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ABSTRACT: The paper focuses on the development of a Riskximdodel for traffic crash prediction, based on the
application of a mixed approach: artificial neunatworks, statistical analysis approaches. Thetinpiithe developed
risk index model are the traffic measurements (wawand occupancy rate) and the calculated temfeftajradient. A
global database including accidents and traffic snesments are used to validate the risk index magiptoach. The
obtained results are promising while in some tecaéfbnditions, the estimated risk index model isabl detect crash
occurrence about 6 to 7 minutes prior to the ctask. This Risk index could be used as off-lineesafevaluation
index (evaluation process, off-line simulationyeal-time safety index monitoring for user inforiat

KEY-WORDS: Safety, Risk analysi8NN, traffic state clustering, fundamental diagrdimear and non linear

regression.

1 INTRODUCTION

Safety can be defined in a number of ways, inclgidive
official World Health Organisation (WHO) safety def
tion ‘freedom from unacceptable risk of harm’. Whea
speak about traffic safety we usually think abottia
dents. Accidents can be defined asI(KER, 2002): “Any
event that due to moving traffic at opened roadd an
places resulted in fatalities, injuries or/and dages.
Safe road traffic is characterised, in an ideaécay the
absence of crashes, injuries and fatalities.

Accidents have a great effect on the safety ofaedprs
and on the mobility of the travelling public. Ov&0,000
people are killed and 1, 7 million people injuredroads

in the EU every year (ETSQ@Q01). In the USA studies
reported 41,000 people killed and more than 5 omilli
injured. It is estimated that 18% of fatalities wotor-
ways is due to secondary accidents only. Representi
human life in numbers is not a favourable practicey-
ever, the following accident cost estimates cout b
found in literature. In the USA, in addition to thelay
costs, there is close to $200 billion per year néa
economic loss due to accidents and fatalities (FHWA
2004). In the EU the cost to society has been estidhat
160 billion Euros annually.

In order to increase the traffic safety, controlaseres
are introduced to improve traffic performance intane
way traffic including speed limit control, ramp raghg,
user information aiming at homogenizing the praadtic
speed along the motorway sections and at minimizing
the number and the severity of accidents and conse-
quently increasing safety (Dilmore J., 2005). Owr th
other hand, introduction of electronics and compze
tion systems in the vehicle technologies have 8igni
cantly contributed to safety and comfort. Howeubag
prediction of the crash in real time is still irvéstigation
phase and some research efforts are dedicatedisin th
area. During the last five years, there is an insirg
focus on the development of real time ("potentraksb™)
prediction algorithm on urban motorway traffic (Addd
Aty M. & al., 2005; Lee C. & al., 2006; Haj-Salem,
al.,2007).

In the field of safety analysis, the classicalftca¢valua-
tion approaches consist in collecting incident/dents
traffic data during the experimented scenariosffitra
control strategies, modification of the infrasturet etc.),
and in proceeding to traffic impact and statistisalety
analysis of the number of accidents before and Hfie
implementation of these scenarios. Generally, tlec
tion of the accident numbers must get a statisSgii-
ficance before undertaking an evaluation processs T
remark imposes a long time of field data collect{8rb
years), which is the “price to pay” for having atitical
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significance of accidents set andrrect safety evaa-
tion.

This paper aims at developing a risk index baserka-
data measurements, which canused eitheoff-line as
an evaluation index during the evaluation procesd-
ing to the dramatically reduction of the field testiods,
or in real-timelike: a safety monitoring tool (e.g. safe
user warning system), a muttiterion function to b
optimized in real time (safety index combined witl
traffic index) within several control strategiesckuas
coordinated ramp metering, speed limit control, te
guidance, etc.

The developed index is based on the collection eds-
ured traffic data synebnized with incident/acciden
data on two sites in France: the urban motorwayA88/
and the ring way of Paridn this paper, the used d¢
concerns the Ringiay of Paris only (accidents andf-
fic data measurements).

2 AVAILABLE TRAFFIC DATA DESCRIPTION
2.1 Ringway of Parisdescription

The Corridor PériphériquéCP) consists of two parall
beltways aroundhe city of Paris (see figure), each
having a length of some 35 km in each direction af
the connecting radial streefBhe outer motorway belt
the Ring wayincluding a total of 70 c-ramps and 70
off-ramps in both directionsSome of these ramps ¢
the beginning or ending points of correspondingar-
ways that start from or lead to the city of Paiitie
inner, signaleontrolled arterial belt is thBoulevard des
MaréchauxBM).
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Figure 1: Ringvay of Paris

The Corridor Périphérique is a central highway lfgc
of the extended traffic network of Il#eFrance. It car-
ries a wide variety of traffic types, includirdaily com-
muters, holiday traffic and commercial vehiclesd
offers connections from Paris to the suburbs arme

versa, between pairs of Paris locations, and bet
suburbs. Moreover, the CP is used by a non netgi
number of through drivers whenanging motorways on
their far-distance trip.

CP is managed by the Paris tc-hall. Two control cen-
tersare dedicated for rapid lanes traffic managemedt
urban traffic management. The first control cens:
located in the centre of Paris (LUTECE) ans main
function is the urban traffic management (intereas).
The second control centre is located at Porteydéwd
only manages the traffic on the rapid lanes (Boalé
Périphérique). It is important to note that the Boards
des Maréchaux managent is ensured by the cont
centre LUTECE and that a data exchange in terrr
traffic states is going to be implemented in orttecc-
ordinate the control strategies between these tmiral
control rooms.

The Ring wayrepresents 40% of the Parisian traffic fc
network surface equal to 2.5% of the overall motyr
and urban network of ParisToday the Boulevard
Périphérique is the only complete ring considersda
motorway in lle-deFrance. Linked up to 6 motorwa
(A1, A3; Aba, A6B, A13, A86), it supports an impant:
national and international traffic; it is the maiocess t(
the motorways from Paris and the near suburban
The number of vehicles served per day is eque
1.100.000 vehicles for an average el distance of 7
kilometers The tracks represent about 10% of thm-
ber of vehicles.

2.2 Databasebuilding

Traffic dataset and accident characteristics arkecied
from historical database stored in IHYPER operating
system of the Ring wayThe consiered sites are fully
equipped with real traffic measuring sensors latatt
around every 500 meters apart. The incidents/acts
data characteristicare automatically and manuallyl-
lected and includetiime of day, location of the accide
weather conditions argkverity.

O
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Lane2 (O O O O
O O . O—— |0
Lane 3 J-ccmmm oo L -
Lane 4 |O O O O
St St St St,

Figure 2: Topology of the considered streimeasure-
mentsfor each cras

Thecollected traffic data covers 2 hours (one befarg
one after the crash) at two upstream and two doeeus
measurement stations (figure), consisting of traffic
volume, occupancy rate and speed (if exists). Tihe
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intervals of the traffic measurements are equabrie
minute.

The final constituted database includes the ovesati-
dents occurred and traffic data during 4 years 1200
2004) and (2002-2004). The total number of accilent
collected is around 900 on the ring way of Paris.

In order to exclude the effect of several facttns, first
investigation step is made on a selected numbecaif
dents with the following criterion: same topolog¥ (
lanes), sunny weather conditions and full lumiresit
(no night-time accidents considered). Among all- col
lected accidents, the available accidents whermatia
cally reduced, leading to 90 accidents selectedhen
Ring way of Paris.

3 RISK MODEL DEVELOPPMENT

The aim is to develop a crash risk function moddidel
Aty, M., A. Pande, 2005] which is able to decidelioe

and at the seen of two traffic variable measurement
volume and occupancy rate, whether the trafficesisit
crash prone or not. For a given traffic situatiorgre its
potential of crash occurrence increases more é&nked

to be as crash prone. The proposed crash riskifumnct
model is based on the application of a supervisadnt

ing artificial neural networks (ANN) approach. To
achieve this research investigation, a labeled base is
required. Unfortunately no human expert is ablel¢e
cide whether a traffic situation is crash pronaat with

a high confidence in view of the partial informatiat
disposal. To overcome this deficiency, some matliema
cal techniques are used, among them clustering (K-
means) and relationship between traffic volume and
occupancy rate (Greenberg fundamental diagranthare
most relevant.  This investigation is implemented
through three steps:

1. The measured traffic data is splitted into two
categories: fluid and congested based on the
fundamental diagram relationship. Two sub da-
ta sets are generated. A temporal left gradient is
incorporated in each data base example to
enrich the information carried by the input.

For each sub data set, K-Means data clustering
algorithm is applied. Several experiments using
different clusters are achieved to find out the
best cluster number. It will be shown later that
two clusters is the best data partition.

A majority vote was proceeded to select the
class which will be labeled as crash prone. The
class containing the majority of traffic patterns
associated to one minute prior to the crash

3.

3.1 Basictheoretical risk index model development

In order to alleviate this paper, only the main rapgh
and summary of mathematical results are described i
this section.

In this research, let refers to a random vector describ-
ing the traffic state and taking its values witiify. For
each realizationr of X, let R(x) denotes the crash occur-
rence potential of the traffic state A traffic condition
situationx is deemed to be crash prone if the risk value
R(x) exceeds a given level
The following classifier holds:
_ (1 if xiscrashprone
Yoo = { 0 Otherwise

1if Rx)> «a

0 Otherwise
It's known that the optimal classifier approachirds
the Bayes function, say’ [Devroye, L. andal., 1996],
[Hastie, T. andal., 2001], [Vapnik, V., 2000]. We
showedg™ = Y almost surely. In other words the Bayes
loss is zero, that iB(g*(X) #Y) =0.

1)

Of course only partial information is available toaffic
flow observer. We proved that under this hypothebis
corresponding Bayes functiqgt is the optimal approx-
imation of g* in the Lsense. Based on the result estab-
lished by [Cybenco, G., 1989], [Funahashi, K., 1989
[Hornik, K., andal., 1989] concerning the density of
functions implemented by neural networks within se¢
of classifiers, we showed that multilayer percepsgro
approach the conditional probability associatedthe
Bayes functiong® and subsequently the risk function
R(x).

4 DATA LABELLING AND CATEGORIZATION

As mentioned above, no human expert can replace an
oracle in terms of labeling every traffic patteshteeing
crash prone or not. To imitate an oracle, eachepait
labeled through the following steps:

Building accident data series and splitting them
into fluid and congested sets.

Reducing the input dimensions.

Incorporating the temporal left-gradient in each
input.

Applying K-means clustering on both fluid and

congested accident data series.

A majority vote decides which cluster is crash
prone or not in each set (congested and fluid).

minute time is the crash prone class and subse-4.1 New data base building

quently all its elements are labeled as crash
prone.

In the following the building up of an accident alate-
ries is detailed. For each available accident & data
set, measurements of traffic variables (occupartg r
and traffic flow) are extracted for each minute idgr
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one hour prior to the crash minute. These measuresme previous definition one can conclude that the dased
are taken for only two stations: one upstream amel 0 data series is congested.

downstream of the crash location. According to she

lected accidents which include only four lanes, di6

mensional traffic patterns are built up (4 lane2 $ta-

tions * 2 variables) at each minute for each cosr&d 25001
station. The sequence of these patterns makes aip th

accident data series. 20001
Further, the reduction of input dimension avoidihg 1500}

loss of information improves the learning of théfaial
neural networks. A data analysis results demorstrat
that measurements related to lanes one and twaigite

ly positively correlated and similarly for lanegehl and
four. Averaging the measurements of two lanes & pr
ferred to select one of them. Then two dummy lares

1000

500

obtained and named as lane | and lane Il. The quevi oF
accident data series is henceforth consisting difv&n-
sional patterns. The data base thus obtained teruis 500 ~ - - - - - 7

90 data series each of them contains 60 patteresced

the overall examples are 5400. Figure 3: Lane | at Station 2

4.2 Fluid and congested accident data series 2500

Recall that the aim of this section is labelingadafter
using the clustering statistical function (K-meawnslich

is based on grouping sample examples belongingito a
Euclidian state space according to a given distéunce- 1500}
tion (criterion). Generally this distance functientaken
as the Euclidian distance. However, crash prone et
could be very disparate when they correspond id fiu
congested traffic situations, which complicates tifigk
of such clustering methods leading to unsatisfgctor s00)-
results. To palliate this shortcoming, accidentdadries
are categorized into fluid or congested seriesgqusiie
Greenberg fundamental diagram relationship [Green-
berg, H., 1959], [Lighthill, M.J., G.B. Whitham, 89].

2000

1000 -

For every accident data series, for each underlgtag
tion and for each dummy lane, pairs(&fq) where k is
the occupancy rate and q is the traffic volume exe
tracted. The Greenberg relationship is fitted te tlata
set of(k, q) yielding an estimated fundamental diagram.
Figures (3,4,5,6) indicate the nonlinear parametric
regression related to the accident number 7014ath
figure, squares and asterisks represent respeactieei-

2500

2000

1500 -

dent data and the estimated Greenberg relation$hip. to0or
diamond and the circle repdit, q) pairs corresponding
respectively to one minute and two minutes prioth® s00-;
crash time. The(k, q) pair's corresponding to one
minute and two minutes prior the crash time are ethm of
as data 59 and data 58. The accident data seaedsst

for fluid, if both data 58 and data 59 related to both 500 ‘ ‘ ‘ ‘ ‘ ‘ ‘
dummy lanes | and Il at the two stations are infthiel ’ * ” ¥ “ ” ” A
part of the fundamental diagram. Otherwise, thisada
series is set to be congestéul.figures (3,4, 5,6) the
data of the accident number 7014 is reported. Uling

Figure 5: Lane | at Station 3
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Figure 6: Lane Il at Station 3

4.3 K-meansbased data labeling

The accident data series are splitted into fluid aan-
gested series. Each traffic pattern belonging serées is

an eight dimensional input. At this stage, a terapaft
gradient is added to every sample example to tale i
account the time varying of the measurements andehe
a 16 dimensional input is obtained. The gradient i
computed using the values &f and g at minutest
and(t — 1) for each dummy lane at each station. Recall
that each input contains measurements associat@aeto

upstream station and one downstream station with re

spect to the location of the crash for each langs T
structure can be considered as a spatial gradidm.
injected temporal left gradient enriches the infation
carried by each input. At the end of this stage tate-
gories of data are created. The first one cont#iles
whole 16 dimensional examples deriving from fluid
accident data series and referred to as fluid oayedn
the same way, the congested category is createdtfre
congested accident data series.

On each above category, a K-means clustering is ap-

plied. Experiments were led using different numbefrs
clustersKgoing from two to five. The best configuration
is selected upon the mean and the standard deviatio
silhouette patterns. The silhouette displays a oreasf
how close each point in one cluster is to pointghia
neighboring clusters. This measure ranges frono -A1t
The +1value indicates points that are very disfesrh
neighboring clusters. The 0 value indicates pofots
which no decision can be taken. The -1 value india
points that are probably assigned to the wrongtetus
More the mean silhouette clustering is large asdtian-
dard deviation is small more the clustering isdrefThe
table 1 reports the summarized results concerriieg t
silhouette mean and its standard deviation of eaté-
gory (fluid and congested) and for each cluster lmem
Screening the table 1, one can observe that ammng t

four cluster characteristics the best one is thebar
clusterk = 2. Figures(7, 8) indicate the silhouette plots
for both categories (fluid and congested) itk 2.

Clusters 2 3 4 5
Mean (fluid) 0.371 0.321 | 0.368 0.325
Std (fluid) 0.205 0.188 | 0.189 0.184
Mean (congested) 0.465 0.325 0.335 0.342
Std (congested)| 0.213 0.197 0.197 0.191

Table 1: Mean and standard deviation of siit@s

Recall that the aim of K-means is to be able tel&ach
example as crash prone or not. The main idea &f thi
labeling is: if there are precursors to a crasly theuld

be detected at least through the traffic measuresrah
one minute prior to the minute of accident occuresn
Therefore the cluster containing the majority oftgrans
related to 59 minute will be considered as crasingr
All examples belonging to that cluster will be l&zkso.
The remaining patterns are non crash prone. Thé nex
step is merging all crash prone examples deriviogf
fluid and congested categories in a unique crasihepr
class. Similarly, non-crash prone class is built Ap-
proximately two thirds of the overall examples ar¢he
non crash prone class.

mean silh = 0.465065, std silh = 0.213359
T T T

Cluster

h I I I I L
0 02 0.4 06
Silhouette Value

Figure 7: Congested case. Silhouette by clustdr M#t2
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mean silh =0.370518, std silh = 0.204792
T

Cluster

0 0.2 0.4 0.6 0.8 1
Silhouette Value

Figure 8: Fluid case. Silhouette by clustéh K=2

5 RISK FUNCTION APPROXIMATION USING
ARTIFICIAL NEURAL NETWORKS

The used ANN are multilayer perceptrons (MLP) with
one hidden layer containing neurons having the same
sigmoidal transfer function and a linear outputelay

containing one neuron.

Among the 90 available data series (5400 exampes),
third (containing fluid and congested series) serged
for the needs of the efficiency prediction testse Train-
ing and the validation phases use the whole exanufle
the remaining data series (3600 examples). Thetarfy
each pattern is either +1 or -1 according to wheithis
crash prone or not.

5.1 ANN architectureinvestigation

The best architecture (the best number of hiddéts ih

is determined experimentally according to the aisdd
training and validation sets. Several configuratiovere
tested withk going from 5 to 50. To evaluate the effi-
ciency of each MLP, the correlation coefficieRtis
computed. This coefficient corresponds to the linea
regression of the MLP outputs on their associated t
gets. Experiments show that the best architectseem

to be those with hidden unit number between 203hd
Figures (9,10,11) represent this linear regression re-
lated tok = 5,k = 21 and k = 50 .

Best Linear Fit: A=(0.361) T +(0.126)

R=0736

O Data Points
Best Linear Fit

Figure 9: MLP with 5 hidden nodé&s= 0.736

[ R=0892

Best Linear Fit: A=(0.798) T + (-0.016)
T T T T T T

O Data Points
Best Linear Fit
----- A=T

Figure 10: MLP with 21 hidden nod@&s= 0.892

25

Best Linear Fit: A =(0.759) T + (-0.0106)
T T T T T T

| R=0886

.
P
P
-
-
-
-
-
-
.
-
-
-
P
-
-
.
-
P
P

O Data Points
Best Linear Fit
----- A=T

Figure 11: MLP with 50 hidden nodés= 0.886
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5.2 Behavior of therisk index

This subsection is devoted to test the abilityhef tisk
function implemented by the selected MLP to evauat
the crash proneness. Also, the behavior in timéhisf
estimated risk function is studied during a peridden
minutes prior to the crash time. These experimants
achieved using the data series of the test set rapde
previously.

Due to the previous architecture investigationsMarP
with k = 21 hidden nodes is chosen. Letdenotes the
input of the MLP andp(x) its output. A traffic situation
described by its input (measurements and temporal left
gradient) is considered to be crash prong(k) > 0
and non-crash prone ¢f (x) < 0. This choice is based
on both target labels—1,1} and the theoretical risk in-
dex model development. On the other side, accidatat
series of each category (fluid and congested) anellbd
separately. For each data series belonging to Itheé f
category, the average of MLP outputs for the same
minute is evaluated. This process is repeatedhi@itén
minutes prior to the crash time. In the same way a
average of MLP outputs is computed for the sammger
and for the data series belonging to the congesttdjo-

ry. Figures(12,13) plot the obtained results. The first
figure corresponds to the congested category whie
second one to the fluid case.

Mean prediction over accidents (congested case)
1

08

06

041

02F

0

risk function

021

04

-0.6F

081

-1
50

54 55 56 57 58
minutes

51 52 53 59

Figure 12: Accident prediction (Congested case)

In the congested case, the estimated mean riskidunc
is positive for about 6 to 7 minutes prior to thash
occurrence. Also, one could see that is an inangasi
function of time attaining its maximum just befdte
accident moment. However in the fluid case, the MLP
decides that the traffic situations are non-crastng
during all the considered period except the lastutei
for which the output of the MLP is slightly posiv

Mean prediction over accidents (non-congested case)

0.8-

0.4r

02r

risk function

-0.2

-06F

0.8+

54 55 56 57 58
minutes

51 52 53 59

Figure 13: Accident prediction (Fluid case)

6 CONCLUSION AND NEXT STEPS

It appears from the above results that in the cstege
case, the estimated mean risk function developetisn
paper is able to predict accident of each trafigasion
using the measurements of the traffic volume araioc
pancy rate. The information carried by these twe va
riables at two successive stations and the comipntat
the temporal left gradient at each of them conggiough
information about the real traffic state. Howeverthe
fluid case, the information carried by the inputasere-
ments is not sufficiently pertinent. The estimatézk
index model predicts the accident occurrence omlg o
minute prior to the crash time. This seems to lwep@-
ble because in the fluid case, traffic flow andwmancy
rate measurements are probably not sufficient phaéx
the crash occurrence. Also the one minute intetiva

of measurements seems to be too large and théctraff
measurements are much smoothed leading to the-elimi
nation of the traffic variability. However, additial
information such as driver behavior, weather coodg
and speed measurements could be useful to imphave t
Risk index model and the crash prediction mainlyhie
fluid case of traffic.
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