law. In the absence
of gravity, when a cylinder terminated by a piston, containing a single corpuscle and with
height h has temperature θ, the average force that the corpuscle exerts on the piston is:
〈F 〉 = θ/h. This law is valid at any temperature, except at very low temperatures when
quantum effects are significant and at very high temperatures when the corpuscle may split
into smaller parts. It is usually derived under the assumption that the temperature is
proportional to the corpuscle average kinetic energy, or else, from a form of the quantum
theory. In contradistinction, we show that it follows solely from the postulate that the ideal-
gas law is independent of the law of corpuscle motion. On the physical side we employ only
the concept of potential energy. A consistent picture is offered leading to the barometric
law when w h ≫ θ, and to the usual ideal-gas law when w h ≪ θ. Most of the end results
are known, but the method appears to be novel. The mathematics being elementary (no
integration is needed), the present paper should facilitate the understanding of the physical
meaning of the barometric and ideal-gas laws.
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1 Introduction

The purpose of this paper is to show that the barometric and ideal (or perfect)-gas laws may
be obtained on the sole basis of the democritian model according to which nature consists of
corpuscles moving in a vacuum, plus a principle of simplicity: namely that these fundamental
laws are independent of the law of corpuscle motion (non-relativistic, relativistic, or otherwise:
see Appendix A). The temperature θ enters into these laws solely for dimensional reasons. We
show from the general expressions of the gas internal energy and of the force (or pressure) that
the heat delivered by the gas is θ dS, an expression of the entropy S being given. This result
enables us to prove that the formally-introduced temperature θ is a thermodynamic temperature.
Indeed, we recover for ideal gases the general Carnot result asserting that the maximum efficiency
of thermal engines is: 1 − θl/θh, where θl denotes the cold bath temperature and θh the hot
bath temperature. An alternative derivation of the Carnot result, also based on the concept of
potential energy, may be found in [1, 2].

The reader may feel that our statement that the above invariance principle implies the baro-
metric and ideal-gas laws, without anything else, is surprising. Yet, we hope that we can convince
him/her that this is indeed the case. On the other hand, a quick reading of standard books on
Thermodynamics may lead other readers to believe that this is a well-known fact. Indeed,
Callen [3] writes on p. 239: “The essence of the ideal-gas law is that molecules of the gas do
not interact. This simple fact implies (see Sec. 16.10), that PV ∝ N T ”. However, when one
looks at that section of the book, on p. 372, one finds that the author, in order to reach this
conclusion, needs postulate the Newtonian law of motion, quantum theory, and the Boltzmann
factor. The claim that corpuscle independence entails the ideal-gas law (without anything else)
therefore does not appear to have been justified in such books.

Let us emphasize that our goal is to derive the barometric and ideal-gas laws from first
principles, only conservation of potential energy being assumed. We do not use the concept of
kinetic energy, nor do we postulate any law of corpuscle motion. Accordingly, a given potential
φ(z) = w z for a weight w does not imply any specific law of motion z(t). Because the presence
of corpuscles affects negligibly the gravitational potential, one may consider the latter as an
external potential. In contradistinction, the electrical field due to charged corpuscles may not
be negligible compared to the external electrical field.

To our knowledge, the concept presented in this paper has not been considered before. How-
ever, the final expressions relating to the ideal-gas law in the presence of gravity are known, see
for example Landsberg [4].

Concepts relating to heat since the antiquity: From Boyle’s time (circa 1660) to Carnot’s
time (circa 1824), the most popular theory, usually referred to as the “caloric theory of heat”,
considered heat as a kind of fluid consisting of weightless mutually repelling particles, attracted by
matter. This fluid could flow from hotter to colder matter, see Levermore [5]. This hypothesis,
however, did not explain Rumford’s experiments showing that friction alone generates heat.
Doubts about the validity of the caloric theory were expressed in Carnot’s notes, published after
his early death. As a matter of fact, the alternative model of heat as a form of matter motion
(without any additional fluid) had already been enunciated in the antiquity.

Democritus, who lived about 300 years B.C., described nature as a collection of corpuscles
that cannot be split, moving in vacuum. These corpuscles differ from one-another in form,
position and weight. In the case of a gas, interaction between corpuscles may often be neglected,
but they collide with the container’s walls. Platon [6] ascribed heat to corpuscular motion: “Heat
and fire are generated by impact and friction, but that’s motion”. Much later, Francis Bacon
(1561-1626) wrote: “The very nature of heat is motion, and nothing else”. This view-point is

1



more explicit in Daniel Bernoulli writing (1738): “Gas atoms are moving randomly, and pressure
is nothing else but the impact of the atoms on their container walls”. Lastly, Carnot introduced
energy considerations circa 1830: “Heat is nothing but motive power, or rather another form of
motion. When motive power is destroyed, heat is generated precisely in proportion of the motive
power destroyed. Likewise, when heat is destroyed, motive power is generated ”.

In the present paper, we employ the law of conservation of potential energy, well known since
the antiquity from cords and pulleys experiments, rather than the concept of kinetic energy
introduced by Leibniz (1646-1716). The Leibniz form is now recognized as being valid at small
temperatures only (θ ≡ kBT ≪ mc2, where mc2 denotes the corpuscle rest energy). It should
be recalled that the thermodynamic temperature is generally not proportional to the average
kinetic energy.

Experimental results relating to air: The first accurate experiments relating to gases relied
on the invention of the thermometer by Galileo and of the barometer by his assistant Torricelli.
Then, to Pascal experiments on atmospheric pressure. Pascal ascribed the diminution of the
height of a mercury column as a function of altitude to the reduction of the weight of the air
above the barometer. It was later shown that the pressure decays exponentially (or more precisely
as the sum of two exponentials, one relating to nitrogen, and one relating to oxygen).

Let us recall the crucial experiments performed in the seventeenth century concerning the
properties of air. Air, consisting mostly of di-atomic nitrogen, may be viewed as an ideal gas.
When a tight box contains some amount of air, the volume-pressure product is a constant at room
temperature, a law enunciated for the first time by Boyle in 1660: “Pressure and expansion are in
reciprocal proportions”. Boyle employed a J-shaped glass tube, with the sealed small side full of
air, and the other full of mercury. The left-side height was a measure of volume and the right-side
height a measure of pressure. Subsequent experiments have shown that this law is applicable
at any constant temperature, for example at various liquid boiling temperatures, within some
experimental range. We call “generalized Boyle law” the expression: V(P, θ) = f(θ)/P, where P

represents pressure, V volume, and f(θ) some temperature measure.
From an experimental standpoint we could define temperature as the pressure relating to some

given amount of matter contained within some fixed volume. As the temperature gets higher
the pressure increases. This pressure may be used to define θ. Of course, different temperature
scales would be obtained for different substances, but such thermometers may be calibrated one
against another because temperatures tend to equalize in equilibrium. Rarefied helium may be
described with great accuracy as a collection of independent corpuscles, except perhaps at very
low temperatures when quantum effects become significant and at very high temperatures when
the helium atoms may get ionized. The theory presented in this paper shows on the basis of the
corpuscular model that θ, initially introduced formally from dimensional considerations, coincides
with the thermodynamic temperature. This is the temperature that enters in the expression of
thermal-engine efficiencies.

Gay-Lussac has shown in 1802 that, at atmospheric pressure, the volume increment of various
gases from freezing to boiling water temperatures is 37.5, see for example Holbrow [7]. Appro-
priate gas thermometers enabled experimentalists to establish the proportionality of volume and
temperature at constant pressure. This measurement was subsequently made at various pres-
sures, for exemple at various altitudes. The generalized Gay-Lussac law may be enunciated as
follows: The two-variable function V(P, θ) = θ g(P), where g(P) is some unknown function of
pressure. Comparison of the generalized Boyle and Gay-Lussac laws shows that: PV = θ h(N),
where h(N) defines the amount of gas considered.

The empirical Gay-Lussac law makes sense only if one specifies which thermometer is being
employed. One may employ a gas thermometer from a selected gas such as helium in two
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ways. One method consists of defining the temperature as the cylinder height (or volume)
at a fixed pressure, for example at the standard atmospheric pressure. In the following, we
assume that a second method is being employed instead: the temperature is defined as the force
that must be exerted on the piston to maintain the height at a fixed value, for example one
meter. If the Gay-Lussac experiment were applied to a gas identical to the gas employed in
the thermometer (helium in our example) the fact that pressure is proportional to temperature
would be obvious. The importance of the Gay-Lussac experiment is that the proportionality
law is found to be approximately valid for any gas. It was subsequently discovered that the
Gay-Lussac law is reasonably accurate only at very small pressures. The theoretical reason that
explains this observation is that, at low pressures, the molecules of the tested gas and those of
the thermometer gas may both be considered as independent non-interacting corpuscles.

In 1803, Dalton, on the basis of his studies of chemical compounds and gaseous mixtures
suggested that matter consists of atoms of different masses that combine in simple ratios. He
discovered the partial-pressure law according to which the total pressure exerted by a gas mixture
is equal to the sum of the pressure that each one of the gases would exert if it occupied the full
volume alone. Finally, in 1811, Avogadro concluded that equal volumes of gases at the same
temperature and pressure contain the same number of molecules (or corpuscles). This entails
that PV/θ is proportional to N , now interpreted as the number of corpuscles.

On empirical grounds, the ideal-gas law may therefore be written as:

PV = N θ (1)

where V denotes the volume, P the pressure, N the number of corpuscules, and θ ≡ kBT the
temperature.

The ideal-gas law has been partly explained on the basis of a kinetic theory by Waterston [8]
in 1843, the kinetic theory being based itself on non-relativistic mechanics. The next important
theoretical discovery is due to Boltzmann. Let us now recall the basic assumptions on which rest
the usual proofs of the barometric and ideal-gas laws, and then present our model.

Usual kinetic and statistical theories A recent reference by Miller [9] lists the assumptions
on which the gas kinetic theory is supposed to rest. Some of them express the democritian
hypothesis and are indeed essential. The usefulness of the others, listed below, however, may be
questioned:

1. Gases consist in corpuscles having non-zero mass.

2. The corpuscles are quickly moving.

3. They are perfectly spherical and elastic.

4. The average kinetic energy depends only on the system temperature.

5. Relativistic effects are negligible.

6. Motion laws are time reversible.

7. The number of molecules is so large that a statistical treatment is appropriate.

Comment: As we shall show, none of the above assumptions are needed. It suffices that the
(perhaps unique) corpuscle be in thermal contact with the ground. Besides, item 4 (The average
kinetic energy depends only on the system temperature) is insufficient to establish the ideal-
gas law because the temperature remains undefined. In the non-relativistic approximation the
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appropriate assumption should read: “The average kinetic energy is proportional to the system
temperature”. But at arbitrary temperatures this assumption is false.

Let us sketch the most usual derivations of the barometric and ideal-gas laws to remind the
readers of the underlying assumptions. Note that the barometric law may be obtained from
the ideal-gas law, and conversely, if one postulates that weightless infinitely-thin plates may be
introduced or removed at will in the gas at various altitudes. However, this postulate is at best
plausible. Norton [10] derived the ideal-gas law from the barometric equation. But the latter
involves the Boltzmann factor that requires other physical considerations (see below), while in
the present paper this factor comes in naturally, that is, for purely mathematical reasons.

The barometric law is usually viewed as a straightforward consequence of the Boltzmann
factor: the probability that a corpuscle has energy E is proportional to: exp(−E/θ) where
θ = kBT and the energy E = w z, where w denotes the corpuscle weight (e.g., the weight of a
di-atomic nitrogen molecule) and z the altitude. Hence the exponential decay.

The derivation of the Boltzmann factor itself is based on a quantization of the energy1, and
the postulated equi-probability of the micro-states. Let the discrete (non-degenerate) energy
levels be denoted by ε1, ε2, .... If distinguishable corpuscles are distributed among the energy
levels, with n1 corpuscles in level 1, n2 corpuscles in level 2, and so on, the number of ways of
doing that is inversely proportional to: n1!n2!.... It is postulated that this number reaches its
maximum value at equilibrium under the constraint that n1 + n2 + ... = N , the total number of
corpuscles, and n1ε1 + n2ε2 + ... = E, the total energy. In the limit of large N values, one finds
that: ni ∝ exp(−εi/θ), for some θ-value that depends on N and E. Even though physicists are
now-a-day very familiar with that procedure, it is not so easy to explain it to students. Besides,
it rests on a number of assumptions.

The traditional derivation of the ideal-gas law, on the other hand, is based on non-relativistic
mechanics. For a one-dimensional model, one considers a corpuscle moving back and forth
between two plates separated by a distance h, one of them playing the role of a piston. If v
denotes the speed of a corpuscle, an impact on a plate delivers to it an impulse 2mv where
m denotes the corpuscle mass, and this occurs every 2h/v time units. It is concluded that the
force F exerted on the piston is: 2mv/(2h/v) = mv2/h, that is: F h = 2K, where K = 1

2
mv2

denotes the kinetic energy. It is recognised that there may be a distribution of kinetic energies.
Postulating that the temperature θ is proportional to the average kinetic energy one obtains for
the average force the ideal-gas law: 〈F 〉h ∝ θ. Alternatively, one may quantize the corpuscle
wave-function and employ the Boltzmann factor.

The procedure described above has been generalized to relativistic motion (kBT ∼ mc2),
where mc2 denotes the corpuscle rest energy, but the relation of v to p is different, and averaging
requires a generalized Boltzmann factor. The same ideal-gas law is valid at any temperature
(within the corpuscular model). Our thesis is that the ideal-gas law has simply nothing to do
with the law of corpuscle motion, and that it is therefore not surprising that it holds for both
the Galileo and Einstein laws of motion. The assumption that temperature is proportional to
the average kinetic energy cannot possibly be derived from first principles since it is only an
approximation acceptable when kBT ≪ mc2. These are some of the reasons why we feel that
the traditional proofs are unsatisfactory. An alternative is offered below. We will consider in
succession the barometric law, the ideal-gas law, and the internal energy. We finally show that
the formally introduced temperature θ is the thermodynamic temperature. Expressions for the
round-trip time of a corpuscle from and back to the ground z=0 level, denoted by τ , is derived
in Appendix A. The case of non-linear potentials was treated by the same method in [12].

1This concept was introduced by Boltzmann who, however, considered only the limit in which the difference
between successive energies is arbitrarily small.

4



Figure 1: Space-time (z, t) trajectory of a corpuscule of unit weight (w = 1) bouncing off the
ground (z = 0). The maximum altitude reached by the corpuscle is zm = E, where E denotes the
energy. The motion is periodic with period τ(zm), where τ(Z) denotes the corpuscle round-trip
time at a distance Z from the top of the trajectory. When the altitude is restricted to h by
a plate (dashed horizontal line) the motion remains periodic with a period evidently equal to:
τ(zm)− τ(zm − h).

2 The barometric law

We are considering an unit-area cylinder with vertical axis in uniform gravity, resting on the
ground (z = 0) at some temperature. We consider only motion along the vertical z-axis, denoted
in general by z = z(t;E), where t denotes time. The corpuscle energy is defined as: E ≡ w zm
where w is the corpuscle weight and zm the maximum altitude. In the following, some regularity
of the z(t)-function is assumed, but no specific law is presumed, except in examples. We set for
convenience t = 0 at the top of the trajectory, that is: z(0) = zm, z′(0) = 0, where a prime
denotes a derivative with respect to t.

Consider a single period of corpuscle motion as shown in Fig. 1. Let the corpuscle distance
from the top of its trajectory be denoted by Z ≡ zm − z ≥ 0, at times t1 and t2 ≥ t1. We call2:
“round-trip time” τ(Z) ≡ t2 − t1. Because gravity is static and uniform (that is, independent
of altitude and time) this τ -function depends only on Z. As an example, for non-relativistic
motion: Z(t) = 1

2
g t2, with w ≡ mg where m denotes the corpuscle mass and g the gravitational

acceleration. In that example: τ(Z) = 2
√

2Z/g ∝
√
Z, g being a constant.

The period of motion of a corpuscle bouncing off the ground (z = 0) without any loss of
energy (rigid walls and negligible gas friction), and having energy E ≡ w zm, is according to the
above definitions: τ(zm). The time spent by the corpuscle above some z-level is obviously zero

2We do not assume that z(t) = z(−t) or t2 + t1 = 0. Asymmetric laws of motion occur if one employs clock
synchronisation rules different from the one proposed by Einstein. For example, if a light pulse emitted from
z = 0 at t = 0 propagating upward is employed to synchronise clocks located at different altitudes, the apparent
upward speed of light is, by this convention, infinite. The downward speed of light is then c/2 if c denotes the
Einstein speed of light, so that the two-way speed of light remains equal to c, in agreement with very precise
experiments. The anisotropy mentioned in the present note refers to a change of formalism, not of physics. It is
of some importance that the laws discussed in this paper do not depend on such conventional changes.

5



if z > zm. The fraction of time during which the corpuscle is above z is:

fraction of time above z =
τ(zm − z)

τ(zm)
, (2)

if z ≤ zm, as suggested on Fig. 1.
We now suppose that the ground on which the corpuscle is bouncing off has been heated to

some temperature (the concept of temperature will be precisely defined later on). This means
that the ground level (z=0) is not perfectly static as assumed above, but instead is quivering.
Concretely, the ground level could be moving up and down according to some zero-mean fluctu-
ation of small amplitude so that, upon impacting on the ground, the corpuscle may loose energy
(when the ground level is moving downward), or gain energy (when the ground level is moving
upward). We will not need the explicit form of this fluctuation. We only assume that the am-
plitude of that fluctuation is so small that the corpuscle energy does not vary significantly over
many periods. Yet it may evolve slowly. The energy distribution ω(E) refers to averages over
arbitrarily long times, and is presently unknown; it will be determined by enforcing the condition
that the law of interest (presently the barometric law) does not depend on the corpuscle law of
motion.

On the average, the fraction of time A during which the corpuscle is above some z-level is,
according to (2), and remembering that zm = E/w where w is a constant:

A(z) =

∫∞

wz
dE ω(E) τ(E/w − z)/τ(E/w)

∫∞

0
dE ω(E)

. (3)

The lower limit of the integral in the numerator is wz since the fractional time is equal to zero
when E ≤ wz.

We now argue that ω(E) must be: exp(−E/θ)τ(E/w), where θ is a constant having the di-
mension of energy as is required by the fact that the argument of an exponential is dimensionless.
First, let us introduce this distribution law in (3). We obtain:

A(z) =

∫∞

wz
dE exp(−E/θ)τ(E/w − z)

∫∞

0
dE exp(−E/θ)τ(E/w)

=
exp(−w z/θ)

∫∞

wz dE exp(−(E − wz)/θ)τ(E/w − z)
∫∞

0
dE exp(−E/θ)τ(E/w)

=
exp(−w z/θ)

∫∞

0
dE′ exp(−E′/θ)τ(E′/w)

∫∞

0
dE exp(−E/θ)τ(E/w)

= exp(−w z/θ). (4)

On the third line, we have used as an integration variable E′ ≡ E − wz instead of E. The last
line follows from the fact that E,E′ are dummy variables, so that we may replace E′ by E. Note
that, even though we have introduced integral signs, no integration has been performed.

The distribution ω(E) introduced above is the one that leads to a result (last line of (4))
independent of the particular form of the τ(Z)-function, and therefore of the law of motion. For
a purely mathematical reason, the term: τ(E/w) must be there to cancel a similar term in the
denominator of the expression of the fractional time. On the other hand, the only function of
u ≡ E/θ that may cause the integral in the numerator to go from 0 to infinity and cancel out
with the integral in the denominator is: exp(−u), the argument being defined only to within a
constant factor. In order to obtain the energy distribution ω(E), one would need to know the
function τ(Z). But, remarkably, the energy distribution is not needed explicitly.
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From a physical standpoint, the energy distribution may be written as exp(−E(f)/θ), where
f denotes the action, equal to the z(t) motion area for one period, and df/dE = τ(E/w). In
quantum mechanics the action f is set equal to an integer (1,2..., ignoring a small constant) times
the reduced Planck constant ~. The term exp(−E/θ), usually referred to as the “Boltzmann
factor”, enters here solely by mathematical necessity [2].

The gas density, defined as the probability that the corpuscle be located between z and z+dz,
divided by dz, is: ρ(z) = −dA(z)/dz = (w/θ) exp(−wz/θ). This is the barometric law. Since
w and θ are constant, the density decays exponentially as a function of altitude z. In the earth
atmosphere the density of di-atomic oxygen decays faster than the density of di-atomic nitrogen
because the weight of an oxygen atom exceeds that of a nitrogen atom in the ratio ≈ 16/14.

3 Average force exerted by a corpuscle on a piston

We now treat the ideal-gas law by similar methods. We are considering again a unit-area cylinder
with vertical axis in uniform gravity, resting on the ground (z = 0) at some temperature. A tight
piston can move in the vertical z direction. The cylinder height is denoted by h and contains a
single corpuscle of weight w. In our one-dimensional model, the pressure P corresponds to the
average force 〈F 〉, the volume V to the height h, and N = 1. Our result provides the ideal-gas
law in a generalized form, taking into account gravity. In that case, the pressure varies as a
function of altitude. More precisely, the force exerted by the corpuscle on the lower end of the
cylinder exceeds the force exerted on the upper end (or piston) by the corpuscle weight. But in
the absence of gravity, the forces exerted on both ends are the same.

We are introducing (static and uniform) gravity, not so much for the sake of generality, but
because this helps clarify the concept of corpuscle energy: the corpuscle energy is defined as the
maximum altitude that the corpuscle would reach in the absence of the piston, multiplied by the
corpuscle weight. Precisely, the maximum height reached by a corpuscle of weight w and energy
E in the absence of a piston is: zm ≡ E/w, the corpuscle bouncing elastically from the ground,
that is, without any loss or gain of energy.

Consider first the case where h is infinite, that is, in the absence of a piston. The time period
is denoted as before by τ(Z) with Z = zm. The average force exerted on the ground, equal to the
corpuscle weight w, is the product of the impulse i and the number of impulses per unit time.
Thus w = i/τ(zm), and i = w τ(zm). In other words, the impulse transmitted to a piston when
the corpuscle impacts on it is the product of the corpuscle weight and the motion period.

If the plate is located at z = h the impulse is: ih = w τ(zm − h). When the corpuscle is
moving back and forth beween the planes at z = 0 and z = h (instead of being located above h)
the impulse is just opposite to ih. It is therefore in absolute value equal to w τ(zm − h).

Next, we introduce a rigid thin plate at z = h, viewed as a piston, and consider a corpuscle
bouncing on the z = 0 and z = h plates alternately. The time period becomes: τ(zm)−τ(zm −h),
as one can see from inspection of the figure. We call F the force exerted on the z = h plate,
averaged over a time period. It follows from the previous expressions that:

F = 0 zm ≤ h

F =
ih

τ(zm)− τ(zm − h)
= w

τ(zm − h)

τ(zm)− τ(zm − h)
zm > h. (5)

As a consequence of the slight quivering of the cylinder lower end (thermal motion), the
corpuscle energy E slowly varies in the course of time. The force F just defined must be weighed
by some energy distribution ω(E) in such a way that the average force 〈F 〉 be independent of
the corpuscle equation of motion, and thus of the τ(.)-function. In the limit where w h ≪ θ, a
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condition that amounts to ignoring gravity, we obtain the ideal-gas law in the form: 〈F 〉 = θ/h.
We later on prove that θ is the thermodynamic temperature.

The above condition obtains from (5) if one selects the following energy distribution:

ω(E) = exp(−E/θ)τ(E/w) E ≤ wh

ω(E) = exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

E > wh, (6)

where θ has the dimension of an energy. For the case where E ≤ w h, the ω(E)-distribution is
of course the same as in Section 2. The average force becomes, using (5) and (6):

〈F 〉 = w

∫∞

wh
dE exp(−E/θ)τ(E/w − h)

∫ wh

0
dE exp(−E/θ)τ(E/w) +

∫∞

wh dE exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

=
w

exp(w h/θ)− 1
. (7)

In the above integrals going from w h to∞we have replaced exp(−E/θ) by exp(−wh/θ) exp(−(E−
w h)/θ) and introduced the variable E′ ≡ E−wh, so that all the integrals go from zero to infinity
and cancel out. Note that no integration has been performed.

For a collection of N independent corpuscles having weights wi, i = 1, ...N respectively, the
force is a sum of N terms of the form given in 7. In the case of zero gravity (w=0 or more
precisely: w h ≪ θ), the above expression gives: 〈F 〉h = θ. Thus we have obtained the ideal-gas
law: 〈F 〉h = N θ.

The average force from the barometric law: We show in the present paragraph that the
expression in (7) of the average force may be obtained alternatively from the barometric law
established in Section 2: ρ(z) = C exp(−w z/θ), where C is a constant, if one uses the concept
that plates may be added or removed at some altitude z = h.

Indeed, the gas weight above the plate is the integral of w ρ(z) from z = h to z = ∞. Since
we consider a single corpuscle located between 0 and h the integral of ρ(z) from 0 to h must
be unity, a condition that determines C. Thus, from that view point, the average force may be
written as:

〈F 〉 = w

∫∞

h
dz exp(−w z/θ)

∫ h

0
dz exp(−w z/θ)

=
w

exp(w h/θ)− 1
, (8)

that coincides with our previous result in (7).

Average force for a three-dimensional space: We suppose that the cylinder radius is very
large compared with h, and we do not consider the force exerted by the corpuscle on the cylinder
wall. Motion of the corpuscle along directions perpendicular to z does affect the round-trip time
τ(Z). However, since the average force does not depend on this quantity, the ideal-gas law is
unaffected.

The internal energy, to be discussed in the following section, though, is incremented. One
can prove that in the non-relativistic approximation and in the absence of gravity the internal
energy is multiplied by 3. It would be incremented further by corpuscle rotation or vibration, not
considered here. Using conventional methods, Landsberg [4] in Eq. (2.6), and Louis-Martinez [14]
in Eq. (68), obtain exactly the same result as given above (except for the factor 3 in the expression
of the internal energy, relating to the number of space dimensions considered).
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4 Internal energy

The gas internal energy U is the average value of E, if only motion along the z-axis is considered
(note that the gravitational energy is accounted for in U). The expression of U is, using the
energy distribution given in (6):

U =

∫ wh

0
dE E exp(−E/θ)τ(E/w) +

∫∞

wh dE E exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

∫ wh

0
dE exp(−E/θ)τ(E/w) +

∫∞

wh
dE exp(−E/θ)

(

τ(E/w) − τ(E/w − h)
)

=

∫∞

0
dE E exp(−E/θ)τ(E/w)

∫∞

0
dE exp(−E/θ)τ(E/w)

− w h

exp(w h/θ)− 1
. (9)

The internal energy divided by the temperature: U(θ, h)/θ, thus is the sum of two terms.
The second one is an explicit function of the dimensionless quantity w h/θ, which tends to -1
when h → 0. The first term is a function of θ but not of h. To evaluate this first term we need to
know the round-trip time τ(Z) to within an arbitrary proportionality factor, and an integration
must be performed in that case.

In order to write the above expression in terms of dimensionless quantities, we must intro-
duced a universal constant, c, having the dimension of speed. Defining: x ≡ E/θ, θ′ ≡ θ/mc2,
h′ ≡ h/(c2/g), (9) becomes, remembering that w = mg:

U

θ
=

∫∞

0
dxx exp(−x)f(θ′x)

∫∞

0
dx exp(−x)f(θ′x)

− h′/θ′

exp(h′/θ′)− 1
, (10)

where the function f(y) depends on the round-trip time.
In the special case of non-relativistic motion y ≪ 1, we have f(y) ∝ √

y, see the appendix. The
first term in (10) is then equal to 3/2 (note that: 2

∫∞

0
dxx exp(−x)

√
x = 3

∫∞

0
dx exp(−x)

√
x),

so that in the absence of gravity the internal energy U is equal to 3θ/2− θ = θ/2, a well-known
result. 3.

5 The energy θ is the thermodynamic temperature

We prove in this section that θ, introduced in previous sections on dimensional grounds only,
is the thermodynamic temperature. We do this by showing that the maximum efficiency of a
thermal cycle employing ideal gases is: 1− θl/θh, where θl is the cold-bath temperature and θh
the hot bath temperature.

The expressions given earlier for the average force 〈F 〉 in (7) and the internal energy U in
(9) may be written, setting β ≡ 1/θ, as:

〈F 〉 = ∂ ln(Z)

β ∂h
U = −∂ ln(Z)

∂β

Z(β, h) =
(

exp(−β w h)− 1
)

∫ ∞

0

dE exp(−β E)τ(E/w). (11)

Z is essentially the quantity called in statistical mechanics the partition function. It becomes
dimensionless if it is divided by the reduced Planck constant ~, which however plays here no

3A plot of U from low to high temperatures in the case of an external force much larger than gravity (e.g.,
an electrical force) can be seen in [1, 2]. A three-dimensional expression of U in terms of Bessel functions can be
found, for example, in Greiner, p. 234. [19]
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physical role. The continuous energy E in the integral may be replaced by closely-spaced discrete
energies εi, i = 1, 2..., the spacing between adjacent energies accounting for the τ -function. This
procedure is the one employed in the numerical evaluation of integrals; it does not in itself imply
quantization. The factor preceding the integral in (11) entails that the energies εi, i = 1, 2... are
multiplied by some function of h.

If we introduce the Helmholtz free-energy (the letter A is from the German “Arbeit” or work):
A(θ, h) ≡ −θ ln(Z(θ, h)) the expressions in (11) are conveniently written4:

〈F 〉 = −∂A

∂h
U = A− θ

∂A

∂θ
. (12)

From (12) we obtain:

−δQ ≡ dU + 〈F 〉 dh = dA− ∂A

∂θ
dθ − ∂A

∂h
dh− θ d

(∂A

∂θ

)

= θ dS S ≡ −∂A

∂θ
, (13)

where δQ represents the heat released by the gas, from the law of conservation of energy. For any
function f(θ, h) such as U, A, S: df ≡ ∂f

∂θ dθ+
∂f
∂hdh. Note that we employ only two independent

variables, namely θ and h, so-that partial derivatives are un-ambigous. If the gas is in contact
with a thermal bath (θ=constant), δQ is the heat gained by the bath. The quantity S defined
above is called the “entropy”. In particular, if heat cannot go through the gas container wall
(adiabatic transformation) we have δQ = 0 that is, according to the above result: dS = 0. Thus
adiabatic transformations are isentropic.

The Carnot cycle: A Carnot cycle consists of two isothermal transformations at temperatures
θl and θh, and two intermediate adiabatic transformations (dS = 0). After a complete cycle, the
entropy recovers its original value and therefore dSl+dSh = 0. According to (13): −δQl = θl dSl,
−δQh = θh dSh and therefore δQl/θl + δQh/θh = 0. Energy conservation gives the work δW
performed over a cycle from: δW + δQl + δQh = 0. The cycle efficiency is defined as the ratio of
δW and the heating −δQh supplied by the hot bath. We have therefore: η ≡ δW

−δQh

= δQh+δQl

δQh

=

1− θl
θh
, from which we conclude that θ is the “thermodynamic temperature”.

We have implicitly assumed in the above discussion that the working medium (presently an
ideal gas) has reached the bath temperature before being contacted with it. Otherwise, there
would be at that time a jump in entropy, and the cycle would no longer be reversible. Given initial
θ, h values, the temperature change dθ for an increment dh in the isentropic regime (dS = 0)

follows from the relation: dθ = −
(∂S/∂h
∂S/∂θ

)

dh, where S(θ, h) may be expressed in terms of Z(θ, h),

(11), from the above expressions. The details will be omitted. It suffices to know that θ may be
varied by varying h, in a calculable manner, in an adiabatic transformation.

Practical units: The energy θ = 〈F 〉 h has been defined so far only to within a multiplicative
factor, from dimensional considerations. This factor is fixed by agreeing that θ = 273.16 kB
exactly when the cylinder is in thermal equilibrium with water at its triple point. Here kB =
1.38066... 10−23 joules, is considered as an energy unit (akin to the calorie = 4.182... joules).
This manner of defining θ is equivalent to the usual one, though expressed differently. The
dimensionless quantity T ≡ θ/kB is the usual unit of thermodynamic temperature, expressed in
kelvin.

4Note incidentally that: ∂U

∂h
= θ ∂〈F 〉

∂θ
−〈F 〉. It follows that, given 〈F 〉, we may obtain U(θ, h) by an integration

over h, provided an unknown function of θ be added. This relation is in fact applicable to any working medium,
as one can show by considering a Carnot cycle with small temperature differences (see for example Kubo [20], p.
81).
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Next, measurements have shown that the number of atoms in 0.012 kg of carbon 12 is:
NA ≈ 6.0221367 1023. For this quantity of matter (called a mole), the ideal-gas law therefore
reads: 〈F 〉h = NAθ, or: PV = RT , with the ideal-gas constant: R ≡ NAkB ≈ 8.31451 joules
per kelvin per mole.

6 Conclusion

Let us briefly recall the concepts introduced in the present paper. One can imagine that after
having introduced the corpuscular concept, Democritus observed the elastic bounces of a unit
weight on a balance and defined the weight “impulse” from the motion period. Not knowing
the nature of the motion (parabolic? hyperbolic?), he may have thought of introducing a weight
factor such that the average force 〈F 〉 does not depend on the law of motion. This, as we have
seen, may be done. This weight factor involves for dimensional reasons a quantity θ having the
dimension of energy. Considering a thermal engine operating between two baths at temperatures
θl, θh one finds on the basis of the principles just stated that the maximum efficiency is: 1−θl/θh.
This allows us to call θ the thermodynamic temperature. To be sure, the present paper does
not provide explicit expressions of gases internal energy if the round-trip time function τ(Z)
remains unknown. It does provide, however, a first-principle proof of the ideal-gas law, including
a possible effect of uniform gravity, and of the barometric equation. We have recovered the
usual thermodynamical and semi-classical statistical-mechanical expressions for the special case
of ideal gases submitted to gravity.

William of Ockham (1287-1347) set as a matter of principle that one should not employ more
concepts than those that are strictly necessary to explain the observed phenomenas. (Some
authors consider that the Ockham philosophy predates the advent of modern science by insist-
ing on facts and the kind of reasoning employed rather than on speculations about essences).
Accordingly, it seems important to elucidate the assumptions on which rest, in particular, the
barometric and ideal-gas laws that play an essential role in theoretical physics and many appli-
cations. Our thesis is that these laws may be obtain on the sole basis of the Democritus model
of corpuscles and vacuum. It is indeed unnecessary to specify the laws of motion. One can
further show that the ideal-gas internal energy depends only on temperature (in the absence
of gravity). To evaluate explicitly this energy it is, however, necessary to know the round-trip
corpuscule time. From a pedagogical standpoint and in application of Ockham’s concept one
should not postulate principles which, without being erroneous, are unnecessary. In a text-book
presentation of Physics, it seems to us that it would be appropriate to give first considerations
similar to those presented in this paper, since the explicit laws of motion are not needed.

A General equations of motion

Laws of motion are conveniently written in the Hamiltonian form. IfH(z, p) denotes the Hamilton
function of coordinate z and momentum p, we have:

v(t) ≡ dz(t)

dt
=

∂H(z, p)

∂p

dp(t)

dt
= −∂H(z, p)

∂z
. (14)

Because the Hamilton function does not depend explicitly on t, the energy of a corpuscle is the
constant: E = H(z, p) for some initial z, p values.

Non-relativistic approximation for a constant weight: In that approximation, H(z, p) =
p2

2m + w z for a weight (or force) w ≡ mg. It follows that v = p/m and dp/dt = −w. With the
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initial conditions: z(0) = 0 and p(0) = 0, the corpuscle motion is described by: z(t) = − 1

2
g t2.

Hence, τ(Z) ≡ 2t(−z) = 2
√

2Z/g ∝
√
Z. For consistency with subsequent expressions one may

add to H(z, p) the constant mc2.

Relativistic expression for constant electrical forces: We presently have for a weightless
corpuscle with electrical charge e and submitted to a constant electrical field E , setting w ≡ e E ,
(see Landau [17], p.115, for the relativistic form without gravity in three dimensions):

H(z, p) = mc2
√

1 + (p/mc)2 + w z → p = −w t,

dz(t)

dt
=

∂H(z, p)

∂p
= c

p′
√

1 + p′2
p′ ≡ p

mc
. (15)

From these expressions we may obtain the equation of motion with z(0) = zm, and the round-trip
time as a function of zm − z.

The traditional methods of calculating 〈F 〉 and U in the absence of gravity consist instead
in calculating the average values of p v and H(p), respectively, using as a weight the Boltzmann
factor: exp(−H(p)/θ).

Uniform acceleration g: The Hamilton equations of motion in one space dimension (z) derive
from a hamiltonian function of z and p (see Louis-Martinez [14], Eq(5) with N = 1):

H(z, p) = (mc2 +mg z)
√

1 + (p/mc)2 (16)

v(t) ≡ dz(t)

dt
=

∂H(z, p)

∂p
= c(1 +

z

zg
)

p′
√

1 + p′2
p′ ≡ p

mc
zg ≡ c2

g
(17)

dp(t)

dt
= −∂H(z, p)

∂z
= −mg

√

1 + p′2 → dp′(t)

dt
= −g

c

√

1 + p′2. (18)

We take the time origin such that: p(0) = 0. Note that the term mc2+mg zm ≡ mc2(1+zm/zg),
where the maximum altitude zm represents the corpuscle energy. The round-trip time is now
a function of ζm − ζ, where ζ = log(1 + z/zg). The non-relativistic expressions are recovered
when z, c t ≪ zg. An Hamiltonian function that would account for Quantum Gravity has been
proposed by Chandra [18].
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