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ABSTRACT: The paper focuses on the development of a Risk index model for traffic crash prediction, based on the 
application of a mixed approach: artificial neural networks, statistical analysis approaches. The inputs of the developed 
risk index model are the traffic measurements (volume and occupancy rate) and the calculated temporal left gradient. A 
global database including accidents and traffic measurements are used to validate the risk index model approach. The 
obtained results are promising while in some traffic conditions, the estimated risk index model is able to detect crash 
occurrence about 6 to 7 minutes prior to the crash time. This Risk index could be used as off-line safety evaluation 
index (evaluation process, off-line simulation) or real-time safety index monitoring for user information. 
 
KEY-WORDS: Safety, Risk analysis, ANN, traffic state clustering, fundamental diagram, linear and non linear 
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1 INTRODUCTION 

Safety can be defined in a number of ways, including the 
official World Health Organisation (WHO) safety defini-
tion ‘freedom from unacceptable risk of harm’. When we 
speak about traffic safety we usually think about acci-
dents. Accidents can be defined as (KELLER, 2002): “Any 
event that due to moving traffic at opened roads and 
places resulted in fatalities, injuries or/and damages”.  
Safe road traffic is characterised, in an ideal case, by the 
absence of crashes, injuries and fatalities. 
  
Accidents have a great effect on the safety of responders 
and on the mobility of the travelling public. Over 40,000 
people are killed and 1, 7 million people injured on roads 
in the EU every year (ETSC, 2001). In the USA studies 
reported 41,000 people killed and more than 5 million 
injured. It is estimated that 18% of fatalities on motor-
ways is due to secondary accidents only. Representing 
human life in numbers is not a favourable practice, how-
ever, the following accident cost estimates could be 
found in literature. In the USA, in addition to the delay 
costs, there is close to $200 billion per year of direct 
economic loss due to accidents and fatalities (FHWA, 
2004). In the EU the cost to society has been estimated at 
160 billion Euros annually. 
 

In order to increase the traffic safety, control measures 
are introduced to improve traffic performance in motor-
way traffic including speed limit control, ramp metering, 
user information aiming at homogenizing the practical 
speed along the motorway sections and at minimizing 
the number and the severity of accidents and conse-
quently increasing safety (Dilmore J., 2005). On the 
other hand, introduction of electronics and computeriza-
tion systems in the vehicle technologies have signifi-
cantly contributed to safety and comfort. However, the 
prediction of the crash in real time is still in investigation 
phase and some research efforts are dedicated in this 
area. During the last five years, there is an increasing 
focus on the development of real time ("potential crash") 
prediction algorithm on urban motorway traffic (Abdel-
Aty M. & al., 2005; Lee C. & al., 2006; Haj-Salem, & 
al.,2007).   
 
In the field of safety analysis, the classical traffic evalua-
tion approaches consist in collecting incident/accidents 
traffic data during the experimented scenarios (traffic 
control strategies, modification of the infrastructure etc.), 
and in proceeding to traffic impact and statistical safety 
analysis of the number of accidents before and after the 
implementation of these scenarios. Generally, the collec-
tion of the accident numbers must get a statistical signi-
ficance before undertaking an evaluation process. This 
remark imposes a long time of field data collection (3-5 
years), which is the “price to pay” for having a statistical 
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significance of accidents set and correct safety evalu
tion.    
 
This paper aims at developing a risk index based on real
data measurements, which can be used either 
an evaluation index during the evaluation process lea
ing to the dramatically reduction of the field test periods, 
or in real-time like: a safety monitoring tool (e.g. safety 
user warning system), a multi-criterion function to be 
optimized in real time (safety index combined with a 
traffic index) within several control strategies such as 
coordinated ramp metering, speed limit control, route 
guidance, etc. 
 
The developed index is based on the collection of mea
ured traffic data synchronized with incident/accidents 
data on two sites in France: the urban motorway A4/A86 
and the ring way of Paris. In this paper, the used data 
concerns the Ring way of Paris only (accidents and tra
fic data measurements). 
 

2 AVAILABLE TRAFFIC DATA DESCRIPTIO

2.1 Ring way of Paris description 

The Corridor Périphérique (CP) consists of two parallel 
beltways around the city of Paris (see figure 1
having a length of some 35 km in each direction, and of 
the connecting radial streets. The outer motorway belt is 
the Ring way including a total of 70 on
off-ramps in both directions. Some of these ramps are 
the beginning or ending points of corresponding moto
ways that start from or lead to the city of Paris. The 
inner, signal-controlled arterial belt is the 
Maréchaux (BM).  
 

Figure 1: Ring way of Paris.

The Corridor Périphérique is a central highway facility 
of the extended traffic network of Ile-de
ries a wide variety of traffic types, including 
muters, holiday traffic and commercial vehicles, and 
offers connections from Paris to the suburbs and vice 
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correct safety evalua-

This paper aims at developing a risk index based on real-
used either off-line as 

an evaluation index during the evaluation process lead-
ing to the dramatically reduction of the field test periods, 

like: a safety monitoring tool (e.g. safety 
criterion function to be 

ptimized in real time (safety index combined with a 
traffic index) within several control strategies such as 
coordinated ramp metering, speed limit control, route 

The developed index is based on the collection of meas-
ronized with incident/accidents 

data on two sites in France: the urban motorway A4/A86 
In this paper, the used data 

way of Paris only (accidents and traf-

TA DESCRIPTION 

(CP) consists of two parallel 
he city of Paris (see figure 1), each 

having a length of some 35 km in each direction, and of 
The outer motorway belt is 

including a total of 70 on-ramps and 70 
Some of these ramps are 

the beginning or ending points of corresponding motor-
ways that start from or lead to the city of Paris. The 

controlled arterial belt is the Boulevard des 

 

way of Paris. 

The Corridor Périphérique is a central highway facility 
de-France. It car-

ries a wide variety of traffic types, including daily com-
muters, holiday traffic and commercial vehicles, and 
offers connections from Paris to the suburbs and vice 

versa, between pairs of Paris locations, and between 
suburbs. Moreover, the CP is used by a non negligible 
number of through drivers when ch
their far-distance trip. 
CP is managed by the Paris town
ters are dedicated for rapid lanes traffic management and 
urban traffic management. The first control centre is 
located in the centre of Paris (LUTECE) and it
function is the urban traffic management (intersections). 
The second control centre is located at Porte d'Ivry and 
only manages the traffic on the rapid lanes (Boulevard 
Périphérique). It is important to note that the Boulevards 
des Maréchaux management is ensured by the control 
centre LUTECE and that a data exchange in terms of 
traffic states is going to be implemented in order to co
ordinate the control strategies between these two central 
control rooms. 
 
The Ring way represents 40% of the Parisian traffic for a 
network surface equal to 2.5% of the overall motorway 
and urban network of Paris. 
Périphérique is the only complete ring considered as a 
motorway in Ile-de-France. Linked up to 6 motorways 
(A1, A3; A6a, A6B, A13, A86), it supports an important 
national and international traffic; it is the main access to 
the motorways from Paris and the near suburban area.
The number of vehicles served per day is equal to 
1.100.000 vehicles for an average trav
kilometers. The tracks represent about 10% of the nu
ber of vehicles.  
 
2.2 Data base building 

Traffic dataset and accident characteristics are collected 
from historical database stored in the 
system of the Ring way. The consid
equipped with real traffic measuring sensors located at 
around every 500 meters apart. The incidents/accidents 
data characteristics are automatically and manually co
lected and include: time of day, location of the accident, 
weather conditions and severity. 
 
 
Lane 1 
Lane 2 
 
Lane 3 
Lane 4 
 
 
 

 
Figure 2:  Topology of the considered stretch 

ments for each crash
 

The collected traffic data covers 2 hours (one before and 
one after the crash) at two upstream and two downstream
measurement stations (figure 2
volume, occupancy rate and speed (if exists). The time 

X

St1 St2 

versa, between pairs of Paris locations, and between 
suburbs. Moreover, the CP is used by a non negligible 
number of through drivers when changing motorways on 

CP is managed by the Paris town-hall. Two control cen-
are dedicated for rapid lanes traffic management and 

urban traffic management. The first control centre is 
located in the centre of Paris (LUTECE) and its main 
function is the urban traffic management (intersections). 
The second control centre is located at Porte d'Ivry and 
only manages the traffic on the rapid lanes (Boulevard 
Périphérique). It is important to note that the Boulevards 

ment is ensured by the control 
centre LUTECE and that a data exchange in terms of 
traffic states is going to be implemented in order to co-
ordinate the control strategies between these two central 

represents 40% of the Parisian traffic for a 
network surface equal to 2.5% of the overall motorway 
and urban network of Paris. Today the Boulevard 
Périphérique is the only complete ring considered as a 

France. Linked up to 6 motorways 
A1, A3; A6a, A6B, A13, A86), it supports an important 

national and international traffic; it is the main access to 
the motorways from Paris and the near suburban area. 
The number of vehicles served per day is equal to 
1.100.000 vehicles for an average travel distance of 7 

. The tracks represent about 10% of the num-

raffic dataset and accident characteristics are collected 
from historical database stored in the HYPER operating 

. The considered sites are fully 
equipped with real traffic measuring sensors located at 
around every 500 meters apart. The incidents/accidents 

are automatically and manually col-
: time of day, location of the accident, 

severity.  

Topology of the considered stretch measure-
for each crash 

collected traffic data covers 2 hours (one before and 
one after the crash) at two upstream and two downstream 
measurement stations (figure 2), consisting of traffic 
volume, occupancy rate and speed (if exists). The time 

X 

St3 St4 
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intervals of the traffic measurements are equal to one 
minute. 
 
The final constituted database includes the overall acci-
dents occurred and traffic data during 4 years (2001-
2004) and (2002-2004). The total number of accidents 
collected is around 900 on the ring way of Paris. 
In order to exclude the effect of several factors, the first 
investigation step is made on a selected number of acci-
dents with the following criterion: same topology (4 
lanes), sunny weather conditions and full luminosities 
(no night-time accidents considered). Among all col-
lected accidents, the available accidents where dramati-
cally reduced, leading to 90 accidents selected on the 
Ring way of Paris. 
 

3 RISK MODEL DEVELOPPMENT 

The aim is to develop a crash risk function model [Abdel 
Aty, M., A. Pande, 2005] which is able to decide on line 
and at the seen of two traffic variable measurements of 
volume and occupancy rate, whether the traffic state is 
crash prone or not. For a given traffic situation, more its 
potential of crash occurrence increases more it’s deemed 
to be as crash prone. The proposed crash risk function 
model is based on the application of a supervised learn-
ing artificial neural networks (ANN) approach. To 
achieve this research investigation, a labeled data base is 
required. Unfortunately no human expert is able to de-
cide whether a traffic situation is crash prone or not with 
a high confidence in view of the partial information at 
disposal. To overcome this deficiency, some mathemati-
cal techniques are used, among them clustering (K-
means) and relationship between traffic volume and 
occupancy rate (Greenberg fundamental diagram) are the 
most relevant.  This investigation is implemented 
through three steps: 
 

1. The measured traffic data is splitted into two 
categories: fluid and congested based on the 
fundamental diagram relationship. Two sub da-
ta sets are generated. A temporal left gradient is 
incorporated in each data base example to 
enrich the information carried by the input. 

2. For each sub data set, K-Means data clustering 
algorithm is applied. Several experiments using 
different clusters are achieved to find out the 
best cluster number. It will be shown later that 
two clusters is the best data partition. 

3. A majority vote was proceeded to select the 
class which will be labeled as crash prone.  The 
class containing the majority of traffic patterns 
associated to one minute prior to the crash 
minute time is the crash prone class and subse-
quently all its elements are labeled as crash 
prone. 

 

3.1 Basic theoretical risk index model development 

In order to alleviate this paper, only the main approach 
and summary of mathematical results are described in 
this section.   
 
In this research, let � refers to a random vector describ-
ing the traffic state and taking its values within ℝ�. For 
each realization � of �, let �(�) denotes the crash occur-
rence potential of the traffic state �. A traffic condition 
situation � is deemed to be crash prone if the risk value 
�(�) exceeds a given level α. 
The following classifier holds: 

	(�) = � 1  
�  � 
� ����ℎ �����
0                  ��ℎ���
��

� 

                               = � 1  
�  �(�) >  �
0     ��ℎ���
��

�                           (1) 

 
It’s known that the optimal classifier approaching 	 is 
the Bayes function, say �∗ [Devroye, L. and al., 1996], 
[Hastie, T. and al., 2001], [Vapnik, V., 2000]. We 
showed �∗ = 	 almost surely. In other words the Bayes 
loss is zero, that is !(�∗(�)  ≠ Y) =0. 
  
Of course only partial information is available for traffic 
flow observer. We proved that under this hypothesis, the 
corresponding Bayes function �∗$ is the optimal approx-
imation of  �∗ in the %&sense. Based on the result estab-
lished by [Cybenco, G., 1989], [Funahashi, K., 1989], 
[Hornik, K., and al., 1989] concerning the density of 
functions implemented by neural networks within the set 
of classifiers, we showed that multilayer perceptrons 
approach the conditional probability associated to the 
Bayes function �∗$ and subsequently the risk function 
�(�). 
 

4 DATA LABELLING AND CATEGORIZATION 

As mentioned above, no human expert can replace an 
oracle in terms of labeling every traffic pattern as being 
crash prone or not. To imitate an oracle, each pattern is 
labeled through the following steps: 
 

- Building accident data series and splitting them 
into fluid and congested sets. 

- Reducing the input dimensions. 
- Incorporating the temporal left-gradient in each 

input. 
- Applying K-means clustering on both fluid and 

congested accident data series.  
- A majority vote decides which cluster is crash 

prone or not in each set (congested and fluid).  
 

4.1 New data base building 

In the following the building up of an accident data se-
ries is detailed. For each available accident in the data 
set, measurements of traffic variables (occupancy rate 
and traffic flow) are extracted for each minute during 
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one hour prior to the crash minute. These measurements 
are taken for only two stations: one upstream and one 
downstream of the crash location. According to the se-
lected accidents which include only four lanes, 16 di-
mensional traffic patterns are built up (4 lanes * 2 sta-
tions * 2 variables) at each minute for each considered 
station. The sequence of these patterns makes up the 
accident data series.  
 
Further, the reduction of input dimension avoiding the 
loss of information improves the learning of the artificial 
neural networks. A data analysis results demonstrated 
that measurements related to lanes one and two are high-
ly positively correlated and similarly for lanes three and 
four. Averaging the measurements of two lanes is pre-
ferred to select one of them. Then two dummy lanes are 
obtained and named as lane I and lane II. The previous 
accident data series is henceforth consisting of 8 dimen-
sional patterns. The data base thus obtained consists of 
90 data series each of them contains 60 patterns. Hence 
the overall examples are 5400. 
 
 
4.2 Fluid and congested accident data series  

Recall that the aim of this section is labeling data after 
using the clustering statistical function (K-means) which 
is based on grouping sample examples belonging to an 
Euclidian state space according to a given distance func-
tion (criterion). Generally this distance function is taken 
as the Euclidian distance. However, crash prone patterns 
could be very disparate when they correspond to fluid or 
congested traffic situations, which complicates the task 
of such clustering methods leading to unsatisfactory 
results. To palliate this shortcoming, accident data series 
are categorized into fluid or congested series using the 
Greenberg fundamental diagram relationship [Green-
berg, H., 1959], [Lighthill, M.J., G.B. Whitham, 1955].  

For every accident data series, for each underlying sta-
tion and for each dummy lane, pairs of (', )) where k is 
the occupancy rate and q is the traffic volume are ex-
tracted. The Greenberg relationship is fitted to the data 
set of (', )) yielding an estimated fundamental diagram. 
Figures (*, +, ,, -) indicate the nonlinear parametric 
regression related to the accident number 7014. In each 
figure, squares and asterisks represent respectively acci-
dent data and the estimated Greenberg relationship. The 
diamond and the circle report (', )) pairs corresponding 
respectively to one minute and two minutes prior to the 
crash time. The (', )) pair’s corresponding to one 
minute and two minutes prior the crash time are named 
as data 59 and data 58. The accident data series stands 
for fluid, if both data 58 and data 59 related to both 
dummy lanes I and II at the two stations are in the fluid 
part of the fundamental diagram. Otherwise, this data 
series is set to be congested. In figures (*, +, ,, -) the 
data of the accident number 7014 is reported. Using the 

previous definition one can conclude that the associated 
data series is congested.   

 

 
                   Figure 3: Lane I at Station 2 
 

 
                   Figure 4: Lane II at Station 2 
                         

   
                  Figure 5: Lane I at Station 3 
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                 Figure 6: Lane II at Station 3 
   
 
4.3 K-means based data labeling  

The accident data series are splitted into fluid and con-
gested series. Each traffic pattern belonging to a series is 
an eight dimensional input. At this stage, a temporal left 
gradient is added to every sample example to take into 
account the time varying of the measurements and hence 
a 16 dimensional input is obtained.  The gradient is 
computed using the values of . and / at minutes � 
and (� − 1) for each dummy lane at each station. Recall 
that each input contains measurements associated to one 
upstream station and one downstream station with re-
spect to the location of the crash for each lane. This 
structure can be considered as a spatial gradient. The 
injected temporal left gradient enriches the information 
carried by each input. At the end of this stage, two cate-
gories of data are created. The first one contains the 
whole 16 dimensional examples deriving from fluid 
accident data series and referred to as fluid category. In 
the same way, the congested category is created from the 
congested accident data series.   
 
On each above category, a K-means clustering is ap-
plied. Experiments were led using different numbers of 
clusters 1going from two to five. The best configuration 
is selected upon the mean and the standard deviation of  
silhouette patterns. The silhouette displays a measure of 
how close each point in one cluster is to points in the 
neighboring clusters. This measure ranges from -1 to +1. 
The +1value indicates points that are very distant from 
neighboring clusters. The 0 value indicates points for 
which no decision can be taken. The -1 value indicates 
points that are probably assigned to the wrong cluster. 
More the mean silhouette clustering is large and its stan-
dard deviation is small more the clustering is better. The 
table 1 reports the summarized results concerning the 
silhouette mean and its standard deviation of each cate-
gory (fluid and congested) and for each cluster number. 
Screening the table 1, one can observe that among the 

four cluster characteristics the best one is the number 
cluster 1 = 2. Figures (3, 4) indicate the silhouette plots 
for both categories (fluid and congested) with 1 = 2. 

    
Clusters 2 3 4 5 

Mean (fluid) 0.371 0.321 0.368 0.325 

Std (fluid) 0.205 0.188 0.189 0.184 

Mean (congested) 0.465 0.325 0.335 0.342 

Std (congested) 0.213 0.197 0.197 0.191 

     Table 1: Mean and standard deviation of silhouettes 
 
Recall that the aim of K-means is to be able to label each 
example as crash prone or not. The main idea of this 
labeling is: if there are precursors to a crash they would 
be detected at least through the traffic measurements of 
one minute prior to the minute of accident occurrence.  
Therefore the cluster containing the majority of patterns 
related to 59 minute will be considered as crash prone. 
All examples belonging to that cluster will be labeled so. 
The remaining patterns are non crash prone. The next 
step is merging all crash prone examples deriving from 
fluid and congested categories in a unique crash prone 
class. Similarly, non-crash prone class is built up. Ap-
proximately two thirds of the overall examples are in the 
non crash prone class.   
 
 

 
Figure 7: Congested case. Silhouette by cluster with K=2 
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        Figure 8: Fluid case. Silhouette by cluster with K=2 
 

5 RISK FUNCTION APPROXIMATION USING 
ARTIFICIAL NEURAL NETWORKS 

The used ANN are multilayer perceptrons (MLP) with 
one hidden layer containing . neurons having the same 
sigmoidal transfer function and a linear output layer 
containing one neuron. 
 
Among the 90 available data series (5400 examples), one 
third (containing fluid and congested series) is reserved 
for the needs of the efficiency prediction tests. The train-
ing and the validation phases use the whole examples of 
the remaining data series (3600 examples). The target of 
each pattern is either +1 or -1 according to whether it is 
crash prone or not. 
 
5.1 ANN architecture investigation 

The best architecture (the best number of hidden units .) 
is determined experimentally according to the available 
training and validation sets. Several configurations were 
tested with . going from 5 to 50. To evaluate the effi-
ciency of each MLP, the correlation coefficient � is 
computed. This coefficient corresponds to the linear 
regression of the MLP outputs on their associated tar-
gets.  Experiments show that the best architectures seem 
to be those with hidden unit number between 20 and 30. 
Figures (5, 67, 66) represent this linear regression re-
lated to . = 5, . = 21 ��9 . = 50 .  
 

 
 
        Figure 9: MLP with 5 hidden nodes. � = 0.736 
 
 

 
         Figure 10: MLP with 21 hidden nodes. � = 0.892 
 

 
      Figure 11: MLP with 50 hidden nodes. � = 0.886 
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5.2 Behavior of the risk index 

This subsection is devoted to test the ability of the risk 
function implemented by the selected MLP to evaluate 
the crash proneness. Also, the behavior in time of this 
estimated risk function is studied during a period of ten 
minutes prior to the crash time. These experiments are 
achieved using the data series of the test set made up 
previously.  
 
Due to the previous architecture investigations, an MLP 
with . = 21 hidden nodes is chosen. Let �  denotes the 
input of the MLP and @(�) its output. A traffic situation 
described by its input � (measurements and temporal left 
gradient) is considered to be crash prone if @(�) > 0 
and non-crash prone if @ (�) ≤ 0. This choice is based 
on both target labels B−1,1C and the theoretical risk in-
dex model development. On the other side, accident data 
series of each category (fluid and congested) are handled 
separately. For each data series belonging to the fluid 
category, the average of MLP outputs for the same 
minute is evaluated. This process is repeated for the ten 
minutes prior to the crash time.  In the same way an 
average of MLP outputs is computed for the same period 
and for the data series belonging to the congested catego-
ry. Figures (6D, 6*) plot the obtained results. The first 
figure corresponds to the congested category while the 
second one to the fluid case.  

 
Figure 12: Accident prediction (Congested case) 

 
In the congested case, the estimated mean risk function 
is positive for about 6 to 7 minutes prior to the crash 
occurrence. Also, one could see that is an increasing 
function of time attaining its maximum just before the 
accident moment. However in the fluid case, the MLP 
decides that the traffic situations are non-crash prone 
during all the considered period except the last minute 
for which the output of the MLP is slightly positive.  
 

 
Figure 13: Accident prediction (Fluid case)   

 

6 CONCLUSION AND NEXT STEPS 

It appears from the above results that in the congested 
case, the estimated mean risk function developed in this 
paper is able to predict accident of each traffic situation 
using the measurements of the traffic volume and occu-
pancy rate. The information carried by these two va-
riables at two successive stations and the computation of 
the temporal left gradient at each of them contain enough 
information about the real traffic state. However in the 
fluid case, the information carried by the input measure-
ments is not sufficiently pertinent. The estimated risk 
index model predicts the accident occurrence only one 
minute prior to the crash time. This seems to be accepta-
ble because in the fluid case, traffic flow and occupancy 
rate measurements are probably not sufficient to explain 
the crash occurrence. Also the one minute interval time 
of measurements seems to be too large and the traffic 
measurements are much smoothed leading to the elimi-
nation of the traffic variability.  However, additional 
information such as driver behavior, weather conditions 
and speed measurements could be useful to improve the 
Risk index model and the crash prediction mainly in the 
fluid case of traffic. 
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